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Abstract

One of the main aims of the meta-analysis of clinical trials is the determination of the
effectivity of a new type of treatment. The effectivity is determined by the difference of the
effectivity of a standard treatment and the new treatment. In the case of binary data the
difference can be measured by a probability difference. This paper presents the construction
of the confidence interval for the probability difference of overall treatment effects in the
meta-analysis based on multicentre trials. For the construction of the confidence interval
the procedures of Wimmer & Witkovsky (2004) and Kenward & Roger (1997) have been
used. The second part of this paper is a simulation study which presents properties of the
proposed confidence interval.
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1 The model

Let us consider a clinical trial performed in I centers. Suppose that the number
of subjects included in the trial in the ith center is ny; + ng; for i = 1,2,...,1
where nr; is the number of patients in the treated group and nc¢; is the number of
patients in the control group. Patients in the treated group in the ¢th center succeed
with probability pr; and patients in the control group in the 7th center succeed with
probability pc; for i =1,2...,1. All subjects are consider to be independent.

Number of successes in the treated group in the ith center is denoted by ran-
dom variable Xr; and number of successes in the control group in the ith cen-
ter is denoted by random variable X¢ ;. Then Xp,; ~ Bi(nr;,pr,;) and Xg; ~
Bi(nc,i,pc,i)- Xii ~ Bi(ng,pi) for | € {T,C} means that X;, has binomial dis-
tribution with the sample of size n;; and the probability of success p;;. Random
variables Xr1,..., X7 1, Xc1,..., X¢,1 are stochastic independent. We will next
work with random variables
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X .
Y= l’,forlE{T,C}andZZL...,I. (1.1)

l,i

Suppose that the true probabilities of success in the ith center pr; and pc ;, randomly
fluctuate around common probabilities of success pr and po. We want to estimate
the probability difference pr — pc. So

pri=p+b, forle{T,C}tandi=1,...,I. (1.2)

where b;; is a random effect of the ith center and suppose that b;; ~ N(O,aio) L

which means b; ; is normally distributed with the mean 0 and the variance Jzo.
The final situation can be represented by linear model with random effects

}/177; = +bl7i + €14 for [ € {T,O} andi=1,...,1 (13)

where ¢;; are error terms and ¢;; ~ N(0,07,/n;;). In matrix notation we get

YT 17«1 Orx1) (pr s (Iixr O
Y = ~ N 3 =
(YC> (<le1 11x1) \pc)’ o0 o)
0 0 I I
+ oty (0 IIX]) +3im107,Gi+ 2 U%‘,jHJ) . (1.4)

where for i,5 =1,...,1

0 0 Orx1 Orx1
0 0
: 1 : 0
Gi — N e, . . IxI Hj _ OIXI )
nog
0 0 .
Orxr Orxr 0 0

Notation Y = N (p,¥) means that Y has approximately normal distribution with
mean g and variance matrix X.

2 Point estimator of the vector of common probabilities of success

If we know the variance components o7, and o7, for | € {T,C} and i = 1,...,1, the
optimal estimator of the vector of the common probability of successful treatment
would be

1Of course it is supposed that 0120 is such that "practically" 0 < p, +b,; < 1. In

simulations it is ensured with a proper choice of O'l20. In the case mentioned in sec-
: e o2 1(p)2 1 (P2 3 ()2 (p)2 2
tion 4, it is olg € {07Z<?) ,§<§) ’Z(ﬁ) ,(§) for p; < 0.5 and org €
1(1=p1\2 1 (1=p\2 3 (1=p1\2 (1-p;\2
{074(3)72(3)’(3>’(3)

1
2 2 2
pened in case of 0120 = (pl) in 0.14 %, 0120 =3 (%) in 0.03% and 0120 = % (%) in 0.001 %

for p; > 0.5. The unacceptable situations hap-

w ——

from 100000 replications.
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. -1
pr Lixr Oixr) -1 (lrx1 Orxi Lixi Oixr) -1
= b)) 7Y, 2.1
(p ) ((lel 11><I> (OI><1 110 Oi1xr Lixr 2.1)
So we replace unknown covariance matrix 3 by its estimator 3 which we get if we
replace the unknown variance components Jl270 and Uﬁi by their estimators 612’0 and

frlz)i forl e {T,C} and i =1,...,I. The estimators 612)0 and Efﬁi we derive as follows.
From (1.1) we get

(1 — s
UGT(Yl,i) — pl,l(nl -pl,l)

and using notation from (1.3) we obtain

oy = pri(l —prs)

forl ={T,C} and i = 1,...,I. Now consider an estimator of Ulz)i which was suggested
by Agresti & Caffo (2000) as

X +2

~2 . - .
01 = Pri(1 = Pri), where py; = e

Than we can write

o X +2 (1_Xl,i+2

Ois s+ 4 nl,i+4) forle{T,C}tandi=1,...,1I.

For estimation of 01270 we use procedure suggested by Mandel & Paule (1982). The
estimator 67 for [ € {T,C'} we obtain as iterative solution of the following equations

o o
i=1 n, ;67 ,+67,

I ni, 5
S
I=E 07 0oL

~MP
My =

Finally we obtain a point estimator of the vector of the common probabilities of
successful treatment

ZI X7
= .52 52
i=1 nTvloT,0+oT,i

’ ) »J
N T
p=(PT) = . (2.2)
bc ZI Xci
=1 ng 08 (FOL

Py o

i=1 10,62 (+oE
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Interval estimator of the probability difference

As an estimatior of the covariance matrix of p is commonly used

A

P =

((

llxI
leI

Ole
1I><1

1Ix1

-1
) (Ole

leI
11><I

)

Kenward & Roger (1997) suggested an adjusted estimator & 4

where

o

A

Dy ::éﬁ%—QI&,

2I+22142

Z Z Wi (Qu — Pr®P))

k=1 [=1

(3.1)

}@

and Wy is the (k,D)th element of estimator of the covariance matrix of the variance

components o7, and o7, for

I € {T,C} and i

.,I. The covariance matrix

W can be obtained as inversion of the expected mformation matrix of the variance
components REML estimators.

VV(U%Ova%lw"70%170%070%1w"70%1) I (07070%1w-~»U%770%070%1w~-70%])
Elements of Ir we get from
1
{Ip}kl = 5 [{S}kl — TI(2¢QI€[ - ‘I’Pk(ﬁpl] for ke {1,2, 21 + 2}
And next using Kenward & Roger’s procedure we have for i =1,... I, j=1,...,1,

")
?)

k=1,...,I,i# k and j # k (in the same notation as in Kenward & Roger (1997))
2
_ I nT. i O 0
Pro= ( Zi:l (nT’iUT,0+UT,i) O) ) Pco= ( I ne,j
0 0 - Zj:l (n0=jozc,o+(7?:,g
. nr.;
PTi _ (’nT,iU%,O*FO'%,i)z 0 , 8 7?c,j y
’ 0 0 - (nc7jaé0+aéj)2
3
I nri O O
Qr.o0.70 = > et (nT,ilT?r,o‘ﬁ‘U%,i) 0 , Qc.0.c0 0 I ne.;
0 0 z:j:1 ncjaéo+aéJ
;L%",i - 0 0 0
QT,O;T,z = (nTxiJT,O+UT.i)3 s QC 0;C,5 — 0 "C ’
0 0 (nc,jo C o+l ])‘3
i =0 0 0
P (nTYiU%YO+U%,i)3 ne.
(QT,J’ ( 0 0 ) CQCJ(j] 0 (EEJFZ%?EZ;7§ )

CQTJﬂﬁk::

0 O

Qr,0.c0 = Qr0:0,5 = Qryi;00 = <0 0
0 0

Qcjick = Qriscy = (0 0

)
)

)



Acta Univ. M. Belii, ser. Math. 18 (2011), 7-16 11

and nonzero elements of S

I 2 2
nri ne,j
{8}romo = Z 2 2 » {Stewoco = E : 2 3 )
= \"riorotor; J b

=1
nr.,i ne,j;
{S}T,O;T,i = . 29 {S}C,O;C,j = ! 2
(”T,ia:zr,o + U?ﬂi) (”CJU%,O + U%,j)
1 1
{Strir: = {Stejici =

29 2"
2 2 9 2
(nTﬂUT,O + JT,i) (”C,ch,o + Uc,j)

The matrices W, Q and P are estimators of W, Q and P which we obtain by re-
placing unknown variance components o2 01 0% Ly O% 0’% 0 O'% 1ree ,0% 1 by their
. A9 ~D A2 A9 A2 A9
estimators 07 o, 07 1,507 15000, 015+, 0¢ 1+
Kenward & Roger (1997) also suggested an approximation of the random variable

—1
« « o 1
AF = \pr — po — (pr — pe))? ((1 —1) @4 ( 1))
by Fisher-Snedecor distribution with 1 and m degrees of freedom where

m 3
= d =4+ —-. 3.2
E*(m — 2) andm +p—1 (32)
Also in the same notation as in Kenward & Roger (1997) all necessary quantities we
get as

A

V* ]. 1+ClB
= E* = — V* = 2 y
P=oE? 1- Ay (1— c2B)2(1— 033)]
61:79 0227179 63:7379
3+2(1—yg)’ 3+2(1—yg)’ 3+2(1—yg)’
241 —5A, 1 _LLTHL LT - [}
=i B=5(A1+64y), ©=LILT&L)"'LT, L={(_, ),
21422142
A=Y > Wiy Tr(@2P:®) Tr(ODP,P),
k=1 =1
21422142
Ay = Z Z Wi Tr(O®P,POPP;P).
k=1 [=1

Finally we get the 100 x (1 — «) confidence interval for the difference of probabilities
of overall treatment effects pr — pe in the form

<ﬁT —Pc — \/Al <(1 —1) &4 <_11>) Fim(a),
pr —Pc + \/Al ((1 ~1) Py <_11>> Fl,m(a)> N(-1,1) (3.3)
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where Fy () is the critical a-value of the Fisher-Snedecor distribution with 1 and
m degrees of freedom, pr and pc are given in (2.2), Dy is given in (3.1), A and m
can be obtained from (3.2).

4 Simulation results

The simulation study was focused on empirical coverage probabilities of the 95%
interval estimator. To explore the behavior of the confidence interval for the difference
of probabilities of overall treatment effects, the simulations were conducted for four
main different settings. In all four settings the values of unknown parameters I,
nr,; and e, Ul270 where [ € {T,C}, pr and pc were following. The number of center
I € {5,10,15,20}, the number of subjects nr;, nc; € {100, 50,30, 15,10}, the variance

of random effects Uﬁo € {0,% (%)2,%(%)27% (%)2,(%)2} for p; < 0.5, 020 €

{O, i (1;’”1 )2 , % (13’”)2 , % (%)2 , (%)2} for p; > 0.5 and both true probabilities
of success pr,pc € {0.05,0.15,...,0.85,0.95}. For each situation 5000 replications
were made.

Except 95% confidence interval from (3.3) (CI) the simulations were also conducted
for modified 95% confidence interval (MCI) according Wimmer & Witkovsky (2004).
The modifications was made only for diagonal elements of S which were replaced by

following expressions for ¢ =1,...,land j=1,...,1
2 4
(s} nr; 1 207 4 nri0T o
T.4Ti — 4 - 2 2 2 2 V2 |
Or; nr,i0r o+ 07, (nT,zUT,o + UT@)
2 4
(S} ne,j 1 20¢. n ne,j0c.0
C.5;Cd = 4 - 2 2 2 2 V2 |-
¢, nc,joeo+0é;  (nejoéo+0od;)

The empirical coverage probabilities are displayed using contour lines. The doted line
is contour line matching 95% level. In all situations described below the empirical
coverage probabilities of CI weren’t below the nominal 95% level. However they
weren’t lower than 99.5% level, as is illustrated by the Figure 1. The white places in
the graph means the empirical coverage probabilities were 1. This is mainly due to
large width of CI for small numbers of subjects.

4.1 Balanced situation across the trial

In balanced situation across the trial the number of subjects in the i center in treated
group nr; is the same as the number of subjects in the 7 center in control group nc;
and is also the same as the number of subjects in the j center in treated group nr ;
and control group nc,j fori =1,...,I and j =1,...,I. That is

nr; =nr; =nc,; =nc,; fori,j=1,...,1.

For the MCI one can observe two areas with lower empirical coverage probability
with cores at pr = 85% and pc = 15% and wise versa for ny; = ng,; = 15 and
0% = ¢ = 0. When the value of nr; or nc, is increased the cores move to the
lower right corner and upper left corner (Figure 2). With growing value of I the area
around cores grow too. One can also observe that with growing 0%70 or (‘%‘,O these
areas with lower empirical coverage probability fast grow too (Figure 3). The influence
of growing I and O’%’O or U%’O is approximately same in all considered situations.
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Figure 2: Contour lines of MCI in balanced situation

4.2 Balanced situations across centers

In balanced situation across centers the number of subjects in the ¢ center in treated
group nr,; is different from the number of subjects in the ¢ center in control group
nc,i, but is the same as the number of subjects in the j center in treated group ny ;
fori=1,...,7and j=1,...,I. That is

nr; =Mnr,; #ne; =ng,; fori,j=1,... 1.

As is illustrated in Figure 4 the second simulated situation showed similar results,
only cores of areas move according to the difference between nz; and nc ;.
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Figure 3: Contour lines of MCI in balanced situation and o7 = ( %)2 010 = (55

4.3 Balanced situations across groups

In balanced situation across groups the number of subjects in the ¢ center in treated
group nr,; is the same as the number of subjects in the ¢ center in control group n¢ s,
but is different from the number of subjects in the j center in treated group nr ; and
control group n¢ ; fori=1,...,1 and j =1,...,1. That is

nri # nrj,nc,i # ne,j Anr; =ne; fori,j=1,... 1.

The third situation does not have big influence on results in compare to previous
situations. The results depended mainly on the highest value between ny; or nec,; (Fi-
gure 5).

4.4 Unbalanced situations
In unbalanced situation the number of subjects in the ¢ center in treated group nr;
can be different from the number of subjects in the ¢ center in control group n¢ ; and
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Figure 5: Contour lines of MCI in balanced situations across groups

can also be different from the number of subjects in the j center in treated group nr ;
and control group nc¢; for ¢ =1,...,7 and j =1,...,1. As expected this situation
combine results of two previous situations.

In all situations the width of CI was approximately two times the width of MCI.
In further work the comparing will be extended to higher values of I, because the
width of CI seems to be getting smaller with growing number of centers in which
is trial conducted along with the empirical coverage probability above the nominal
95% level. The reason for conducting simulations for 0%70 = 0 was a possibility of
comparison these results with GLMM approach mentioned in section 4.5.
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4.5 Comments on GLMM approach

The standard approach to the presented problem which can be found in Whitehead
(2002) is based on generalized linear mixed model (GLMM). Let us consider random
variables Z;; which have Bernoulli distribution with success probability p;; for i =
1,...,7and j=1,...,n; (n; =ng,; +nc,;). Suppose the following GLMM model

In (pw> =a+ B + ﬁ1Uij + 11U (4.1)
L —pij
where U;; = 0 for the control group, U;; = 1 for the treated group, vy; is a random
effect of the ith center and suppose that vq; ~ N (0, U%,o)- In this model there is only
one random effect of the treatment and no random effect for the control group, i.e.
0'%70. The overall treatment effect is in this model measured by a log odds ratio ;.
According to our opinion the disadvantage of this approach is its computational
behavior for small numbers of subjects n; and lower probabilities. In these cases the
calculation of 8; do not converge. The greater number of centers I is the greater
numbers of subjects n; have to be. The comparison of the our and the GLMM
approach will be subject of further work.
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