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Abstract
One of the main aims of the meta-analysis of clinical trials is the determination of the
effectivity of a new type of treatment. The effectivity is determined by the difference of the
effectivity of a standard treatment and the new treatment. In the case of binary data the
difference can be measured by a probability difference. This paper presents the construction
of the confidence interval for the probability difference of overall treatment effects in the
meta-analysis based on multicentre trials. For the construction of the confidence interval
the procedures of Wimmer & Witkovský (2004) and Kenward & Roger (1997) have been
used. The second part of this paper is a simulation study which presents properties of the
proposed confidence interval.
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1 The model

Let us consider a clinical trial performed in I centers. Suppose that the number
of subjects included in the trial in the ith center is nT,i + nC,i for i = 1, 2, . . . , I
where nT,i is the number of patients in the treated group and nC,i is the number of
patients in the control group. Patients in the treated group in the ith center succeed
with probability pT,i and patients in the control group in the ith center succeed with
probability pC,i for i = 1, 2 . . . , I. All subjects are consider to be independent.

Number of successes in the treated group in the ith center is denoted by ran-
dom variable XT,i and number of successes in the control group in the ith cen-
ter is denoted by random variable XC,i. Then XT,i ∼ Bi(nT,i, pT,i) and XC,i ∼
Bi(nC,i, pC,i). Xl,i ∼ Bi(nl,i, pl,i) for l ∈ {T,C} means that Xl,i has binomial dis-
tribution with the sample of size nl,i and the probability of success pl,i. Random
variables XT,1, . . . , XT,I , XC,1, . . . , XC,I are stochastic independent. We will next
work with random variables

Copyright c© 2011 Matej Bel University
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Yl,i = Xl,i

nl,i
, for l ∈ {T,C} and i = 1, . . . , I. (1.1)

Suppose that the true probabilities of success in the ith center pT,i and pC,i, randomly
fluctuate around common probabilities of success pT and pC . We want to estimate
the probability difference pT − pC . So

pl,i = pl + bl,i, for l ∈ {T,C} and i = 1, . . . , I. (1.2)

where bl,i is a random effect of the ith center and suppose that bl,i ∼ N(0, σ2
l,0) 1

which means bl,i is normally distributed with the mean 0 and the variance σ2
l,0.

The final situation can be represented by linear model with random effects

Yl,i = pl + bl,i + εl,i for l ∈ {T,C} and i = 1, . . . , I (1.3)

where εl,i are error terms and εl,i ∼ N(0, σ2
l,i/nl,i). In matrix notation we get

Y =
(

YT
YC

)
≈ N

((
1I×1 0I×1
0I×1 1I×1

)(
pT
pC

)
,Σ = σ2

T,0

(
II×I 0

0 0

)
+

+ σ2
C,0

(
0 0
0 II×I

)
+
∑I
i=1 σ

2
T,iGi +

∑I
j=1 σ

2
C,jHj

)
, (1.4)

where for i, j = 1, . . . , I

Gi =



0 · · · 0
. . .

... 1
nT,i

...
. . .

0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
0I×I

0I×I 0I×I


Hj =



0I×I 0I×I

0I×I

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 · · · 0
. . .

... 1
nC,j

...
. . .

0 · · · 0


.

Notation Y ≈ N (µ,Σ) means that Y has approximately normal distribution with
mean µ and variance matrix Σ.

2 Point estimator of the vector of common probabilities of success

If we know the variance components σ2
l,0 and σ2

l,i for l ∈ {T,C} and i = 1, . . . , I, the
optimal estimator of the vector of the common probability of successful treatment
would be
1Of course it is supposed that σ2

l,0 is such that "practically" 0 < pl + bl,i < 1. In
simulations it is ensured with a proper choice of σ2

l,0. In the case mentioned in sec-

tion 4, it is σ2
l,0 ∈

{
0, 1

4

(
pl
3

)2
, 1

2

(
pl
3

)2
, 3

4

(
pl
3

)2
,
(

pl
3

)2
}

for pl ≤ 0.5 and σ2
l,0 ∈{

0, 1
4

( 1−pl
3

)2
, 1

2

( 1−pl
3

)2
, 3

4

( 1−pl
3

)2
,
( 1−pl

3

)2
}

for pl > 0.5. The unacceptable situations hap-

pened in case of σ2
l,0 =

(
pl
3

)2
in 0.14 %, σ2

l,0 = 3
2

(
pl
3

)2
in 0.03 % and σ2

l,0 = 1
2

(
pl
3

)2
in 0.001 %

from 100000 replications.
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(
p̂T
p̂C

)
=
((

11×I 01×I
01×I 11×I

)
Σ−1

(
1I×1 0I×1
0I×1 1I×1

))−1(11×I 01×I
01×I 11×I

)
Σ−1Y. (2.1)

So we replace unknown covariance matrix Σ by its estimator Σ̂ which we get if we
replace the unknown variance components σ2

l,0 and σ2
l,i by their estimators σ̂2

l,0 and
σ̂2
l,i for l ∈ {T,C} and i = 1, . . . , I. The estimators σ̂2

l,0 and σ̂2
l,i we derive as follows.

From (1.1) we get

var(Yl,i) = pl,i(1− pl,i)
nl,i

and using notation from (1.3) we obtain

σ2
l,i = pl,i(1− pl,i)

for l = {T,C} and i = 1, . . . , I. Now consider an estimator of σ2
l,i which was suggested

by Agresti & Caffo (2000) as

σ̂2
l,i = p̃l,i(1− p̃l,i), where p̃l,i = Xl,i + 2

nl,i + 4 .

Than we can write

σ̂2
l,i = Xl,i + 2

nl,i + 4

(
1− Xl,i + 2

nl,i + 4

)
for l ∈ {T,C} and i = 1, . . . , I.

For estimation of σ2
l,0 we use procedure suggested by Mandel & Paule (1982). The

estimator σ̂2
l,0 for l ∈ {T,C} we obtain as iterative solution of the following equations

µ̂MP
l =

∑I
i=1

Xl,i
nl,iσ̂2

l,0+σ̂2
l,i∑I

j=1
nl,j

nl,j σ̂2
l,0+σ̂2

l,j

I∑
i=1

(
Xl,i
nl,i
− µ̂MP

l

)2

σ̂2
l,0 + σ̂2

l,i

nl,i

= I − 1.

Finally we obtain a point estimator of the vector of the common probabilities of
successful treatment

p̂ =
(
p̂T
p̂C

)
=



∑I

i=1

XT,i

nT,iσ̂
2
T,0+σ̂2

T,i∑I

j=1

nT,j

nT,j σ̂
2
T,0+σ̂2

T,j∑I

i=1

XC,i

nC,iσ̂
2
C,0+σ̂2

C,i∑I

j=1

nC,j

nC,j σ̂
2
C,0+σ̂2

C,j


. (2.2)
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3 Interval estimator of the probability difference

As an estimatior of the covariance matrix of p̂ is commonly used

Φ̂ =
((

11×I 01×I
01×I 11×I

)
Σ̂−1

(
1I×1 0I×1
0I×1 1I×1

))−1
.

Kenward & Roger (1997) suggested an adjusted estimator Φ̂A

Φ̂A = Φ̂ + 2Λ̂, (3.1)
where

Λ̂ = Φ̂
{2I+2∑
k=1

2I+2∑
l=1

Ŵkl(Q̂kl − P̂kΦ̂P̂l)
}

Φ̂

and Ŵkl is the (k, l)th element of estimator of the covariance matrix of the variance
components σ2

l,0 and σ2
l,i for l ∈ {T,C} and i = 1, . . . , I. The covariance matrix

W can be obtained as inversion of the expected information matrix of the variance
components REML estimators.

W(σ2
T0, σ

2
T1, . . . , σ

2
TI , σ

2
C0, σ

2
C1, . . . , σ

2
CI) = I−1

F (σ2
T0, σ

2
T1, . . . , σ

2
TI , σ

2
C0, σ

2
C1, . . . , σ

2
CI).

Elements of IF we get from

{IF }kl = 1
2 [{S}kl − Tr(2ΦQkl −ΦPkΦPl] for k, l ∈ {1, 2, . . . , 2I + 2}.

And next using Kenward & Roger’s procedure we have for i = 1, . . . , I, j = 1, . . . , I,
k = 1, . . . , I, i 6= k and j 6= k (in the same notation as in Kenward & Roger (1997))

PT,0 =
(
−
∑I
i=1

(
nT,i

nT,iσ2
T,0+σ2

T,i

)2
0

0 0

)
, PC,0 =

(0 0
0 −

∑I
j=1

(
nC,j

nC,jσ2
C,0+σ2

C,j

)2

)
,

PT,i =
(
− nT,i

(nT,iσ2
T,0+σ2

T,i
)2 0

0 0

)
, PC,j =

(
0 0
0 − nC,j

(nC,jσ2
C,0+σ2

C,j
)2

)
,

QT,0;T,0 =
(∑I

i=1

(
nT,i

nT,iσ2
T,0+σ2

T,i

)3
0

0 0

)
, QC,0;C,0 =

(0 0
0
∑I
j=1

(
nC,j

nC,jσ2
C,0+σ2

C,j

)3

)
,

QT,0;T,i =
(

n2
T,i

(nT,iσ2
T,0+σ2

T,i
)3 0

0 0

)
, QC,0;C,j =

(
0 0
0 n2

C,j

(nC,jσ2
C,0+σ2

C,j
)3

)
,

QT,i;T,i =
(

nT,i
(nT,iσ2

T,0+σ2
T,i

)3 0
0 0

)
, QC,j;C,j =

(
0 0
0 nC,j

(nC,jσ2
C,0+σ2

C,j
)3

)
,

QT,0;C,0 = QT,0;C,j = QT,i;C,0 =
(

0 0
0 0

)
,

QT,i;T,k = QC,j;C,k = QT,i;C,j =
(

0 0
0 0

)
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and nonzero elements of S

{S}T,0;T,0 =
I∑
i=1

(
nT,i

nT,iσ2
T,0 + σ2

T,i

)2

, {S}C,0;C,0 =
I∑
j=1

(
nC,j

nC,jσ2
C,0 + σ2

C,j

)2

,

{S}T,0;T,i = nT,i(
nT,iσ2

T,0 + σ2
T,i

)2 , {S}C,0;C,j = nC,j(
nC,jσ2

C,0 + σ2
C,j

)2 ,

{S}T,i;T,i = 1(
nT,iσ2

T,0 + σ2
T,i

)2 , {S}C,j;C,j = 1(
nC,jσ2

C,0 + σ2
C,j

)2 .

The matrices Ŵ, Q̂ and P̂ are estimators of W, Q and P which we obtain by re-
placing unknown variance components σ2

T,0, σ
2
T,1, . . . , σ

2
T,I , σ

2
C,0, σ

2
C,1, . . . , σ

2
C,I by their

estimators σ̂2
T,0, σ̂

2
T,1, . . . , σ̂

2
T,I , σ̂

2
C,0, σ̂

2
C,1, . . . , σ̂

2
C,I .

Kenward & Roger (1997) also suggested an approximation of the random variable

λF = λ(p̂T − p̂C − (pT − pC))2
((

1 −1
)
Φ̂A

(
1
−1

))−1

by Fisher-Snedecor distribution with 1 and m degrees of freedom where

λ = m

E∗(m− 2) and m = 4 + 3
ρ− 1 . (3.2)

Also in the same notation as in Kenward & Roger (1997) all necessary quantities we
get as

ρ = V ∗

2(E∗)2 , E∗ = 1
1−A2

, V ∗ = 2
[

1 + c1B

(1− c2B)2(1− c3B)

]
,

c1 = g

3 + 2(1− g) , c2 = 1− g
3 + 2(1− g) , c3 = 3− g

3 + 2(1− g) ,

g = 2A1 − 5A2

3A2
, B = 1

2(A1 + 6A2), Θ = L(LT Φ̂L)−1LT , L =
(

1
−1

)
,

A1 =
2I+2∑
k=1

2I+2∑
l=1

Wkl Tr(ΘΦPkΦ) Tr(ΘΦPlΦ),

A2 =
2I+2∑
k=1

2I+2∑
l=1

Wkl Tr(ΘΦPkΦΘΦPlΦ).

Finally we get the 100× (1− α) confidence interval for the difference of probabilities
of overall treatment effects pT − pC in the form

〈
p̂T − p̂C −

√
λ−1

((
1 −1

)
Φ̂A
(

1
−1

))
F1,m(α) ,

p̂T − p̂C +

√
λ−1

((
1 −1

)
Φ̂A
(

1
−1

))
F1,m(α)

〉
∩ 〈−1, 1〉 (3.3)
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where F1,m(α) is the critical α-value of the Fisher-Snedecor distribution with 1 and
m degrees of freedom, p̂T and p̂C are given in (2.2), Φ̂A is given in (3.1), λ and m
can be obtained from (3.2).

4 Simulation results

The simulation study was focused on empirical coverage probabilities of the 95%
interval estimator. To explore the behavior of the confidence interval for the difference
of probabilities of overall treatment effects, the simulations were conducted for four
main different settings. In all four settings the values of unknown parameters I,
nT,i and nC,i, σ2

l,0 where l ∈ {T,C}, pT and pC were following. The number of center
I ∈ {5, 10, 15, 20}, the number of subjects nTi, nCi ∈ {100, 50, 30, 15, 10}, the variance
of random effects σ2

l,0 ∈
{

0, 1
4
(
pl
3
)2
, 1

2
(
pl
3
)2
, 3

4
(
pl
3
)2
,
(
pl
3
)2
}

for pl ≤ 0.5, σ2
l,0 ∈{

0, 1
4
( 1−pl

3
)2
, 1

2
( 1−pl

3
)2
, 3

4
( 1−pl

3
)2
,
( 1−pl

3
)2} for pl > 0.5 and both true probabilities

of success pT , pC ∈ {0.05, 0.15, . . . , 0.85, 0.95}. For each situation 5000 replications
were made.

Except 95% confidence interval from (3.3) (CI) the simulations were also conducted
for modified 95% confidence interval (MCI) according Wimmer & Witkovsky (2004).
The modifications was made only for diagonal elements of S which were replaced by
following expressions for i = 1, . . . , I and j = 1, . . . , I

{S}T,i;T,i = nT,i
σ4
T,i

(
1−

2σ2
T,0

nT,iσ2
T,0 + σ2

T,i

+
nT,iσ

4
T,0

(nT,iσ2
T,0 + σ2

T,i)2

)
,

{S}C,j;C,j = nC,j
σ4
C,j

(
1−

2σ2
C,0

nC,jσ2
C,0 + σ2

C,j

+
nC,jσ

4
C,0

(nC,jσ2
C,0 + σ2

C,j)2

)
.

The empirical coverage probabilities are displayed using contour lines. The doted line
is contour line matching 95% level. In all situations described below the empirical
coverage probabilities of CI weren’t below the nominal 95% level. However they
weren’t lower than 99.5% level, as is illustrated by the Figure 1. The white places in
the graph means the empirical coverage probabilities were 1. This is mainly due to
large width of CI for small numbers of subjects.

4.1Balanced situation across the trial
In balanced situation across the trial the number of subjects in the i center in treated
group nT,i is the same as the number of subjects in the i center in control group nC,i
and is also the same as the number of subjects in the j center in treated group nT,j
and control group nC,j for i = 1, . . . , I and j = 1, . . . , I. That is

nT,i = nT,j = nC,i = nC,j for i, j = 1, . . . , I.

For the MCI one can observe two areas with lower empirical coverage probability
with cores at pT = 85% and pC = 15% and wise versa for nT,i = nC,i = 15 and
σ2
T,0 = σ2

C,0 = 0. When the value of nT,i or nC,i is increased the cores move to the
lower right corner and upper left corner (Figure 2). With growing value of I the area
around cores grow too. One can also observe that with growing σ2

T,0 or σ2
C,0 these

areas with lower empirical coverage probability fast grow too (Figure 3). The influence
of growing I and σ2

T,0 or σ2
C,0 is approximately same in all considered situations.
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I=5, nT = nC = 50, 2
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Figure 1: Contour lines of CI
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Figure 2: Contour lines of MCI in balanced situation

4.2Balanced situations across centers
In balanced situation across centers the number of subjects in the i center in treated
group nT,i is different from the number of subjects in the i center in control group
nC,i, but is the same as the number of subjects in the j center in treated group nT,j
for i = 1, . . . , I and j = 1, . . . , I. That is

nT,i = nT,j 6= nC,i = nC,j for i, j = 1, . . . , I.

As is illustrated in Figure 4 the second simulated situation showed similar results,
only cores of areas move according to the difference between nT,i and nC,i.
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Figure 3: Contour lines of MCI in balanced situation and σ2
l,0 =

(
pl
3
)2
, σ2

l,0 =
( 1−pl

3
)2

4.3Balanced situations across groups
In balanced situation across groups the number of subjects in the i center in treated
group nT,i is the same as the number of subjects in the i center in control group nC,i,
but is different from the number of subjects in the j center in treated group nT,j and
control group nC,j for i = 1, . . . , I and j = 1, . . . , I. That is

nT,i 6= nT,j , nC,i 6= nC,j ∧ nT,i = nC,i for i, j = 1, . . . , I.

The third situation does not have big influence on results in compare to previous
situations. The results depended mainly on the highest value between nT,i or nC,i (Fi-
gure 5).

4.4Unbalanced situations
In unbalanced situation the number of subjects in the i center in treated group nT,i
can be different from the number of subjects in the i center in control group nC,i and
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Figure 4: Contour lines of MCI in balanced situations across centers
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Figure 5: Contour lines of MCI in balanced situations across groups

can also be different from the number of subjects in the j center in treated group nT,j
and control group nC,j for i = 1, . . . , I and j = 1, . . . , I. As expected this situation
combine results of two previous situations.

In all situations the width of CI was approximately two times the width of MCI.
In further work the comparing will be extended to higher values of I, because the
width of CI seems to be getting smaller with growing number of centers in which
is trial conducted along with the empirical coverage probability above the nominal
95% level. The reason for conducting simulations for σ2

C,0 = 0 was a possibility of
comparison these results with GLMM approach mentioned in section 4.5.
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4.5Comments on GLMM approach
The standard approach to the presented problem which can be found in Whitehead
(2002) is based on generalized linear mixed model (GLMM). Let us consider random
variables Zij which have Bernoulli distribution with success probability pij for i =
1, . . . , I and j = 1, . . . , ni (ni = nT,i + nC,i). Suppose the following GLMM model

ln
(

pij
1− pij

)
= α+ β0i + β1Uij + ν1iUij (4.1)

where Uij = 0 for the control group, Uij = 1 for the treated group, ν1i is a random
effect of the ith center and suppose that ν1i ∼ N(0, σ2

T,0). In this model there is only
one random effect of the treatment and no random effect for the control group, i.e.
σ2
C,0. The overall treatment effect is in this model measured by a log odds ratio β1.
According to our opinion the disadvantage of this approach is its computational

behavior for small numbers of subjects ni and lower probabilities. In these cases the
calculation of β1 do not converge. The greater number of centers I is the greater
numbers of subjects ni have to be. The comparison of the our and the GLMM
approach will be subject of further work.
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