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Abstract
Kernel density estimates belong to the most popular nonparametric density estimates. It is
well known that these estimates depend on a bandwidth, which controls the smoothness of
the estimate, and on a kernel, which plays a role of weight function.
We focus on the kernel function choice, especially on kernels with bounded supports. Our
aim is to study the kernel optimality with respect to the bandwidth choice. In a simulation
we show a comparison of the kernels. We propose that the cosine kernel may be a good
alternative to the frequently used Epanechnikov kernel.
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1 Kernel density estimation

The concept of nonparametric estimates was introduced in the fifties and sixties, see
e.g. [3, 5] and references therein. After years, there are still problems to be solved or
to be improved.

Let a d-variate random sample X1, . . . , Xn come from distribution with a density
f . The kernel density estimator f̂ is defined as a weighted average of observations

f̂(x, H) = 1
n

n∑
i=1

KH(x−Xi) = 1
n
|H|−1/2

n∑
i=1

K
(
H−1/2(x−Xi)

)
.

K is a d-variate kernel function, which is often taken to be a probability density
function satisfying

∫
Rd K(x) dx = 1, where we omit the subscript Rd in the rest of

the text. H is a symmetric positive definite d× d matrix called a bandwidth matrix
and x = (x1, . . . , xd)T ∈ Rd is a generic vector.

Transfer of the kernel estimation from univariate settings to the multivariate set-
tings brings a few new issues. The first problem is to find a kernel and the second one
is to find an optimal bandwidth. There are two common ways to create the multivari-
ate kernel K from the univariate kernel k: the product kernel KP (x) =

∏d
i=1 k(xi)
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and the spherically symmetric kernel KS(x) = c−1
k k((xT x)1/2), ck =

∫
k(
√

xT x) dx.
Let us denote the class of symmetric positive definite d × d matrices as HF . One
needs to choose d(d + 1)/2 distinct entries of matrix H ∈ HF , which is computa-
tionally intensive. On the other hand, using a single parameter simplification, i.e.
H = h2 · Id (Id is a d×d identity matrix), is not advised for data which have different
dispersions in the co-ordinate directions, see [4]. Thus, the diagonal matrix class HD
(H = diag(h2

1, . . . , h
2
d)) seems to be a compromise between computational speed and

sufficient flexibility.
Mean integrated square error (MISE) quantifies the performance of a multivariate

kernel density estimator. MISE can be rewritten as a sum of an integrated variance
and an integrated square bias

MISE(H) = E

∫ [
f̂(x, H)− f(x)

]2 dx =
∫

Var f̂(x, H) dx +
∫

Bias2 f̂(x, H) dx.

It is easy to see, that finding the bandwidth matrix HMISE, which minimizes this
error, is very difficult. Wand and Jones [5] derived, under some assumptions on the
density f , the kernel function K, and the bandwidth matrix H, the asymptotic mean
integrated square error

AMISE(H) = n−1|H|−1/2V (K) + 1
4β2(K)2(vechH)T Ψ4(vechH).

V (K) =
∫
K2(x) dx, β2(K) =

∫
x2

iK(x) dx is independent of i and vech is a vector
half operator, i.e. for a matrixM , vechM is a d(d+1)/2×1 vector of stacked columns
of the lower triangular matrix of M . The matrix Ψ4 includes entries depending on
the unknown density f . For a d-variate function g and for a vector r = (r1, . . . , rd)
of non-negative integers, g(r) is defined

g(r)(x) = ∂|r|

∂xr1
1 · · · ∂x

rd

d

g(x)

assuming that the derivative exists. The notation |r| is for the sum of the components
of the vector r. Each entry of Ψ4 can be written, under sufficient conditions, in the
form ψr =

∫
f (r)(x)f(x) dx, where |r| is even (see Section 4.3 in [5]).

2 Simulation study

2.1 Cross-validation methods
There is a wide range of methods for the optimal bandwidth choice, thus we aimed
our study to cross-validation (CV) methods.

The most widely used cross-validation method is the least square cross-validation
method (LSCV) [5].

LSCV(H) =
∫ (

f̂(x, H)
)2 dx− 2

n

n∑
i=1

f̂−i(Xi, H),

is the LSCV objective function, where f̂−i(Xi, H) = (n − 1)−1∑n
j=1,j 6=i KH(Xi −

Xj) is a leave-one-out estimator of f . LSCV function can be written in terms of
convolutions (f ∗ g)(x) =

∫
R f(t)g(x− t) dt (see e.g. [1])

LSCV(H) = n−1(n− 1)−1
n∑

i=1

n∑
j=1
i6=j

(KH ∗KH − 2KH)(Xi −Xj) + n−1V (K)|H|−1/2.
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LSCV is also called the unbiased cross-validation, because the LSCV(H) function is
unbiased in the sense that E[LSCV(H)] = MISE(H)−

∫
f2(x) dx.

Biased cross-validation (BCV) method estimates AMISE, i.e. BCV is a biased
estimate of MISE. There are two types of BCV, depending on the way of estimating
functionals ψr [1]:

BCV1(H) = n−1V (K)|H|−1/2 + 1
4β2(K)2(vechH)T Ψ̂4(vechH),

where

ψ̂r = n−2
n∑

i=1

n∑
j=1,
j 6=i

(
K

(r)
H ∗KH

)
(Xi −Xj).

The latter is defined by the function

BCV2(H) = n−1V (K)|H|−1/2 + 1
4β2(K)2(vechH)T Ψ̃4(vechH),

with

ψ̃r = n−1
n∑

i=1
f̂

(r)
−i (Xi, H) = n−1(n− 1)−1

n∑
i=1

n∑
j=1,
j 6=i

K
(r)
H (Xi −Xj).

2.2 Kernels
We focused on studying the product kernels with bounded supports. Due to a wide
range of the class of the kernels with bounded supports D : {[x1, x2] ∈ R2 : |x1| ≤
1 ∧ |x2| ≤ 1}, we selected the easiest five two-dimensional kernels listed in Table 1.
Their one-dimensional representations are displayed in Figure 1.

K(x1, x2) V (K) β2(K)
Uniform 1/4 1/4 1/3
Epanechnikov 9/16(1− x2

1)(1− x2
2) 9/25 1/5

Biweight 225/256(1− x2
1)2(1− x2

2)2 25/49 1/7
Cosine π2/16 cos(x1π/2) cos(x2π/2) (π/4)4 1− 8/π2

Triangular (1− |x1|)(1− |x2|) 4/9 1/6

Table 1: Two-dimensional product kernels with bounded supports.

Remark 2.1. Epanechnikov kernel is the optimal kernel in the AMISE sense, i.e.
Epanechnikov kernel minimizes the functional T (K) = [V (K)β2(K)]2/3 (see [5]).
From eff(K) = [T (K)/T (KEpan)]3/2 is apparent that the cosine kernel is a convenient
alternative to Epanechnikov kernel.

2.3 Densities
We drew samples of the size n = 50 and n = 100 from densities listed in Table 2.
Contour plots of target densities are displayed in Figure 2. One hundred replications
for each of the sample sizes and for each of the densities were generated.
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(a) Uniform (b) Epanechnikov (c) Biweight (d) Cosine (e) Triangular

Figure 1: One-dimensional kernels with bounded supports.

(A) Normal N2(0, 0; 4, 1, 0)
(B) Student t2(4)
(C) Weibull W (2, 2) ·W (2, 4)
(D) Exponential Exp(2) · Exp(1)
(E) Gamma Student Gamma(2, 1) · t(5)
(F) Lognormal LN2(0, 0; 1, 1, 0)

Table 2: Target densities.

2.4 Comparative criteria
In the case of the diagonal AMISE-optimal bandwidth matrixHAMISE = diag(h2

1,A, h
2
2,A),

we can express its entries [5]

h1,A =
[

ψ
3/4
04 V (K)

β2(K)2ψ
3/4
40 (ψ22 + ψ

1/2
04 ψ

1/2
40 )n

]1/6

,

h2,A =
[

ψ
3/4
40 V (K)

β2(K)2ψ
3/4
04 (ψ22 + ψ

1/2
04 ψ

1/2
40 )n

]1/6

.

We used two criteria to decide which kernel fits best the chosen method: the
average of squared Euclidean norm of difference vectors

ED = avgH‖(ĥ1 − h1,A, ĥ2 − h2,A)T ‖2
2

and the average of integrated square errors

ISE = avgH

∫ [
f̂(x, H)− f(x)

]2 dx,

where the average is taken over simulated realizations. ED can be considered as
a visual criterion and ISE, which was computed numerically, can be viewed as a
numerical criterion.

3 Results

We compared a performance of kernels within each of the mentioned cross-validation
methods. We selected bandwidth matrices — we computed values of minH∈HD LSCV(H),
minH∈HD BCV1(H), and minH∈HD BCV2(H) on a dense grid numerically. For a
faster computation, we used ideas by Horová et al. [2]. Tables 3 and 4 summarize
results of ED criterion and Tables 5 and 6 summarize results of ISE criterion.
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(a) Normal (b) Student (c) Weibull

(d) Exponential (e) Gamma Student (f) Lognormal

Figure 2: Contour plots of target densities.

ED LSCV
density n Uni Epan Biw Cos Tri
(A) 50 0.76(0.07) 0.69(0.05) 0.67(0.06) 1.82(0.16) 4.24(0.28)

100 0.85(0.05) 0.76(0.04) 0.58(0.04) 2.01(0.12) 4.97(0.21)
(B) 50 0.86(0.04) 0.88(0.05) 0.82(0.05) 1.21(0.08) 2.75(0.17)

100 0.92(0.02) 0.90(0.02) 0.81(0.02) 1.16(0.05) 2.61(0.09)
(C) 50 0.80(0.02) 0.81(0.02) 0.75(0.02) 1.62(0.07) 3.32(0.12)

100 0.95(0.02) 1.00(0.02) 0.95(0.02) 1.84(0.05) 3.28(0.10)
(D) 50 0.69(0.08) 0.69(0.09) 0.63(0.09) 1.62(0.21) 4.32(0.42)

100 0.62(0.05) 0.42(0.04) 0.31(0.03) 1.34(0.14) 3.82(0.27)
(E) 50 1.05(0.05) 1.04(0.05) 1.04(0.06) 1.85(0.12) 3.78(0.21)

100 1.13(0.03) 1.13(0.02) 1.07(0.02) 1.66(0.07) 3.55(0.12)
(F) 50 2.05(0.06) 2.26(0.05) 2.43(0.06) 2.55(0.09) 5.10(0.23)

100 2.11(0.05) 2.19(0.04) 2.35(0.04) 2.56(0.08) 4.96(0.14)

Table 3: LSCV method: an average of Euclidean norm with a standard error.

One can use each of the kernels for the least square cross-validation method. The
bias cross-validation methods require some smoothness conditions to be satisfied. In
this case, we can use only Epanechnikov, the biweight, and the cosine kernel for BCV1
and the biweight and the cosine kernel for BCV2.

The biweight kernel seems to be the best choice for the least square cross-validation
method. According to ED-criterion, Epanechnikov and the uniform kernel are also
good choice. By contrast, the uniform kernel is the least suitable choice according to
ISE-criterion. The second best choice is Epanechnikov and the cosine kernel. On the
other hand, LSCV-optimal bandwidths suffer from a large variability (see [2]). For
all kernels this variability is approximately the same.

In the case of the BCV1, we can choose between using Epanechnikov and the
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ED BCV1 BCV2

density n Epan Biw Cos Biw Cos
(A) 50 3.79(0.02) 6.29(0.03) 4.15(0.02) 2.62(0.06) 1.12(0.03)

100 3.43(0.01) 5.44(0.01) 3.74(0.01) 2.31(0.03) 1.07(0.02)
(B) 50 1.19(0.01) 2.12(0.01) 1.34(0.01) 0.54(0.01) 0.15(∗)

100 1.14(∗) 1.91(0.01) 1.26(∗) 0.53(0.01) 0.16(∗)
(C) 50 0.63(∗) 1.16(0.01) 0.71(0.01) 0.22(0.01) 0.04(∗)

100 0.62(∗) 1.05(∗) 0.69(∗) 0.23(0.01) 0.05(∗)
(D) 50 1.90(0.01) 3.27(0.02) 2.11(0.02) 1.05(0.03) 0.35(0.01)

100 1.79(0.01) 2.88(0.01) 1.97(0.01) 1.02(0.02) 0.40(0.01)
(E) 50 1.14(0.01) 1.98(0.01) 1.26(0.01) 0.66(0.02) 0.34(0.02)

100 1.06(∗) 1.75(0.01) 1.17(∗) 0.56(0.01) 0.25(0.01)
(F) 50 0.01(∗∗) 0.04(∗) 0.01(∗∗) 0.32(0.02) 0.57(0.02)

100 0.02(∗∗) 0.06(∗∗) 0.02(∗∗) 0.15(∗) 0.31(∗)

Table 4: BCV1 and BCV2 methods: an average of Euclidean norm with a standard
error (∗ stands for the standard error less than 0.005 and ∗∗ for the standard error
less than 0.001).

100 × ISE LSCV
density n Uni Epan Biw Cos Tri
(A) 50 0.48(0.02) 0.39(0.02) 0.38(0.02) 0.43(0.02) 0.48(0.02)

100 0.37(0.01) 0.27(0.01) 0.24(0.01) 0.30(0.01) 0.38(0.01)
(B) 50 1.11(0.04) 0.86(0.03) 0.77(0.03) 0.90(0.04) 1.10(0.04)

100 0.97(0.02) 0.69(0.02) 0.58(0.02) 0.70(0.02) 0.91(0.03)
(C) 50 3.54(0.07) 2.47(0.07) 2.03(0.07) 2.48(0.07) 3.06(0.07)

100 3.52(0.05) 2.47(0.05) 1.97(0.05) 2.37(0.05) 2.84(0.06)
(D) 50 5.23(0.07) 4.43(0.08) 4.05(0.08) 4.28(0.08) 4.62(0.08)

100 5.04(0.06) 4.12(0.06) 3.67(0.06) 3.92(0.06) 4.30(0.06)
(E) 50 1.03(0.03) 0.79(0.03) 0.73(0.03) 0.82(0.04) 0.94(0.04)

100 0.97(0.02) 0.71(0.02) 0.61(0.02) 0.68(0.02) 0.83(0.02)
(F) 50 5.32(0.08) 4.25(0.08) 3.76(0.08) 4.10(0.08) 4.57(0.08)

100 5.32(0.06) 4.12(0.06) 3.59(0.06) 3.97(0.06) 4.47(0.06)

Table 5: LSCV method: an average of the integrated square error with a standard
error.

cosine kernel, because their performance is comparable regarding both critera. But
the BCV1 method gives quite underestimated values of the optimal bandwidth H.

Concerning BCV2, it is obvious that the cosine kernel performs better than the
biweight kernel. Density (F) is an exception, but there is influence of boundary effects.
The main advantage of the cosine kernel over the biweight kernel is that its fourth
derivative, needed for calculation of BCV2, is not a constant function, as it is the case
for the biweight kernel.

4 Conclusion

In this paper we compared several two-dimensional kernels with a bounded support
with respect to the method for finding optimal bandwidth. We propose that the
biweight kernel is the best choice for the LSCV method and the cosine kernel is the
best choice for the BCV2. In the case of BCV1, one can decide whether to use the
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100 × ISE BCV1 BCV2

density n Epan Biw Cos Biw Cos
(A) 50 4.79(0.12) 9.48(0.32) 5.51(0.15) 1.24(0.05) 0.73(0.03)

100 4.80(0.12) 9.08(0.28) 5.54(0.15) 0.90(0.02) 0.54(0.01)
(B) 50 5.82(0.28) 11.35(0.58) 6.81(0.33) 1.48(0.07) 0.94(0.04)

100 5.81(0.23) 11.17(0.51) 6.63(0.28) 1.07(0.04) 0.67(0.02)
(C) 50 9.87(0.22) 18.90(0.42) 11.18(0.25) 2.44(0.10) 1.55(0.07)

100 9.81(0.19) 18.80(0.45) 11.26(0.23) 1.72(0.05) 1.10(0.04)
(D) 50 7.43(0.22) 14.10(0.41) 8.43(0.25) 3.37(0.10) 3.34(0.08)

100 7.65(0.17) 14.38(0.37) 8.98(0.23) 2.55(0.06) 2.55(0.06)
(E) 50 5.81(0.18) 11.42(0.40) 6.68(0.21) 1.47(0.05) 0.94(0.03)

100 6.16(0.17) 11.63(0.42) 7.04(0.22) 1.12(0.03) 0.71(0.02)
(F) 50 7.90(0.25) 15.94(0.73) 9.09(0.32) 2.97(0.08) 2.96(0.08)

100 8.95(0.28) 17.51(0.66) 10.48(0.35) 2.37(0.05) 2.31(0.05)

Table 6: BCV1 and BCV2 methods: an average of the integrated square error with a
standard error.

cosine kernel or Epanechnikov kernel.
In the future, we want to extend this study to a larger group of kernels and also

to a higher dimension.
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