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Special issue dedicated to the 75th birthday
of Professor Beloslav Riečan
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On November 10, 1936, in Žilina, Slovakia, a small boy, called by his parents Belko,
was born, and who for many years is known as Prof. RNDr. Beloslav Riečan, DrSc.
The Fates gave him many gifts but also many stickers: being four and half his beloved
mother passed away, being six his eight-year brother Horislav died, too, and in autumn
1994, his firstborn daughter Hanka, a very gifted mathematician, died in the result
of a car accident at one Austria highway. Fortunately, other Fates gave him also very
scarce gifts: love to Maths, love to music, and the most important gift — love to
people, which helped him very deeply during his whole life — and such Belo is known
by the most among us, his students, colleagues and friends.

After the mother death the family moved from Púchov to Banská Bystrica where
he attended the primary school, and a very famous high school, Gymnázium of Andrej
Sládkovič, which had a very great influence to the young soul of Belo. Many important
personalities of the science, culture and social life of the Slovakia attended this high
school. Young Riečan absorbed through all his pores a unique atmosphere of Banská
Bystrica. In the persons of Š. Moyzes (catholic bishop) and K. Kuzmány (evangelical
superintedent), he is discovering a fascinating possibility of the coexistence for the
development of Slovakia, and from which he is able always successfully to draw,
which is very significant in his full age. Belo was one of the best students, he was
∗The author thanks for the support by Center of Excellence SAS - Quantum Technologies -, meta-
QUTE ITMS 26240120022, CZ.1.07/2.3.00/20.0051 and MSM 6198959214.
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excellent in Maths and in playing piano and organ; he became even an organist in
an evangelical church in Banská Bystrica (1950–53, and also now since 2001). Young
students used to meet in his father’s flat where they discussed with a great ignition
about everything, declaimed verses, and an old duck was hearing them in still. As
a student, Belo won an All-Slovakian competition for young pianists which caused
him a big head ache: it was necessary to choose between a career of a pianist or of
a mathematician. He preferred mathematics which have had a great influence for
Slovak Maths.

In 1953, Belo is going to Bratislava, where he attended the Faculty of Natural
Sciences of Comenius University. Here he had excellent teachers who belong to the
first generation of the Slovak Mathematicians: Acad. Jur Hronec, Profs O. Borůvka,
M. Greguš, A. Huťa, M. Kolibiar, T. Neubrunn, J. Srb, M. Sypták, T. Šalát, V. Šeda
and others. His school-class was one of the best in the history; his student fellows
became a decoration of the Slovak mathematical society: Profs P. Brunovský, J. Černý,
A. Dávid, O. Erdélská-Klaučová, M. Franek, J. Gruska, P. Kluvánek, J. Moravčík,
Z. Petrovičová-Riečanová, Z. Zalabai, etc.

During his studies he wired to scientific activity under the guidance of Prof. M. Ko-
libiar and immediately his first paper On axiomatic of modular lattices, Acta Fac.
Rer. Nat. Univ. Comenianae, Math. 2 (1957), 257–262 (in Slovak), was a top
hit. This paper was quoted in monographs of G. Birkhoff, L. A. Skornjakov and
G. Grätzer. Every specialist of lattice theory knows very well how a great distinction
for the author are such quotations in these three fundamental books. Today, when
takes one’s stand on CC-publications and SCI-quotations, it is wonderful how these
mathematical giants could quote this paper, although it was written in Slovak and in
a non-current journal.

After finishing his studies in 1958, he started to work at the Department of Math-
ematics of the Slovak Technical University, Bratislava. In 1962-64 he was a PhD-
student of Prof. Š. Schwarz, another giant of the Slovak mathematics. In 1966 he
was the Associated Prof., and he started to give lectures also at Faculty of Natural
Sciences of Comenius Univ., where later he started to read lectures also to the author
of these lines. In 1979 he defended the scientific degree DrSc., and in 1981 he was ap-
pointed as the University Professor. From 1972 he worked at this Faculty, and in 1985
he moved to Liptovský Mikuláš, to the Department of Mathematics of the Military
Academy to come back in 1989 to Faculty of Mathematics and Physics, Bratislava,
as the first willingly elected Dean. Since 1992 he was the Director of Institute of
Mathematics of the Slovak Academy of Sciences, and since 1998 he is back in the
city of his youth, Banská Bystrica, where since October 2001 he is at the Institute
of Mathematics and Informatics, the joint institute of the Institute of Mathematics,
Slovak Academy of Sciences, and the Faculty of Natural Sciences of the University of
Matej Bel.

Prof. Riečan belongs to the most significant mathematicians of Slovakia. He is
the author or coauthor of 7 monographs (the last one [M3] appeared in 2009) plus 2
chapters in books, 240 papers published in scientific journals, over 80 technical papers,
4 university textbooks, 30 high-school textbooks and text tools, 8 scripts plus 3 in
electronic form, 8 books on mathematics (one book on probability had 6 editions), 8
tv-scripts, over 500 publicists articles.1 His papers were quoted more than 500-times.
1The list of his first 122 publications and the list of monographs can be found in [3]. The updated
list of publications from 2005–2010 is at the end of this article.
This note is based on the article [7] where is a list of his papers [118–192]. Other articles on B.
Riečan: [1, 2, 4, 5, 6].
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He was a PhD-supervisor of 30 PhD-students, which is a Slovak unique, and he was
a supervisor of over 55 diploma-theses. Many of his former students are nowadays
leading personalities of our universities and of the Slovak Academy of Sciences. His
professional activity is probability theory, measure theory and integration, fuzzy sets,
and quantum structures. His activities are very large and reach even besides of Maths.
He is a member of 6 international scientific societies.

Among his most important mathematical contributions we can surely insert estab-
lishing unifying theory of measure and integration in ordered spaces. He extended the
notion on entropy of dynamical systems. He initiated study of quantum structures
and fuzzy sets in Slovakia. He developed probability theory of fuzzy sets. That has
a very important connection to probability theory on MV-algebras [Ch1]. He is very
often invited to address his talks on many conferences in home as well as in abroad.

He is a tireless organizer of many scientific events; many of traditional scientific
conferences in Slovakia or seminars have arose due to his direct personal stimulus.
Thanks to him, in Liptovský Ján Valley an important mathematical congress centrum
have appeared which is already very well entered in awareness of foreign colleagues;
as a rule, a concert of conference participants is regularly organized which is always
highly welcome. He was a long-standing president of the Union of Slovak Mathemati-
cians and Physicists, he is the Head of the Slovak Association of Rome Club. As
an outstanding musician and musical expert, since 1984 together with an important
Slovak musician Prof. Roman Berger are guiding the Seminar Mathematics and Mu-
sic, and around this seminar a circle of Slovak, Czech as well as foreign intellectuals
is concerned. He is a fanatic propagator of Slovak books, namely of mathematical
ones, and he is a mathematical modern version of Matej Hrebenda (M. Hrebenda,
1796–1880, was a famous blind propagator of Slovak books). When in the late 1980s,
the famous Prague Vičichlo Library of the Czech Technical University announced
that their old books would discard, he saved them and organized the transport of the
books to Liptovský Mikuláš as well as to Institute of Mathematics, Slovak Academy
of Sciences, Bratislava; for example we have an old original monograph by J.C.F.
Gauss on number theory, Disqvisitiones Arithmeticae, 1801.

On pages of daily press, on TV-screen and radio he is trying on uplift of the edu-
cation in Slovakia, he is voicing to momentous questions of education, science, culture
and clergy in our society, and to acute questions of collaboration between universi-
ties and Slovak Academy of Sciences. His scientific, pedagogical, organizing activity
was many time awarded on many important national and international platforms. I
mention only the latest ones: Honorary Medal of Bernard Bolzano of the Academy
of Sciences of the Czech republic (1998), the Silver Medal of University of Milano
(2000), and Medal of the Slovak Academy of Sciences for support for science (2001),
Order of Ľ. Štúr of the First Grade (2002) (the highest estimation in Slovakia for
scholars awarded by the state president), member of the Learning Society of the Slo-
vak Academy of Sciences 2005, Dr.h.c. of the Military Academy, Liptovský Mikuláš,
2006, the grants for the most successful PhD tutors.

All these outstanding scientific degrees which Prof. Riečan achieved are very im-
portant and needful, however they don’t reflect the main feature of his own. And this
is his interest for the man, for the pupil and student, which very often borders on
self-sacrificing, and which is very typical for him. Not once I had opportunity to see
him how he already as a known professor was near with a young adept of Maths. Or
how he was carrying on his back the books and offering them to people. Thanks for
that he induced interest for Maths in many young novices while his sparks are very
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susceptible. In addition, he has a gift to put people together for the well of matters
and he is not shaming to let enlighten himself by younger colleagues. I have not yet
understood where he takes so much energy and so many ideas.

Dear Belo, you are a genuine and one of the last spiritus mathematicus slovakiensis,
and therefore we wish you on the occasion of your important life jubilee good health,
happiness and many new interesting mathematical results and new ideas on organizing
mathematical life.

Ad multos annos!
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1 Introduction

In a series of papers, part of which written together with Prof. Beloslav Riečan, the
concept of “substraction” operation over an Intitionistic Fuzzy Set (IFS, see [1]), was
introduced for the first time (see, [2, 3, 4, 5, 6, 7, 8]).

In the first two papers [5, 6], we offered direct definitions of subtractions. Later,
an approach providing a series of definitions was introduced and 67 different instances
of the “substraction” operation were constructed and their properties were studied.
B. Riečan participated actively in this research [7, 8].

Now, a new approach to defining different “substraction” operations is constructed
and some of the basic properties of the derived new instances will be studied.

2 Some preliminary results

Up to now, different operations have been defined over IFS. Let

A∗ = {〈x, µA(x), νA(x)〉|x ∈ E},

where the functions µA : E → [0, 1] and νA : E → [0, 1] stand for the degrees of
membership and non-membership of the element x from a fixed universe E to the set
A ⊂ E, respectively, and every x satisfies that: 0 ≤ µA(x) + νA(x) ≤ 1.

Let for every x ∈ E:

Copyright c© 2011 Matej Bel University
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πA(x) = 1− µA(x)− νA(x).

Therefore, function π determines the degree of uncertainty.
Below, for brevity, we write A instead of A∗. When the IFSs A and B are given,

we can construct the IFS A − B. The currently existing forms of this operation are
given below. The first two forms are taken, respectively, from [5] and [6] and we will
denote them as BR1 and BR2:

A−BR1 B = {〈x, µA−B(x), νA−B(x)〉|x ∈ E},
where

µA−B(x) =





µA(x)− µB(x)
1− µB(x) , if µA(x) ≥ µB(x) and νA(x) ≤ νB(x)

and νB(x) > 0
and νA(x)πB(x) ≤ πA(x)νB(x)

0, otherwise

and

νA−B(x) =





νA(x)
νB(x) , if µA(x) ≥ µB(x) and νA(x) ≤ νB(x)

and νB(x) > 0
and νA(x)πB(x) ≤ πA(x)νB(x)

1, otherwise
and

A−BR2 B = {〈min(µA(x), νB(x)),max(µB(x), νA(x))〉|x ∈ E}.
In some definitions below, we use functions sg and sg, defined by

sg(x) =





1 if x > 0

0 if x ≤ 0
, sg(x) =





0 if x > 0

1 if x ≤ 0
The next definitions of instances of the “substraction” operation are based on the

well-known formula from set theory:

A−B = A ∩ ¬B
where A and B are given sets. In the IFS case, if the IFSs A and B are given, we
define the following versions of “substraction” operation:

A−′i B = A ∩ ¬iB, and A−′′i B = ¬i¬iA ∩ ¬iB,
where i = 1, 2, . . . , 34.
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Of course, for every two IFSs A and B, it is valid that

A−′1 B = A−′′1 B,
because the first negation will satisfy the Law of Excluded Middle, but in the other
cases this equality is not valid.

All new subtractions are given in Table 1.

Table 1: List of intuitionistic fuzzy subtractions.

−′1 {〈x,min(µA(x), νB(x)),max(νA(x), µB(x))〉|x ∈ E}
−′2 {〈x,min(µA(x), sg(µB(x))),max(νA(x), sg(µB(x)))〉|x ∈ E}
−′3 {〈x,min(µA(x), νB(x)),

max(νA(x), µB(x).νB(x) + µB(x)2)〉|x ∈ E}
−′4 {〈x,min(µA(x), νB(x)),max(νA(x), 1− νB(x))〉|x ∈ E}
−′5 {〈x,min(µA(x), sg(1− νB(x))),

max(νA(x), sg(1− νB(x)))〉|x ∈ E}
−′6 {〈x,min(µA(x), sg(1− νB(x))),max(νA(x), sg(µB(x)))〉|x ∈ E}
−′7 {〈x,min(µA(x), sg(1− νB(x))),max(νA(x), µB(x))〉|x ∈ E}
−′8 {〈x,min(µA(x), 1− µB(x)),max(νA(x), µB(x))〉|x ∈ E}
−′9 {〈x,min(µA(x), sg(µB(x))),max(νA(x), µB(x))〉|x ∈ E}
−′10 {〈x,min(µA(x), sg(1− νB(x))),max(νA(x), 1− νB(x))〉|x ∈ E}
−′11 {〈x,min(µA(x), sg(νB(x))),max(νA(x), sg(νB(x)))〉|x ∈ E}
−′12 {〈x,min(µA(x), νB(x).(µB(x) + νB(x))),

max(νA(x), µB(x).(νB(x)2 + µB(x) + µB(x).νB(x)))〉|x ∈ E}
−′13 {〈x,min(µA(x), sg(1− µB(x))),

max(νA(x), sg(1− µB(x)))〉|x ∈ E}
−′14 {〈x,min(µA(x), sg(νB(x))),max(νA(x), sg(1− µB(x)))〉|x ∈ E}
−′15 {〈x,min(µA(x), sg(1− νB(x))),

max(νA(x), sg(1− µB(x)))〉|x ∈ E}
−′16 {〈x,min(µA(x), sg(µB(x))),max(νA(x), sg(1− µB(x)))〉|x ∈ E}
−′17 {〈x,min(µA(x), sg(1− νB(x))),max(νA(x), sg(νB(x)))〉|x ∈ E}
−′18 {〈x,min(µA(x), νB(x), sg(µB(x))),

max(νA(x),min(µB(x), sg(νB(x))))〉|x ∈ E}
−′19 {〈x,min(µA(x), νB(x), sg(µB(x))), νA(x)〉|x ∈ E}
−′20 {〈x,min(µA(x), νB(x)), νA(x)〉|x ∈ E}
−′21 {〈x,min(µA(x), 1− µB(x), sg(µB(x))),

max(νA(x),min(µB(x), sg(1− µB(x))))〉|x ∈ E}
−′22 {〈x,min(µA(x), 1− µB(x), sg(µB(x))), νA(x)〉|x ∈ E}
−′23 {〈x,min(µA(x), 1− µB(x)), νA(x)〉|x ∈ E}
−′24 {〈x,min(µA(x), νB(x), sg(1− νB(x))),

max(νA(x),min(1− νB(x), sg(νB(x))))〉|x ∈ E}
−′25 {〈x,min(µA(x), νB(x), sg(1− νB(x))), νA(x)〉|x ∈ E}
−′26 {〈x,min(µA(x), νB(x)),

max(νA(x), µB(x).νB(x) + sg(1− µB(x)))〉|x ∈ E}
−′27 {〈x,min(µA(x), 1− µB(x)),

max(νA(x), µB(x).(1− µB(x)) + sg(1− µB(x)))〉|x ∈ E}
Continued on next page
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Table 1 – continued from previous page
−′28 {〈x,min(µA(x), νB(x)),

max(νA(x), (1− νB(x)).νB(x) + sg(νB(x)))〉|x ∈ E}
−′29 {〈x,min(µA(x),max(0, µB(x).νB(x) + sg(1− νB(x)))),

max(νA(x), µB(x).(µB(x).νB(x)
+sg(1− νB(x))) + sg(1− µB(x)))〉|x ∈ E}

−′30 {〈x,min(µA(x), µB(x).νB(x)),
max(νA(x), µB(x).(µB(x).νB(x)
+sg(1− νB(x))) + sg(1− µB(x)))〉|x ∈ E}

−′31 {〈x,min(µA(x), (1− µB(x)).µB(x) + sg(µB(x))),
max(νA(x), µB(x).((1− µB(x)).µB(x)
+sg(µB(x))) + sg(1− µB(x)))〉|x ∈ E}

−′32 {〈x,min(µA(x), (1− µB(x)).µB(x)),
max(νA(x), µB(x).((1− µB(x)).µB(x)
+sg(µB(x))) + sg(1− µB(x)))〉|x ∈ E}

−′33 {〈x,min(µA(x), νB(x).(1− νB(x)) + sg(1− νB(x))),
max(νA(x), (1− νB(x)).(νB(x).(1− νB(x))
+sg(1− νB(x))) + sg(νB(x)))〉|x ∈ E}

−′34 {〈x,min(µA(x), νB(x).(1− νB(x))),
max(νA(x), (1− νB(x)).(νB(x).(1− νB(x))
+sg(1− νB(x))) + sg(νB(x)))〉|x ∈ E}

−′′1 {〈x,min(µA(x), νB(x)),max(νA(x), µB(x))〉|x ∈ E}
−′′2 {〈x,min(sg(µA(x)), sg(µB(x))),

max(sg(µA(x)), sg(µB(x)))〉|x ∈ E}
−′′3 {〈x,min(µA(x).νA(x) + µA(x)2, νB(x)),

max(νA(x).(µA(x).νA(x) + µA(x)2) + νA(x)2,
µB(x).νB(x) + µB(x)2)〉|x ∈ E}

−′′4 {〈x,min(1− νA(x), νB(x)),max(νA(x), 1− νB(x))〉|x ∈ E}
−′′5 {〈x,min(sg(1− νA(x)), sg(1− νB(x))),

max(sg(1− νA(x)), sg(1− νB(x)))〉|x ∈ E}
−′′6 {〈x,min(sg(µA(x)), sg(1− νB(x))),

max(sg(1− νA(x)), sg(µB(x)))〉|x ∈ E}
−′′7 {〈x,min(sg(1− µA(x)), sg(1− νB(x))),

max(sg(1− νA(x)), µB(x))〉|x ∈ E}
−′′8 {〈x,min(µA(x), 1− µB(x)),max(1− µA(x), µB(x))〉|x ∈ E}
−′′9 {〈x,min(sg(µA(x)), sg(µB(x))),max(sg(µA(x)), µB(x))〉|x ∈ E}
−′′10 {〈x,min(sg(νA(x)), sg(1− νB(x))),

max(νA(x), 1− νB(x))〉|x ∈ E}
−′′11 {〈x,min(sg(νA(x)), sg(νB(x))),

max(sg(νA(x)), sg(νB(x)))〉|x ∈ E}
−′′12 {〈x,min(µA(x).(νA(x)2 + µA(x) + µA(x).νA(x)).(µA(x).(νA(x)2

+µA(x) + µA(x).νA(x)) + (νA(x).(µA(x) + νA(x)))),
νB(x).(µB(x) + νB(x))),
max(νA(x).(µA(x) + νA(x)).(µA(x)2.(νA(x)2 + µA(x)
+µA(x).νA(x))2 + νA(x).(µA(x) + νA(x))) + µA(x).νA(x)
.(νA(x)2 + µA(x) + µA(x).νA(x)).(µA(x) + νA(x)),
µB(x).(νB(x)2 + µB(x) + µB(x).νB(x)))〉|x ∈ E}

Continued on next page
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Table 1 – continued from previous page
−′′13 {〈x,min(sg(1− µA(x)), sg(1− µB(x))),

max(sg(1− µA(x)), sg(1− µB(x)))〉|x ∈ E}
−′′14 {〈x,min(sg(1− µA(x)), sg(νB(x))),

max(sg(νA(x)), sg(1− µB(x)))〉|x ∈ E}
−′′15 {〈x,min(sg(1− µA(x)), sg(1− νB(x))),

max(sg(1− νA(x)), sg(1− µB(x)))〉|x ∈ E}
−′′16 {〈x,min(sg(µA(x)), sg(µB(x))),

max(sg(µA(x)), sg(1− µB(x)))〉|x ∈ E}
−′′17 {〈x,min(sg(νA(x)), sg(1− νB(x))),

max(sg(νA(x)), sg(νB(x)))〉|x ∈ E}
−′′18 {〈x,min(µA(x), sg(νA(x)), νB(x), sg(µB(x))),

max(min(νA(x), sg(µA(x))),min(µB(x), sg(νB(x))))〉|x ∈ E}
−′′19 {〈x, 0, 0〉|x ∈ E}
−′′20 {〈x, 0, 0〉|x ∈ E}
−′′21 {〈x, µA(x).sg(1− µA(x)),

max((1− µA(x)).sg(µA(x)),min(µB(x),
sg(1− µB(x))))〉|x ∈ E}

−′′22 {〈x,min(µA(x).sg(µA(x)), 1− µB(x), sg(µB(x))), 0〉|x ∈ E}
−′′23 {〈x,min(µA(x), 1− µB(x)), 0〉|x ∈ E}
−′′24 {〈x,min(1− νA(x), sg(νA(x)), νB(x), sg(1− νB(x))),

max(νA(x).sg(1− νA(x))),min(1− νB(x), sg(νB(x)))〉|x ∈ E}
−′′25 {〈x, 0, 0〉|x ∈ E}
−′′26 {〈x,min(µA(x).νA(x) + sg(1− µA(x)), νB(x)),

max(νA(x).(µA(x).νA(x) + sg(1− µA(x))) + sg(1− νA(x)),
µB(x).νB(x) + sg(1− µB(x)))〉|x ∈ E}

−′′27 {〈x,min(µA(x), 1− µB(x)),
max(((1− µA(x)).µA(x)) + sg(µA(x)),
µB(x).(1− µB(x)) + sg(1− µB(x)))〉|x ∈ E}

−′′28 {〈x,min((1− νA(x)).νA(x) + sg(νA(x)), νB(x)),
max((1− (1− νA(x)).νA(x))− sg(νA(x))).((1− νA(x)).νA(x)
+sg((1− νA(x)).νA(x) + sg(νA(x))),
(1− νB(x)).νB(x) + sg(νB(x)))〉|x ∈ E}

−′′29 {〈x,min((µA(x).(µA(x).νA(x) + sg(1− νA(x))) + sg(1− µA(x)))
.(µA(x).νA(x) + sg(1− νA(x))) + sg(1− µA(x).(µA(x).νA(x)
+sg(1− νA(x)))− sg(1− µA(x))), µB(x).νB(x)
+sg(1− νB(x))),max((µA(x).νA(x) + sg(1− νA(x))).((µA(x)
.(µA(x).νA(x) + sg(1− νA(x))) + sg(1− µA(x))).(µA(x).νA(x)
+sg(1− νA(x))) + sg(1− µA(x).(µA(x).νA(x) + sg(1− νA(x)))
−sg(1− µA(x)))) + sg(1− µA(x).νA(x)− sg(1− νA(x))), µB(x)
.(µB(x).νB(x) + sg(1− νB(x))) + sg(1− µB(x)))〉|x ∈ E}

−′′30 {〈x,min(((µA(x).(µA(x).νA(x) + sg(1− νA(x))) + sg(1− µA(x)))
.µA(x).νA(x)), µB(x).νB(x)),
max(µA(x).νA(x).((µA(x).(µA(x).νA(x) + sg(1− νA(x)))
+sg(1− µA(x))).µA(x).νA(x) + sg(1− µA(x).(µA(x).νA(x)
+sg(1− νA(x)))− sg(1− µA(x)))) + sg(1− (µA(x).νA(x))),
µB(x).(µB(x).νB(x) + sg(1− νB(x))) + sg(1− µB(x)))〉|x ∈ E}

Continued on next page



16 Krassimir Atanassov

Table 1 – continued from previous page
−′′31 {〈x,min((1− (1− µA(x)).µA(x)− sg(µA(x))).((1− µA(x))

.µA(x) + sg(µA(x))) + sg(((1− µA(x)).µA(x) + sg(µA(x)))),
(1− µB(x)).µB(x) + sg(µB(x))),
max(((1− µA(x)).µA(x) + sg(µA(x))).((1− (1− µA(x)).µA(x))
−sg(µA(x)).((1− µA(x)).µA(x) + sg(µA(x))) + sg((1− µA(x))
.µA(x) + sg(µA(x)))) + sg(1− (1− µA(x)).µA(x)− sg(µA(x))),
µB(x).((1−µB(x)).µB(x)+ sg(µB(x))) + sg(1−µB(x)))〉|x ∈ E}

−′′32 {〈x,min((1− (1− µA(x)).µA(x)).(1− µA(x)).µA(x),
(1− µB(x)).µB(x)),
max(((1−µA(x)).µA(x).((1− (1−µA(x)).µA(x)).(1−µA(x))
.µA(x) + sg((1− µA(x)).µA(x))) + sg(1− (1− µA(x)).µA(x))),
µB(x).((1−µB(x)).µB(x)+ sg(µB(x)))+ sg(1−µB(x)))〉|x ∈ E}

−′′33 {〈x,min(((1−νA(x)).(νA(x).(1−νA(x)) + sg(1−νA(x)))
+sg(νA(x))).(1− (1− νA(x)).(νA(x).(1− νA(x))
+sg(1− νA(x)))− sg(νA(x))) + sg(1− (1− νA(x))
.(νA(x).(1− νA(x)) + sg(1− νA(x)))− sg(νA(x))),
νB(x).(1− νB(x)) + sg(1− νB(x))),
max((1− (1−νA(x)).(νA(x).(1−νA(x)) + sg(1− νA(x)))
−sg(νA(x))).(((1− νA(x)).(νA(x).(1− νA(x)) + sg(1− νA(x)))
+sg(νA(x))).(1− (1−νA(x)).(νA(x).(1−νA(x))+ sg(1−νA(x)))
−sg(νA(x))) + sg(1− (1−νA(x)).(νA(x).(1−νA(x))
+sg(1−νA(x)))− sg(νA(x)))) + sg((1− νA(x)).(νA(x)
.(1− νA(x)) + sg(1− νA(x))) + sg(νA(x))), (1−νB(x)).(νB(x)
.(1−νB(x)) + sg(1−νB(x))) + sg(νB(x)))〉|x ∈ E}

−′′34 {〈x,min(((1−νA(x)).(νA(x).(1−νA(x)) + sg(1−νA(x)))
+sg(νA(x))).(1− (1− νA(x)).(νA(x).(1− νA(x))
+sg(1− νA(x)))− sg(νA(x))),
νB(x).(1− νB(x))),max(((1− (1− νA(x)).(νA(x).(1− νA(x))
+sg(1− νA(x)))− sg(νA(x))).(((1− νA(x)).(νA(x)
.(1− νA(x)) + sg(1− νA(x))) + sg(νA(x))).(1− (1− νA(x))
.(νA(x).(1−νA(x))+ sg(1−νA(x)))− sg(νA(x)))+ sg(1− (1−νA(x))
.(νA(x).(1−νA(x)) + sg(1−νA(x)))− sg(νA(x)))))
+sg((1−νA(x)).(νA(x).(1−νA(x)) + sg(1−νA(x))) + sg(νA(x))),
(1−νB(x)).(νB(x).(1− νB(x)) + sg(1− νB(x)))
+sg(νB(x)))〉|x ∈ E}

We immediately see that operation −BR1 does not occur in Table 1, while opera-
tions −BR2, −′1 and −′′2 coincide.

3 Main results

Initially, we give the list of all intuitionistic fuzzy implications (see Table 2). They
generate 34 different negations, given in Table 3. The relations between the implica-
tions and negatiions are shown in Table 4.
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Table 2: List of the first 14 intuitionistic fuzzy implications.

→1 {〈x,max(νA(x),min(µA(x), µB(x))),min(µA(x), νB(x))〉|x∈E}
→2 {〈x, sg(µA(x)− µB(x)), νB(x).sg(µA(x)− µB(x))〉|x ∈ E}
→3 {〈x, 1− (1− µB(x)).sg(µA(x)− µB(x)))),

νB(x).sg(µA(x)− µB(x))〉|x ∈ E}
→4 {〈x,max(νA(x), µB(x)),min(µA(x), νB(x))〉|x ∈ E}
→5 {〈x,min(1, νA(x) + µB(x)),max(0, µA(x) + νB(x)− 1)〉|x ∈ E}
→6 {〈x, νA(x) + µA(x)µB(x), µA(x)νB(x)〉|x ∈ E}
→7 {〈x,min(max(νA(x), µB(x)),max(µA(x), νA(x)),

max(µB(x), νB(x))), max(min(µA(x), νB(x)),
min(µA(x), νA(x)),min(µB(x), νB(x)))〉|x ∈ E}

→8 {〈x, 1− (1−min(νA(x), µB(x))).sg(µA(x)− µB(x)),
max(µA(x), νB(x)).sg(µA(x)− µB(x)),
sg(νB(x)− νA(x))〉|x ∈ E}

→9 {〈x, νA(x)+µA(x)2µB(x), µA(x)νA(x)+µA(x)2νB(x)〉|x ∈ E}
→10 {〈x, µB(x).sg(1− µA(x))

+sg(1−µA(x)).(sg(1−µB(x)) + νA(x).sg(1−µB(x))),
νB(x).sg(1− µA(x))+µA(x).sg(1− µA(x))
.sg(1− µB(x))〉|x ∈ E}

→11 {〈x, 1− (1− µB(x)).sg(µA(x)− µB(x)),
νB(x).sg(µA(x)−µB(x)).sg(νB(x)−νA(x))〉|x ∈ E}

→12 {〈x,max(νA(x), µB(x)), 1−max(νA(x), µB(x))〉|x ∈ E}
→13 {〈x, νA(x) + µB(x)− νA(x).µB(x), µA(x).νB(x)〉|x ∈ E}
→14 {〈x, 1− (1− µB(x)).sg(µA(x)− µB(x))

−νB(x).sg(µA(x)− µB(x)).sg(νB(x)− νA(x)),
νB(x).sg(νB(x)− νA(x))〉|x ∈ E}

Table 3: List of the first 5 intuitionistic fuzzy negations.

¬1 {〈x, νA(x), µA(x)〉|x ∈ E}
¬2 {〈x, sg(µA(x)), sg(µA(x))〉|x ∈ E}
¬3 {〈x, νA(x), µA(x).νA(x) + µA(x)2〉|x ∈ E}
¬4 {〈x, νA(x), 1− νA(x)〉|x ∈ E}
¬5 {〈x, sg(1− νA(x)), sg(1− νA(x))〉|x ∈ E}
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Table 4: Correspondence between intuitionistic fuzzy negations
and implications.

¬1 →1,→4,→5,→6,→7,→10,→13
¬2 →2,→3,→8,→11
¬3 →9
¬4 →12
¬5 →14

Now, we introduce the definitions of the new “substraction” operations. As a basis of
the new instances of this operation, we use the formula from classical set theory

A−B = A ∩ ¬B = ¬(¬A ∪B) = ¬(A→ B),

where A and B are two IFSs. Hence, for i = 1, 2, ..., 134 (or in the present case, for
i = 1, 2, ..., 14)

A−i B = ¬δ(i)(A→i B),

where δ(i) is the number of the negation that corresponds to i-th implication (see
Table 4). Therefore, 134 new “substraction” operations can originate. This process is
difficult, having in mind the very complex forms of some implications and negations
from Tables 2 and 3. By this reason, here we introdice the definition of the first 14
new instances of the “substraction” operation (see Table 5) and the rest definitions
will be given in future.

Table 5: List of the first 14 new intuitionistic fuzzy subtractions.

−1 {〈x,min(µA(x), νB(x)),max(νA(x),min(µA(x), µB(x)))〉|x ∈ E}
−2 {〈x, sg(µA(x)− µB(x)), sg(µA(x)− µB(x))〉|x ∈ E}
−3 {〈x, sg(µA(x)− µB(x)), sg(µA(x)− µB(x))〉|x ∈ E}
−4 {〈x,max(νA(x), µB(x)),min(µA(x), νB(x))〉|x ∈ E}
−5 {〈x,max(0, µA(x) + νB(x)− 1),min(1, νA(x) + µB(x))〉|x ∈ E}
−6 {〈x, µA(x)νB(x), νA(x) + µA(x)µB(x)〉|x ∈ E}
−7 {〈x,max(min(µA(x), νB(x)),min(µA(x), νA(x)),

min(µB(x), νB(x))),
min(max(νA(x), µB(x)),max(µA(x), νA(x)),
max(µB(x), νB(x)))〉|x ∈ E}

−8 {〈x, ((1− sg(min(νA(x), µB(x)))).sg(µA(x)− µB(x)),
sg(µA(x)− µB(x)) + sg(min(νA(x), µB(x))))
.sg(µA(x)− µB(x))〉|x ∈ E}

−9 {〈x, µA(x).νA(x) + µA(x)2νB(x),
µA(x)νA(x)2 + µA(x)2νA(x)νB(x) + µA(x)3νA(x)µB(x)
+µA(x)4µB(x)νB(x) + nuA(x)2 + 2 + µA(x)2νA(x)µB(x)
+µA(x)4µB(x)2〉|x ∈ E}

Continued on next page
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Table 5 – continued from previous page
−10 {〈x, νB(x).sg(1− µA(x))+µA(x).sg(1− µA(x)).sg(1− µB(x)),

µB(x).sg(1− µA(x)) + sg(1−µA(x)).(sg(1−µB(x)) + νA(x)
.sg(1−µB(x)))〉|x ∈ E}

−11 {〈x, sg(µA(x)− µB(x)), sg(µA(x)− µB(x))〉|x ∈ E}
−12 {〈x, 1−max(νA(x), µB(x)),max(νA(x), µB(x))〉|x ∈ E}
−13 {〈x, µA(x).νB(x), νA(x) + µB(x)− νA(x).µB(x)〉|x ∈ E}
−14 {〈x, sg(1− νB(x).sg(νB(x)− νA(x)),

sg(1− νB(x).sg(νB(x)− νA(x))〉|x ∈ E}

Some of the most important properties of the subtractions are:
(a) A− E∗ = O∗,
(b) A−O∗ = A,
(c) E∗ −A = ¬A,
(d) O∗ −A = O∗,
(e) (A−B) ∩ C = (A ∩ C)−B = A ∩ (C −B),
(f) (A ∩B)− C = (A− C) ∩ (B − C),
(g) (A ∪B)− C = (A− C) ∪ (B − C),
(h) (A−B)− C = (A− C)−B,
(i) (A− C) ∩B = A ∩ (B − C),
(j) O∗ − U∗ = O∗,
(k) O∗ − E∗ = O∗,
(l) U∗ −O∗ = U∗,
(m) U∗ − E∗ = O∗,
(n) E∗ −O∗ = E∗,
(o) E∗ − U∗ = O∗.

In Table 6 are given these subtractions that satisfy these properties.

Table 6: Properties of the “subtraction” operations.

a b c d e f g h i j k l m n o
→1 - + + + - - - - - + + + - + -
→2 + - - + - + + - - + + - + + -
→3 + - + + - + + + - + + - + + -
→4 + + + + + + + + + + + + + + -
→5 + + + + - + + + - + + + + + -
→6 - + + + - - - - - + + + - + -
→7 - + + - - - - - - - + + - + -
→8 + - - + - + - - - + + - + + -
→9 - - + + - - - - - + + + - + -
→10 + + + + - - - - - + + + + + -
→11 + - + + - + + + - + + - + + -
→12 + - - + - + + + - + + - + + -
→13 + + + + - + + + - + + + + + -
→14 + - + + - + + + - + + - + + +
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In a next research we will continue to study the definitions and properties of the new
subtractions based on the intuitionistic fuzzy implications.

An OPEN PROBLEM is to find another approach to introducing variants of
the “subtraction” operation over IFSs. If this is possible, the behaviour of the new
operations must be studied, also.

4 Final remarks: Beloslav Riečan’s group and intuitionistic fuzzy sets

In the beginning of the 21st century, Prof. Beloslav Riečan established in the Matej
Bel University, Banská Bystrica one of the most active research groups in the world
in the area of intitionistc fuzzy set theory. After the two annual conferences on IFSs,
organized in Sofia (since 1998) and Warsaw (since 2000), Banská Bystrica became the
third place, where such regular meetings are being held ever since 2006.

Prof. Riečan participates actively in the organization of the Bulgarian conferences
(since 2006) and in the edition of the specialized journal “Notes on Intuitionistic Fuzzy
Sets”. He and his PhD students and collaborators developed whole areas of IFSs
theory, related to intuitionistic fuzzy integrals, probabilities, etc. To this end, Prof.
Riečan has the largest number of successfully defended PhD students with theses on
IFSs in the world.

On the behalf of his Bulgarian friends and colleagues, I wish him to keep up his
research activity for a long years in future.
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Abstract
Given the plane triangle ∆ = { [x, y] : 0 ≤ x, 0 ≤ y, x + y ≤ 4 } and the transformation
F : ∆ → ∆, [x, y] 7→ [x(4 − x − y), xy] we give a lower estimate of the number of interior
periodic orbits with period n ≤ 36.
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1 Introduction

We study periodic points of the map F : [x, y] 7→ [x(4 − x − y), xy] lying inside the
triangle

∆ = { [x, y] : 0 ≤ x, 0 ≤ y, x+ y ≤ 4 } .
The map F maps the triangle ∆ onto itself. This map has been studied in the
papers [8], [4],[5],[6] and is sometimes called Lotka–Volterra. Y. Avishai and D. Berend
in [1] (see also [2] and [3]) studied a discrete system related with the dynamics of the
map F : ∆ → ∆. The basic transformation considered in [1] is H[x, y] = [y, x2y −
2x2 + 2] defined on R2. The system (∆, F ) was obtained from (R2, H) employing
some conjugacy reductions. A. N. Sharkovskǐı in [7] stated some open problems on
the dynamics of the map F . It is easy to find three fixed points of the map F , namely
[0, 0], [3, 0] and [1, 2]. (Periodic points on the lower side of ∆ are well known, because
the restriction of F to the lower side is the logistic map f : x 7→ x(4 − x) which is
conjugate with the tent map.)
∗The author was supported by the Slovak Research and Development Agency, grant APVV-0134-10
and by VEGA, grant 1/0978/11
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1 2 3 4

1

2

3

4

Figure 1: Interior periodic points of the map F whose periods are ≤ 36. Such interior
periodic points are white. The black part of the triangle does not contain those points.

Until recently nothing has been known on the existence of interior periodic points
different from [1, 2]. Only in 2006, in [4], the interior point [1 −

√
2

2 , 1 +
√

2
2 ] with

period 4 was found. Trying to find other interior periodic points, we started to study
periodic points by numerical experiments and soon we found the point [1, 3+

√
5

2 ] with
period 6 and numerically also many other periodic points. We omit these numerical
experiments because they are not necessary for reading the present paper. In fact,
after a careful analysis of them we were able to prove an exact result, Theorem 4.3,
which was proved in [6]. It implies the existence of interior periodic points of all
periods n ≥ 4 inside ∆. The results of our numerical experiments are illustrated on
Fig. 1. It contains about 5.4 · 1010 periodic points with period n ≤ 36.

The present paper is a continuation of [6]. Our main result is Theorem 3.3 and
Table 1.

2 Notations and preliminary results

We denote by [x, y] a point in the plane, while (α, β) and 〈α, β〉 are open and closed
intervals on the real line. Throughout the paper we denote by F the map of the plane
R2 given by F [x, y] = [x(4− x− y), xy]. Let ∆ = { [x, y] : 0 ≤ x, 0 ≤ y, x+ y ≤ 4 }.
The sides of the triangle ∆ are denoted by a, b and c as it is shown in Fig. 2. It is
easy to see that F (∆) = ∆. Note that F [x, 0] = [f(x), 0], where

f : 〈0, 4〉 → 〈0, 4〉, f(x) = x(4− x)
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Figure 2: Notations concerning the triangle ∆.

is the logistic map. Note that any point x ∈ 〈0, 4〉 may be written in the form
x = 4 sin2 t with t ∈ 〈0, π2 〉 and in this case

f(x) = f(4 sin2 t) = 4 sin2 t(4− 4 sin2 t) = 16 sin2 t cos2 t (2.1)
= 4 sin2 2t = 4 sin2 (π − 2t) .

The logistic map f is conjugate with the tent map g : 〈0, 1〉 → 〈0, 1〉, g(t) =
1−|1−2t| via the conjugation h : 〈0, 1〉 → 〈0, 4〉, h(t) = 4 sin2(πt/2). Since any fixed
point of the map gn is of the form 2k

2n±1 , any lower fixed point of the map Fn is of the
form

[
4 sin2 kπ

2n±1 , 0
]
where n and k are integers such that 0 < n and 0 ≤ 2k < 2n±1.

It is easy to see that the Jacobi matrix of the map F at the point [x, y] has the form
(

4− 2x− y −x
y x

)
.

Therefore the Jacobi matrix of the map F at the point [x, 0] has the form
(

4− 2x −x
0 x

)
.

It means that the Jacobi matrix of the map Fn at the point [x0, 0] has the form
( ∏n−1

i=0 (4− 2xi) µ

0
∏n−1
i=0 xi

)
,
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where xi = f i(x0). As we shall see, the value of µ is unimportant. Clearly, the Jacobi
matrix of the map Fn at the point [0, 0] has the form

(
4n 0
0 0

)
.

(As we shall see it is an exception. For the other lower fixed points of the map Fn
we have the eigenvalue 2n instead of 4n). Let x0 > 0 and P = [x0, 0] ∈ ∆ be a fixed
point of the map Fn. So x0 = 4 sin2 kπ

2n±1 where k ≥ 1 and

xi = 4 sin2 2ikπ
2n ± 1 ,

4− 2xi = 4 cos 2i+1kπ

2n ± 1 ,

sin 2nkπ
2n ± 1 = ∓(−1)k sin kπ

2n ± 1 ,

cos 2nkπ
2n ± 1 = (−1)k cos kπ

2n ± 1 ,

sin 2nkπ
2n ± 1 = 2n sin kπ

2n ± 1

n−1∏

i=0
cos 2ikπ

2n ± 1 ,

n−1∏

i=0
cos 2ikπ

2n ± 1 = ∓(−1)k
2n ,

n−1∏

i=0
(4− 2xi) = 4n

n−1∏

i=0
cos 2i+1kπ

2n ± 1 = (−1)k4n
n−1∏

i=0
cos 2ikπ

2n ± 1 = ∓2n .

Hence the Jacobi matrix of the map Fn at the point P has the form
(
λ1 µ
0 λ2

)
=
( ∓2n µ

0
∏n−1
i=0 xi

)
=
( ∓2n µ

0
∏n−1
i=0 4 sin2 2ikπ

2n±1

)
. (2.2)

So,

λ2 =
n−1∏

i=0
4 sin2 2ikπ

2n ± 1 .

For λ2 we have the possibilities

(i) 0 ≤ λ2 < 1, i.e. [x0, 0] is a saddle point, e.g. x0 = 4 sin2 π
17 ,

(ii) λ2 = 1, i.e. [x0, 0] is a non-hyperbolic point, e.g. x0 = 4 sin2 π
15 ,

(iii) 1 < λ2, i.e. [x0, 0] is a repulsive point, e.g. x0 = 4 sin2 3π
17 .

Remark 2.1. All the chosen points [x0, 0] in (i)-(iii) have period 4. Lower periodic
points with period n and 0 < λ2 < 1 appear for all n ≥ 4. Lower periodic points with
period n and λ2 = 1 appear for infinitely many n, e.g. n = 4 · 3i · 5j , where i ≥ 0,
j ≥ 0. Lower periodic points with period n and 1 < λ2 appear for all n ≥ 1.

3 Estimates of the number of lower saddle periodic points.

In connection with saddle points and the main result, Theorem 4.3, it is necessary to
have at least a sufficient condition for a fixed point of Fn to be saddle. Therefore we
include the following theorem.
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Theorem 3.1 ([6]). Let P =
[
4 sin2 kπ

2n±1 , 0
]
where n > 0 and k are integers such

that
1 ≤ k ≤

√
2(2n ± 1)

π · 2
√

2n+1/4
. (3.1)

Then P is a saddle fixed point of Fn.

Remark 3.2. Note that for 4 ≤ n ≤ 13 all points P =
[
4 sin2 kπ

2n±1 , 0
]
, where k

satisfies (3.1), have period n (and not less). If n = 14 and k = 127 or 129 then (3.1)
is satisfied (with the sign −) and the point P =

[
4 sin2 kπ

2n−1 , 0
]
has period 7.

Unfortunately, the previous theorem gives only sufficient condition for a saddle
point. So fix an integer n, the choice of signs ± and an integer k such that 1 ≤ k <
2n±1

2 . We want to decide whether the point P =
[
4 sin2 kπ

2n±1 , 0
]
is a saddle point of

the map Fn and whether its period is n (because it is a divisor of n in general). So
we need to decide whether λ2 < 1, λ2 = 1 or λ2 > 1, where

λ2 =
n−1∏

i=0
4 sin2 2ikπ

2n ± 1 .

Put k0 = k and

ki+1 =
{

2ki if 2ki < 2n±1
2 ,

2n ± 1− 2ki otherwise.

Then
√
λ2 =

∏n−1
i=0 2 sin kiπ

2n±1 . If ki = k for 0 < i < n − 1 then the period of the
point P =

[
4 sin2 kπ

2n±1 , 0
]
is less than n. If ki < k for 0 < i < n − 1 than the point

P belongs to the orbit of the point
[
4 sin2 kiπ

2n±1 , 0
]
and this point has been already

considered (we assume that we consider k from 1 to 2n±1
2 − 1

2 with the step 1). So, if
ki ≤ k the evaluation of

√
λ2 =

∏n−1
i=0 2 sin kiπ

2n±1 is not necessary and this evaluation
may be interrupted. To find the number of saddle periodic points of the map F with
period n it is sufficient to find the number of saddle periodic orbits and multiply this
number by n. For any lower saddle periodic orbit it is sufficient to find that point
which has the smallest x–coordinate.

Theorem 3.3. Consider integers n ≥ 1 and 1 ≤ k < 2n±1
2 for a fixed choice of ±.

Let

λ2 =
n−1∏

i=0
4 sin2 2ikπ

2n ± 1 < 1

and
4 sin2 kπ

2n ± 1 < 4 sin2 2ikπ
2n ± 1 for 1 ≤ i ≤ n− 1 .

Then k is odd and
k

2n ± 1 <
1
12 . (3.2)

Proof. If k = 2j, then 4 sin2 2n−1kπ
2n±1 = 4 sin2 jπ

2n±1 < 4 sin2 kπ
2n±1 . Put xi = 4 sin2 2ikπ

2n±1 .
Clearly, xi+1 = f(xi) and fn(x0) = x0. Assume that λ2 =

∏n−1
i=0 xi < 1, and
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xi > x0 for 0 < i < n. If k
2n±1 > 1

6 then x0 > 1, xi > x0 > 1 for 1 ≤ i ≤ n − 1
and λ2 > 1. So we obtain a contradiction. If k

2n±1 = 1
6 then x0 = 1 and xi = 3

for i > 0 and we have again a contradiction. We shall show that the assumption
1

12 <
k

2n±1 <
1
6 leads to a contradiction. Let I be the set of all integers i such that

0 ≤ i < n and xi < 1. Let i0 < i1 · · · < ij be all elements of I. Put also ij+1 = n.
Then λ2 =

∏j
s=0

∏is+1−1
i=is xi. Since λ2 < 1 then

∏is+1−1
i=is xi < 1 at least for one

s = 0, · · · , j. Since 2−
√

3 = 4 sin2 π
12 < x0 < 4 sin2 π

6 = 1 and x0 ≤ xis we have

2−
√

3 = 4 sin2 π

12 < xis < 4 sin2 π

6 = 1 ,

1 < f(xis) = xis+1 < 3 ,
f(xis+1) = xis+2 > 3 .

If is+1 = is + 3 then 2−
√

3 = 4 sin2 π
12 < xis+3 < 4 sin2 π

6 = 1. It is possible only for
xis+2 > 2+

√
3, because f is decreasing on 〈2, 4〉, xis+3 = f(xis+2) and f(2+

√
3) = 1.

We obtain xis · xis+1 · xis+2 > (2−
√

3) · 1 · (2−
√

3) = 1 what is a contradiction. If
is+1− is > 3 then the difference is+1− is is odd, xis+2j > 3 and 1 < xis+2j+1 < 3 for
2j < is+1 − is − 1. Therefore

∏is+1−1
i=is xi > (2 −

√
3) · 9 > 1 what is a contradiction.

So k
2n±1 ≤ 1

12 . If k
2n±1 = 1

12 then x0 = 2−
√

3, x1 = 1 and xi = 3 for i ≥ 2 which is
impossible. We have k

2n±1 <
1

12 .

Remark 3.4. The previous theorem shows that it is not necessary to consider all
possible k but only odd k which satisfy (3.2). It shortens the computation of saddle
periodic orbits and points 12 times. In fact, with a little care but essentially in the
same way, for n ≥ 5 the inequality

k

2n ± 1 <
1
17

can be proved. (For n = 4 we have 3 periodic orbits. Only one of them is a saddle
orbit, see Remark 2.1.) Thus for n ≥ 5 the computation can be shortened 17 times.

We denote by sn the number of lower saddle periodic orbits and by pn = n ·sn the
number of lower saddle periodic points of the map F with period n. Table 1 contains
values sn and pn for 1 ≤ n ≤ 36.

4 Relationship between lower and interior periodic points

Let P = [x, y] ∈ ∆ be a periodic point of the map F and F i[x0, y0] = [xi, yi].
Then xi 6= 2, because otherwise we would have F [xi, yi] = [4 − 2yi, 2yi], F 2[xi, yi] =
[0, 8yi − 4y2

i ], F 3[xi, yi] = [0, 0], F j [xi, yi] = [0, 0] for j ≥ 3 and Fm[x0, y0] = [0, 0]
for all m ≥ i + 3 which is a contradiction. For any fixed point P of the map Fn we
define its itinerary as a sequence W = (wi)n−1

i=0 , where

wi =
{
L if xi < 2
R if xi > 2 .

More generally, any sequence W = (wi)n−1
i=0 of letters L and R will also be called an

itinerary. Such an itinerary is said to be aperiodic if for any proper divisor k of n
there is j < n− k such that wj 6= wj+k.
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n sn pn = n · sn n·sn

2n

1 1 1 0.5
2 0 0 0
3 0 0 0
4 1 4 0.250000
5 2 10 0.312500
6 3 18 0.281250
7 5 35 0.273438
8 11 88 0.343750
9 18 162 0.316406
10 37 370 0.361328
11 72 792 0.386719
12 122 1464 0.357422
13 223 2899 0.353882
14 418 5852 0.357178
15 793 11895 0.363007
16 1500 24000 0.366211
17 2903 49351 0.376518
18 5477 98586 0.376076
19 10412 197828 0.377327
20 19890 397800 0.379372
21 38090 799890 0.381417
22 72892 1603624 0.382334
23 140345 3227935 0.384800
24 270239 6485736 0.386580
25 520870 13021750 0.388078
26 1005368 26139568 0.389510
27 1945782 52536114 0.391425
28 3766954 105474712 0.392924
29 7298398 211653542 0.394235
30 14159124 424773720 0.395601
31 27492108 852255348 0.396862
32 53415336 1709290752 0.397975
33 103871727 3427766991 0.399045
34 202193966 6874594844 0.400154
35 393867993 13785379755 0.401207
36 767755134 27639184824 0.402203

Table 1: Number of saddle orbits and saddle periodic points with period n for 1 ≤
n ≤ 36.
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Remark 4.1. Itineraries are usually defined as infinite sequences. In this paper we
consider only itineraries of fixed points of the iterates Fn and so finite sequences are
sufficient.

Proposition 4.2 ([6]). For any itinerary W = (wi)n−1
i=0 there is a unique lower fixed

point P of the map Fn with itinerary W . The period of P is n if and only if W is
aperiodic.

Now we are ready to formulate the main result on periodic point of the map F .

Theorem 4.3 ([6]). Let P be a lower saddle periodic point of the map F . Then there
is an interior periodic point Q of F with the same itinerary and period.

Let FixInt(Fn) be the set of all interior fixed points of the map Fn and PerInt(F, n)
be the set of all interior n-periodic points of the map F .

Theorem 4.4 ([6]). For cardinalities of FixInt(Fn) and PerInt(F, n) we have the
estimates

(i) # FixInt(Fn) ≥ 2
√

2
π · 2n−

√
2n+1/4 − 2

(ii) # PerInt(F, n) ≥ 2
√

2
π 2n−

√
2n+1/4 − 21+ n

2 + 1
(iii) # PerInt(F, n) ≥ (2− ε)n for 0 < ε < 1 and sufficiently large n.

Remark 4.5. The estimate given in (ii) is useless for n ≤ 12. In such a case it may
be used that # PerInt(F, n) ≥ 2

√
2

π 2n−
√

2n+1/4− 2. Moreover, for small n the number
of lower saddle n-periodic points of F may be easily found.

The points [4 sin2 π
2n±1 , 0] have period n. It follows from Theorem 3.1 that they

are saddle fixed points of Fn for n ≥ 4 and n ≥ 5 provided we choose the sign + and
−, respectively. So we obtain the following theorem.

Theorem 4.6 ([6]). For any n ≥ 4 there is an interior point Q of the map F with
period n.

The following theorem is also a consequence of Theorem 4.3.

Theorem 4.7. For 1 ≤ n ≤ 36 the third column of Table 1 gives a lower estimate of
# PerInt(F, n).

Note that these estimates, for 1 ≤ n ≤ 36, are much better than those from
Theorem 4.4.

5 Existence and nonexistence of periodic points with prescribed itineraries

Proposition 4.2 says that the lower periodic points may be described by their itineraries.
In this section we prove that for some itineraries interior periodic points need not ex-
ist. It is sufficient to consider itineraries W = (wi)n−1

i=0 with w0 = L and wn−1 = R,
see the proof of Theorem 4.3. We shall write such itineraries in the form W =
Lj1Rk1 . . . LjmRkm , where all ji and ki are positive integers and n = j1 + k1 + . . . +
jm + km.

Now we show that interior fixed points of the map Fn with itineraries containing
too many R’s do not exist.
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Theorem 5.1 ([6]). Let W = Lj1Rk1 · · ·LjmRkm be an itinerary such that ji > 0,
ki > 0 and

m∑
i=1

(ji + ki) = n. If

m∑

i=1
ki ≥

ln 2
ln 3

m∑

i=1
j2
i −

ln(4− 2
√

2)
ln 3

m∑

i=1
ji +m, (5.1)

then there is no interior fixed point of the map Fn with the itinerary W .

The following theorem can be sometimes more useful than the previous one.

Theorem 5.2 ([6]). Let W = Lj1Rk1 · · ·LjmRkm be an itinerary such that ji > 0,
ki > 0 and

m∑
i=1

(ji + ki) = n. If

m∑

i=1
ki ≥

m∑

i=1
j2
i −

ln(4− 2
√

2)
ln 2

m∑

i=1
ji , (5.2)

then there is no interior fixed point of the map Fn with the itinerary W .

On the other hand, the following theorem shows that if an itineraryW of length n
contains sufficiently many L’s then the map Fn has an interior fixed point with this
itinerary.

Theorem 5.3 ([6]). Let W = Lj1Rk1 · · ·LjmRkm be an itinerary such that ji > 0,
ki > 0 and

m∑
i=1

(ji + ki) = n. If

m∑

i=1
ki ≤

ln 2
ln 3

m∑

i=1
j2
i −

ln π2

2
ln 3

m∑

i=1
ji −

ln 32
3π2

ln 3 m, (5.3)

then there exists an interior fixed point of the map Fn with itinerary W .

6 Conclusion and future directions

Many problems concerning periodic points of the Lotka–Volterra map remain open.
On the base of our numerical experiments and Table 1 we formulate the following
conjectures.

Conjecture 6.1. If P ∈ ∆ is a lower repulsive (non-hyperbolic) fixed point of the
map Fn, then there is no interior fixed point of Fn with the same itinerary.

Conjecture 6.2. If P ∈ ∆ is a lower saddle fixed point of Fn, then there is a unique
interior fixed point of Fn with the same itinerary.

Conjecture 6.3.

lim inf
n→∞

# FixInt(Fn)
2n > 0 .

It turns out that the eigenvalue λ2 is related to some open problems in number
theory. In the near future we plan to publish corresponding results.
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1 Introduction

Fuzzy sets were introduced by Zadeh in 1965 [9]. Recall that each fuzzy set in the
universe X is characterized by its membership function A : X → [0, 1] (we will not
distinguish in notation fuzzy sets and their respective membership functions). In
1968, Zadeh has introduced probability measures on fuzzy events. Note that, for a
measurable universe (X,A), A being a σ–algebra of subsets of X, fuzzy events are
just measurable fuzzy sets. For any classical probability measure P on (X,A), the
induced fuzzy probability measure PP (A) = EP (A), where EP is the classical P–based
expected value. An axiomatic approach to fuzzy probability measures was proposed
by Butnariu [4], where the additivity was modelled by means of the Lukasiewicz
t–norm � : [0, 1]2 → [0, 1], a � b = max {a+ b− 1, 0} and of the Lukasiewicz t–
conorm ⊕ : [0, 1]2 → [0, 1], a ⊕ b = min {a+ b, 1}. The main result of [4] shows
∗The research summarized in this paper was supported by the Grants APVV–0073–10, VEGA
1/0143/11 and LPP–0111–09.
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that Zadeh’s fuzzy probability measures coincide with axiomatically defined fuzzy
probability measures.

Atanassov in [2], see also [3], has introduced intuitionistic fuzzy set A : X → [0, 1]2
as a couple of fuzzy sets, A = (B, C), such that B � C = 1 (i.e., B(x) � C(x) ≤ 1
for all x ∈ X). Observe that B � C = 0 if and only if B ≤ 1 − C, and thus the
intuitionistic fuzzy set A can be isomorphically seen as an interval valued fuzzy set
Ã = [B, 1− C] =

[
A, A

]
, where A, A are fuzzy sets satisfying A ≤ A. Clearly, fuzzy

sets can be embedded into interval fuzzy sets, supposing A = A. Grzegorzewski and
Mrówka in 2002 [6] have proposed probability measures on intuitionistic fuzzy sets
generalizing the original Zadeh’s approach from 1968 [10]. Based on a probability
measure P on (X,A), intuitionistic fuzzy probability PP was given as an interval–
valued mapping by

PP ([B,C]) = [EP (B), 1− EP (C)] . (1.1)
Transforming formula (1.1) for interval–valued fuzzy events, we get

PP (A) = PP
([
A, A

])
=
[
EP (A), EP (A)

]
. (1.2)

Riečan in 2004 [7] has proposed an axiomatic characterization of intuitionistic fuzzy
probability measures, and later in [8, 5] has studied the structure of these mappings.

All these results can be easily reformulated for interval–valued fuzzy sets, yielding
more transparent look (event values and probability values are then in both cases
intervals, and thus one can look on these probabilities as a kind of expected values).

The aim of this contribution is an alternative characterization of interval–valued
probability measures of interval–valued fuzzy events on a general measurable space
(X,A). The paper is organized as follows. In the next section, Riečan’s results
are transformed for the interval–valued case. Section 3 brings the main result –
complete characterization of interval–valued probability measures of interval–valued
fuzzy events. In Section 4 results of Riečan are compared with our results and the
convex structure of discussed probabilities is completely determined. Finally, some
concluding remarks are added.

2 Riečan’s results on probability measures on interval–valued fuzzy events

For a measurable space (X,A), denote by J the class of all interval–valued fuzzy
events, J =

{[
A, A

]
| A, A : X → [0, 1] are A−measurable, A ≤ A

}
. Let

J = {[a, b] | 0 ≤ a ≤ b ≤ 1}.
The next definition is a version of the original Riečan’s definition from [7].

Definition 2.1. A mapping P : J → I is called an interval probability measure if
the next axioms are satisfied:

(i) P ([1, 1]) = [1, 1], P ([0, 0]) = [0, 0];
(ii) for any A =

[
A, A

]
, B =

[
B, B

]
, if A�B = 0 then P(A⊕B) = P(A)+P(B),

where A⊕B(x) =
[
A(x)⊕B(x), A(x)⊕B(x)

]
, and + is the standard addition

of intervals;
(iii) if An ↗ A then P(An)↗ P(A).

In [8], Riečan has shown the existence of interval probability measures differing
from those given by (1.2), i.e., he has shown that the probabilistic environment for
interval–valued events is much more richer than that for fuzzy events.
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Theorem 2.2. Let P : A → [0, 1] be a probability measure and let f, g : [0, 1]2 → [0, 1]
be functions. Then the mapping P : J → I given by

P
([
A, A

])
=
[
f
(
EP (A), EP (A

)
, g
(
EP (A), EP (A

)]
(2.1)

is an interval probability measure if and only if f(u, v) = (1−α)u+α v and g(u, v) =
(1− β)u+ β v for some α, β ∈ [0, 1], α ≤ β, i.e., if

P
([
A, A

])
=
[
(1− α)EP (A) + αEP (A), (1− β)EP (A) + β EP (A)

]
. (2.2)

Evidently, Grzegorzewski and Mrówka’s proposal (1.2) corresponds to the case
α = 0 and β = 1, i.e., it is the largest solution of the problem (2.1).

A complete characterization of IFS–probabilities was shown by Theorem 3.1 in
Ciungu and Riečan, 2010 [5]. In interval–valued approach this result can be reformu-
lated as follows.

Theorem 2.3. A mapping P : J → I is an interval probability measure if and only
if there are probability measures P1, R1, R2 : A → [0, 1] and constants β, γ such that
0 ≤ β ≤ γ ≤ 1, β R1 ≤ γ R2, so that

P
([
A, A

])
=
[
EP1(A) + β ER1(A−A), EP1(A) + γ ER2(A−A)

]
. (2.3)

3 An alternative approach to probability measures on interval–valued fuzzy events

We introduce now an alternative approach how to characterize interval–valued prob-
ability measures. Due to their continuity (axiom (iii) in Definition 2.1) it is enough
to consider finite spaces X = {1, . . . , n} and A = 2X only.

Theorem 3.1. Let X = {1, . . . , n} for some n ∈ N and A = 2X . Then a mapping
P : J → I is an interval–valued probability measure if and only if there are probability
measures P,R,Q : A → [0, 1] and constants u, v ∈ [0, 1] such that v Q ≤ uR, so that

P
([
A, A

])
=
[
(1− u)EP (A) + uER(A)− v EQ(A−A) ,
(1− u)EP (A) + uER(A)

]
. (3.1)

Proof. Observe first that each interval–valued fuzzy event A =
[
A, A

]
∈ J can be

seen as an n× 2 matrix A = (aij) such that 0 ≤ ai1 ≤ ai2 ≤ 1, i = 1, . . . , n.
Suppose that P : J → I is an interval–valued probability measure on X. Due to

the additivity (axiom ii in Definition 1) and due to the classical Cauchy equation [1]
it holds

P(A) =


∑

i,j

λij aij ,
∑

i,j

µij aij




for some non–negative constants λij , µij independently of A ∈ J . The boundary
condition P ([1,1]) = [1, 1] forces

∑
i,j λij = 1 =

∑
i,j µij . On the other hand,

denoting Bk =
(
b

(k)
ij

)
the matrix given by b

(k)
ij = δi(k) (Dirac function), we have

[1,1] = B1⊕· · ·⊕Bn and [1, 1] = P ([1,1]) = P(B1)⊕· · ·⊕P(Bn). Then necessarily
P(Bk) is a trivial singleton interval and hence λk1 + λk2 = µk1 + µk2, k = 1, . . . , , n.
Further,
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P
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0 0
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 = [λ12, µ12] ,

i.e., λ12 ≤ µ12 (and hence λ11 ≥ µ11). Similarly, λk2 ≤ µk2 for k = 2, . . . , , n. Denote
u =

∑n
i=1 µi2. Then

∑n
i=1 µi1 = 1− u.

If u = 0, (λ11, . . . , λn1) = (µ11, . . . , µn1) is a probability vector linked to a proba-
bility measure P , v = 0 and P(A) = [EP (A), EP (A)], i.e., (3.1) holds.

If u = 1 then the probability vector (µ12, . . . , µn2) is linked to a probability mea-
sure R, and v =

∑n
i=1 λi1. If v = 0, P(A) =

[
ER(A), ER(A)

]
and (3.1) holds. If

v > 0, the probability vector
(
λi1
v , . . . ,

λin

v

)
is linked to a probability measure Q, and

clearly v Q ≤ R, i.e., (3.1) holds.
Finally, let 0 < u < 1. Then the probability vectors

(
µ11
1−u , . . . ,

µn1
1−u

)
and

(
µ12
u , . . . , µn2

u

)

are linked to probability measures P and R, respectively. If we denote v =
∑n
i=1(µi2−

λi2), evidently v ∈ [0, u]. If v = 0, P(A) =
[
(1− u)EP (A) + uER(A), (1− u)EP (A)+

uER(A)
]
. Finally, if v > 0, we define a probability measure Q by means of a proba-

bility vector
(
µ12−λ12

v , . . . , µn2−λn2
v

)
, so that evidently v Q ≤ R, and (3.1) holds.

On the other hand, if (3.1) holds, it is an easy verification to see that P is an
interval–valued probability measure on X.

As already mentioned, formula (3.1) applies also in the case of a general measurable
space (X,A).

4 Comparison of two different representations of probability measures and their
convex structure on interval–valued fuzzy events

To see the coincidence of formulas (2.3) and (3.1), one should verify the validity (for
all A ∈ J ) of the equality

[
EP1(A) + βER1(A−A), EP1(A) + γER2(A−A)

]
=

=
[
(1− u)EP (A) + uER(A)− vEQ(A−A), (1− u)EP (A) + uER(A)

]
.

Evidently, u = γ and v = γ−β. Moreover, R2 = R (it is enough to consider A = 0
if u > 0). Putting A = 1

2 1S , A = 1S , S ⊆ X, we see that P1 = (1 − u)P + uR.
If v = u, i.e., β = 0, R1 can be chosen arbitrarily. Otherwise, again applying
A = 1

2 1S , A = 1S , S ⊆ X, we see that R1 = uR−v Q
u−v .

Summarizing, we can conclude that the formulas (2.3) and (3.1) fully describe the
same class of all probability measures on interval–valued fuzzy events.

Due to Definition 2.1, it is evident that the class IP of all probability measures of
interval–valued events on a measurable space (X,A) is convex.

Using formula (3.1), each P ∈ IP can be characterized by a pentuple (P,Q,R, u, v),
such that P,Q,R are classical probability measures on (X,A), u, v ∈ [0, 1], v Q ≤ uR.
Let P1,P2 ∈ IP , Pi ∼ (Pi, Qi, Ri, ui, vi), i = 1, 2. Then P = λP1 + (1 − λ)P2 is
characterized by (P,Q,R, u, v), where

P = λ (1− u1)P1 + (1− λ) (1− u2)P2
1− λu1 − (1− λ)u2

,
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R = λu1R1 + (1− λ)u2R2
λu1 + (1− λ)u2

,

Q = λv1Q1 + (1− λ)v2Q2
λv1 + (1− λ)v2

,

u = λu1 + (1− λ)u2,

v = λv1 + (1− λ)v2,

with convention that if u = 0 then R = λR1 +(1−λ)R2, and if v = 0 then Q = λQ1 +
(1 − λ)Q2. Obviously, P,Q,R are probability measures on (X,A), and v Q ≤ uR,
and thus P ∈ IP .

In the case of a finite space X = {1, . . . , n}, the convex class IP has the next
vertices (here Di is the Dirac measure concentrated in point {i}):

Pi ∼ (Di, Dj , Dk, 0, 0), j, k can be chosen arbitrarily, Pi(A) = [ai1, ai1];

Pik ∼ (Di, Dj , Dk, 1, 0), j can be chosen arbitrarily, Pik(A) = [ai1, ai1 + ak2 − ak1];
Pij ∼ (Di, Dj , Dk, 1, 1), k can be chosen arbitrarily, Pij(A) = [ai1+aj2−aj1, ai1+aj2−aj1],
where i, j, k ∈ X. Hence IP has exactly 2n2 + n vertices.

Note that the convex closure of vertices P11, . . . ,Pnnyields just the class of Grze-
gorzewski and Mrówka’s probabilities given by formula (1.2). Riečan’s probabilities
given by formula (2.2) are a convex closure of the vertices P11, . . . ,Pnn,P1, . . . ,Pn,P11,
. . . ,Pnn.
5 Concluding remarks

We have given an alternative look on representation of probability measures on
interval–valued fuzzy events by means of 3 classical probability measures, confirm-
ing the original results of Riečan with co-author. Note that there are several classical
set functions closely related to probability measures, such as belief and plausibility
measures, k–additive capacities, etc. In the further investigation of the measure the-
ory on interval–valued (or intuitionistic–valued) fuzzy events we propose to consider
the above mentioned generalizations of probability measures.
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The following change-of-variables theorem for the Lebesgue integral is standard1.

Theorem 1. Let V ⊂ Rd be an open set and ϕ : V → Rd be a one-to-one C1-mapping
with non-vanishing Jacobian Jϕ. Then

∫

ϕ(V )
h dλd =

∫

V

(h ◦ ϕ)|Jϕ| dλd, h ∈ Cc
(
ϕ(V )

)
. (1)

The proof that we shall describe is based on a smearing technique and uses the follow-
ing standard result on the transformation of Lebesgue measure by linear mappings:
Let ψ : Rd → Rd be a one-to-one linear mapping. Then, for every Lebesgue measur-
able set A ⊂ Rd,

λd
(
ψ(A)

)
= |Jψ| · λd(A). (2)

∗This work is supported by the project MSM 0021620839 financed by MSMT.
1We use the usual terminology and notation: our assumption says that ϕ is a diffeomorphism of V
onto ϕ(V ); λd stands for d-dimensional Lebesgue measure; for U ⊂ Rd open, Cc(U) is the set of all
continuous functions g : U → R such that their support S(g) := {x ∈ U : g(x) 6= 0} is a compact
subset of U .

Copyright c© 2011 Matej Bel University
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Here, of course, Jψ = detψ. It follows immediately from (2) (by integration with
respect to the image measure) that

∫

Rd

(g ◦ ψ) dλd =
(
1/|Jψ|

) ∫

Rd

g dλd, g ∈ Cc(Rd). (3)

Let us fix a positive function ω ∈ Cc(Rd) such that
∫
Rd ω dλd = 1, and, for r > 0,

define

ωr(y) := r−dω(y/r), y ∈ Rd.

For f ∈ Cc(Rd) and r > 0, the convolution of f and ωr is defined by2

f ∗ ωr : x 7→
∫

Rd

f(x− y)ωr(y) dy.

Then f ∗ ωr ∈ Cc(Rd) and, using (3),

(f ∗ ωr)(x)− f(x) =
∫

Rd

(
f(x− rz)− f(x)

)
ω(z) dz, x ∈ Rd.

Since f is uniformly continuous, it follows that

f ∗ ωr → f uniformly on Rd for r → 0 + . (4)
Let V and ϕ be as in the theorem. The following result will be useful.

Lemma 2. For r > 0, let us define

gr : y 7→
∫

V

ωr
(
ϕ(z)− y

)
dz, y ∈ ϕ(V ).

If K ⊂ ϕ(V ) is a compact set, then

lim
r→0+

gr(y) = 1/|Jϕ
(
ϕ−1(y)

)
|, y ∈ K. (5)

Proof. Let us fix a ballB centered at 0 and containing S(ω). Since ϕ−1(K) is compact,
there exists ρ > 0 such that ϕ−1(K) + ρB ⊂ V . Then, for every r ∈ (0, ρ) and every
y ∈ K,

Vr(y) := 1
r

(
V − ϕ−1(y)

)
⊃ B ⊃ S(ω).

An affine change of variables (cf. (3)) yields

gr(y) =
∫

S(ω)
ω
(1
r

(
ϕ(ϕ−1(y) + rt)− ϕ(ϕ−1(y))

))
dt, y ∈ K, r ∈ (0, ρ).

(Here we replaced the integration over Vr(y) by integration over S(ω). For later
use, let us notice that {gr : r ∈ (0, ρ)} is a uniformly bounded family of continuous
functions on K.) By Lebesgue’s Dominated Convergence Theorem,

lim
r→0+

gr(y) =
∫

S(ω)
ω
(
ϕ′(ϕ−1(y))(t)

)
dt,

which, in view of (3), yields (5).
2Sometimes we write, for instance,

∫
A
g(y) dy instead of

∫
A
g dλd.
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Now we shall prove the equality (1). Let h ∈ Cc
(
ϕ(V )

)
and K := S(h). We may

suppose that h is positive. For r > 0, let us define

Ir :=
∫

V×ϕ(V )
h(y)

∣∣Jϕ
(
ϕ−1(y)

)∣∣ωr
(
ϕ(z)− y

)
dz dy

(integration with respect to the product measure λd × λd). By the Fubini theorem,

Ir =
∫

K

h(y)
∣∣Jϕ
(
ϕ−1(y)

)∣∣gr(y) dy.

Obviously, {h|Jϕ ◦ ϕ−1| gr : r ∈ (0, ρ)} is a uniformly bounded family of continuous
functions on K. Applying Lebesgue’s Dominated Convergence Theorem and using
(5) we see that

lim
r→0+

Ir =
∫

K

h(y) dy =
∫

ϕ(V )
h dλd. (6)

Let us define f := h|Jϕ ◦ϕ−1| on ϕ(V ) and f = 0 elsewhere on Rd. Then f ∈ Cc(Rd)
and there exist ξ > 0 and a compact set L ⊂ ϕ(V ) such that S(f ∗ ωr) ⊂ L for every
r ∈ (0, ξ). The Fubini theorem yields

Ir =
∫

ϕ−1(L)
(f ∗ ωr)

(
ϕ(z)

)
dz, r ∈ (0, ξ).

By (4) and Lebesgue’s Dominated Convergence Theorem it follows that

lim
r→0+

Ir =
∫

ϕ−1(L)
f
(
ϕ(z)

)
dz =

∫

V

f
(
ϕ(z)

)
dz =

∫

V

(h ◦ ϕ)|Jϕ| dλd, (7)

since S(f) ⊂ L. Now (1) follows from (6) and (7) and this finishes the proof.

Comments.

1. The proof of the integral calculus version of the change-of-variables formula is
based on smearing of the value of f

(
ϕ(z)

)
on small neighbourhoods. I learned this

approach from Professor A. Cornea3 some twenty years ago; cf. [3]. It seems that
this method of proof does not appear in textbooks on integration and, in my opinion,
deserves to be better known. Cornea’s proof provides the inequality ≤ in (1), which,
of course, is sufficient in view of the symmetry of ϕ and ϕ−1. In our proof we establish
the equality (6) instead of the inequality

∫

ϕ(V )
h dλd ≤ lim inf

r→0+
Ir

obtained by Fatou’s Lemma.
3Aurel Cornea (1933–2005) was born in Romania. At the age of 14 he had an accident during a
chemical experiment and lost his eyesight. He studied mathematics and completed his Ph.D. thesis
under S. Stoilow. He worked at the University of Bucharest and the Academy of Sciences. In 1978
he left Romania. After short stays in Canada and USA, he spent the rest of his life in Germany. In
1980, he was appointed as a professor at the Katholische Universität Eichstätt. Aurel Cornea was
a distinguished specialist in potential theory, an excellent scientist, and an exceptional man. For
further information, see [32].
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2. Clearly, (1) holds for much more general functions h. To see this, one can first
deduce from (1) the equality

λd
(
ϕ(A)

)
=
∫

A

|Jϕ| dλd (8)

for every Lebesgue measurable set A ⊂ V . (In particular, the mapping ϕ has the
N -property, which means that the image of every set of zero measure is also of zero
measure.) The equality (8) can be shown, for instance, using a Lusin’s Theorem type
of argument; see Corollary to Theorem 2.24 in [26]. Then integration with respect
to the image measure shows that the integral of a function h over ϕ(V ) exists if and
only if the integral of (h ◦ ϕ)|Jϕ| over V exists, and we have the equality (1).

3. The equality (2) is usually proved using a factorization of the linear mapping and
the multiplicative property for determinants; see, for instance, [5], [6], [9], [10], [18],
[21], [26]. Group theoretical arguments are used in [4]. An approach based on Fubini’s
theorem is employed in [29].

4. The calculus version of the change-of-variables formula has a long history and is
connected with names such as L. Euler, J.-L. Lagrange, S. Laplace, C. F. Gauss, M.
Ostrogradski, C. Jacobi and others; see [16]. For various methods of proofs one may
consult [2], [3], [9], [10], [15], [18], [19], [20], [21], [27], [28], [29].

5. Of course, the conditions imposed on ϕ may be substantially weakened in various
respects. This issue is discussed in numerous textbooks as well as articles. Let us
mention at least some references: [12], [14], [24], [25], [26], [31].

6. It turns out that the change-of-variables formula is a very special case of the
so-called area theorem, which has been extensively studied in various degrees of gen-
erality in the setting of geometric measure theory. As a sample, we list the following
books and papers: [1], [7], [8], [10], [11], [13], [17], [22], [23], [30], [33].
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1 Introduction

Consider a parametric family of probability distributions

{Px, x ∈ E}
on a sample space (Ω,F), where E will be a separable metric space, if not stated
otherwise. Its Borel σ-algebra is denoted as B(E). A sequence of random variables
Xn : Ω→ E such that

Xn → x in Px probability for all x ∈ E
and

Xn → x Px − almost surely for all x ∈ E
is called a weak and strong estimator of the parameter x, respectively.
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Recall that a sequence of E-valued random variables Xn converge to an E-valued
random variable X in P -probability if

lim
n
P [d(Xn, X) ≥ ε] = 0 ∀ε > 0, (1.1)

where d is an equivalent metric for E. A useful equivalent definition is stated by

Theorem 1.1 (Riesz theorem [3, Lemma 4.2]). The convergence (1.1) holds if and
only if every increasing sequence of natural numbers (nk) has an subsequence (nkj

)
such that

lim
j→∞

Xnkj
= X P − almost surely.

Hence, for arbitrary x ∈ E there exists an increasing subsequence of natural numbers
nk(x) such that

Xnk(x) → x Px − almost surely.

Provided that S ⊂ E is at most countable set we are able to apply Riesz theorem
and the diagonal Helly’s procedure to construct a subsequence (nk) such that

lim
k→∞

Xnk
= x Px − almost surely for all x ∈ S.

Unfortunately, such an universal subsequence (nk) is not available generally as we
shall see later on. However, we might be inclined to believe that for arbitrary weak
estimator Xn there are transformations gn(x1, . . . , xn) : En → E such that

gn(X1, X2, . . . , Xn)→ x Px − almost surely x ∈ E.
Unfortunately, this is not a true statement, again (see Example 2.5 in Section 2).

We prefer to state our problem in a probabilistic setting. Assume for a while that
E is a Borel set in a Polish metric space, especially a separable metric space.
Given a family of probability measures {Px, x ∈ E} and a sequence of estimators
X = (X1, X2 . . . ) then by Borel isomorphism theorem (see [3, Theorem 8.3.6]) there
is an universal probability space (Ω,F , P ) and EN-valued random sequences

Xx = (Xx
1 , X

x
2 , . . . ) : (Ω,F)→ (EN,B(EN)), x ∈ E

such that

L(X |Px) = L(Xx |P ) ∀x ∈ E, (1.2)

where L(X |P ) denotes the Borel probability distribution of a sequence X on the space
EN w.r.t. the measure P . Thus, we may, in this case, operate with one probability
measure P and a set of sequences of random variables that are convergent in P -
probability because (1.2) implies that Xn → x in Px-probability iff Xx

n → x in
P -probability.

Remark that the Lebesgue interval [0, 1] is a space rich enough to be suitable as
an universal probability space to allow the above construction.

Denote by E(E) the space of all sequences X = (X1, X2, . . . ) of E-valued random
variables Xn that are convergent in probability to a limit denoted as p(X). Our
problem is then stated as follows:
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Which are the subsets F of E(E) such that it is possible to identify the probability
limit p(X) for all X ∈ F almost surely?

An adapted (Borel) identification for F (a concept perhaps more suitable for
the needs of statistics) requires the existence of (Borel) gn(x1, x2, . . . , xn) : En → E
transforms such that

gn(X1, X2, . . . , Xn)→ p(X) almost surely ∀X = (X1, X2 . . . ) ∈ F .

A humble probabilist might be perhaps satisfied with the existence of a (Borel) map
f(x1, x2, . . . ) : EN → E such that

f(X1, X2, . . . ) = p(X) almost surely ∀X = (X1, X2 . . . ) ∈ F ,
the map f being called a (Borel) probability limit identification function
(PLIF) for F .

Observe that if gn(x1, x2, . . . , xn) define an adapted (Borel) identification, then

f(x1, x2, . . . ) = lim sup
n

gn(x1, x2, . . . , xn)

is a (Borel) PLIF for F .
2 PLIFs - the present state of art

If F is a countable subset of E(E) (E a separable metric space) , then Riesz theorem
yields an universal subsequence of natural numbers n1 < n2 < . . . such that

Xnk
→ p(X) almost surely ∀X = (X1, X2, . . . ) ∈ F .

and therefore there is an adapted Borel identification for F , hence also a Borel PLIF
for F .

P. Kříž in [4] proved a deeper statement

Theorem 2.1. Let E be a separable metric space and F a subset of E(E) such that
there is a Borel σ-finite measure µ on E that dominates all probability distributions
in

P(F) = {PX, X ∈ F}, i.e. PX � µ ∀X ∈ F . (2.1)

Then there exists a Borel adapted identification, hence a Borel PLIF for F .

We have denoted by PX the probability distribution of the sequence X defined as

PX(B) = P [X ∈ B], B ⊂ EN a Borel set.

Proof is an application of a well known theorem that states that any set P of proba-
bility measures on a countably generated σ-algebra (B(EN) in our case) that is dom-
inated in sense of (2.1) is separable w.r.t. the total variation metric (see [7, Theorem
A.4.1]).

To construct sets F ⊂ E(E) that satisfy (2.1) might not be a very easy task.

Example 2.2. Consider E = {0, 1} that provides EN = {0, 1}N as a compact Abel
group with the Haar probability measure µ = PY, where Y = (Y1, Y2, . . . ) is a sequence
of i.i.d. random variables with P [Yn = 0] = P [Yn = 1] = 1/2. Then
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PX ⊥ µ ∀X ∈ E({0, 1}).
Indeed, having a sequence X = (X1, X2, . . . ) of 0 − 1 random variables that is con-
vergent in probability then there is a subsequence r = (r1 < r2 < . . . ) such that
PX(Ar) = 1, where

Ar := {x = (x1, x2 . . . ) ∈ {0, 1}N : lim
k→∞

xrk
exists}.

On the other hand, µ(Ar) = 0 by Kolomogoroff 0-1 law.

A good space to start with is E({0, 1}) of all sequences of 0-1 random variables that
converge in probability. Its important subset is

H = {X ∈ E({0, 1}) : p(X) = 1 or 0}.
It is a good space because of

Theorem 2.3 (G. Simons (1971)). If there is a (Borel) PLIF for H then there is a
(Borel) PLIF for E([0, 1]).

We recapitulate shortly the Simon’s proof. Consider X ∈ E([0, 1]) and a ∈ [0, 1].
Put

Xa =
(
I[X1<a], I[X2<a], . . .

)
and Ya =

(
I[X1<a, p(X)>a], I[X2<a, p(X)>a], . . .

)
.

Note that

Ya ∈ H with p(Y) = 0 almost surely.

So if f(x1, x2, . . . ) is a PLIF for H, then outside a P -null set and all rational numbers
a ∈ [0, 1]

p(X) > a ⇒ f(Xa) = f(Ya) = p(Ya) = 0

and by a symmetry,

p(X) < a ⇒ f(Xa) = 1

hold. Define a g : [0, 1]N → [0, 1] by

g(x) := sup{a ∈ Q ∩ [0, 1] such that f(xa) = 0}, x = (x1, x1, . . . ) ∈ [0, 1]N,

where xa = (xa1 , xa2 , . . . ) and xan = I[xn<a]. It follows that outside a P -null set and for
all rational numbers 0 ≤ a < b ≤ 1

a < p(X) < b ⇒ a < g(X) < b.

Hence, p(X) = g(X) almost surely. If f is a (Borel) PLIF for H, then g is a (Borel)
PLIF for E([0, 1]).

We complement slightly the above result.

Corollary 2.4. If there is a (Borel) PLIF for H then there is a (Borel) PLIF for
E(E) where E is arbitrary separable metric space.
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Proof. By Theorem 2.3 we may assume that there is a (Borel) PLIF f(x1, x2, . . . ) for
E([0, 1]). It follows that

fN(x1, x2, . . . ) := (f(x1), f(x2), . . . ), where xn ∈ [0, 1]N

defines a (Borel) PLIF for E([0, 1]N). Hence, there exists a (Borel) PLIF for E(F )
where F ⊂ [0, 1]N is arbitrary subset. The proof is concluded by Urysohn Theorem
that states that any separable metric space E is homeomorphic to a subset of the
Urysohn’s cube [0, 1]N.

Obviously, the space H deserves our attention. We construct its subset H∗ as
follows:

Example 2.5 (G.Simons (1971)). Pick up a sequence

Y = (Y1, Y2, . . . ) of independent 0-1 random variables such that

lim
n
P [Yn = 1] = 0 or 1 (⇒ Y ∈ H).

Also, choose a sequence of natural numbers r = (r1 < r2 < . . . ) and define X =
X(Y, r) as

1 2 . . . . . . r1 r1 + 1 r1 + 2 . . . . . . r2 r2 + 1 r2 + 2 . . . . . .
X = Y1 Y1 . . . . . . Y1 Y2 Y2 . . . . . . Y2 Y3 Y3 . . . . . .

Finally, denote by H∗ the set of all sequences constructed in the above manner. We
state that there is no adapted identification of probability limit for H∗H∗H∗. G.
Simons reasons as follows. Assume that there are gn(x1, x2, . . . , xn) : {0, 1}n → {0, 1}
such that

gn(X1, X2, . . . , Xn)→ p(X) almost surely ∀X = (X1, X2, . . . ) ∈ H∗.

For a fixed j ∈ N choose a sequence of independent r.v.’s Y = (Y1, Y2, . . . ) such that

P [Yk = 1] ∈ (0, 1) if k ≤ j and P [Yk = 1] = 0 if k > j.

Note that

g1(Y1), . . . , gj(Y1, . . . , Yj), . . . , gm(Y1, . . . , Yj , Yj+1, . . . , Ym), . . .

is a sequence that converges to p(Y) = 0 almost surely and is almost surely one of
the 2j sequences

g1(x1), . . . , gj(x1, . . . , xj), . . . , gm(x1, . . . , xj , 0, . . . , 0), (x1, . . . , xj) ∈ {0, 1}j .

Hence, there is an mj such that for all m ≥ mj and (x1, . . . , xj) ∈ {0, 1}j

gm(x1, . . . , xj , 0, . . . , 0) = 0 (2.2)

and by a symmetry
gm(x1, . . . , xj , 1, . . . , 1) = 1. (2.3)

holds.
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Finally, choose a sequence of independent r.v.’s Y = (Y1, Y2, . . . ) ∈ H∗ such that
∞∑

1
P [Yn = 0] =∞ and

∞∑

1
P [Yn = 1] =∞

and put X = X(Y, r), where r = (r1 < r2 < . . . ). The Borel-Cantelli 0-1 law states
that the X owns infinitely many strings of zeros and infinitely many strings of ones.
If the sequence r = (r1, r2, . . . ) grows rapidly enough (perhaps as rk+1 ≥ mrk

), then
according to (2.2) and (2.3).

P [grk+1(X1, . . . , Xrk
, Xrk+1, . . . Xrk+1) = 0, ∞× k] = 1, (2.4)

P [grk+1(X1, . . . , Xrk
, Xrk+1, . . . Xrk+1) = 1, ∞× k] = 1. (2.5)

Hence, a contradiction.

Example 2.6 (G. Simons (1971)). An interesting subset of H∗ is H∗∗ = {X(Y, r)}
defined by

p(Y) = 1 ⇒ almost all rk even (2.6)
p(Y) = 0 ⇒ almost all rk odd.

We state that there is no adapted identification for the probability limit
for H∗∗ (to be applied the same reasoning as in Example 2.5), but there is a Borel
PLIF for H∗∗. For the proof of the latter statement we are indebted to P. Kříž (2012).

We denote by N0 the set of sequences in {0, 1}N that converge to zero and by N1
the set of those that converge to one. Note that N := {0, 1}N \ (N0 ∪ N1) is the set
of all sequences with an infinite number of changes. Put

N even := {the sequences in N with at most finite changes in the even coordinates}
N odd := {the sequences in N with at most finite changes in the odd coordinates}.

Note that the sets N0, N1, N odd, N even are paire-wise disjoint.
It follows by Borel-Cantelli 0-1 law that a sequence Y of independent 0-1 random

variables is either convergent almost surely or owns infinitely many ones and infinitely
zeros. Hence, for any X = X(Y, r) ∈ H∗∗

p(X) = 1 ⇒ X ∈ N1 ∪N odd

p(X) = 0 ⇒ X ∈ N0 ∪N even

holds almost surely. It follows that

f(x) = 1 if x ∈ N1 ∪N odd, f(x) = 0 if x ∈ N0 ∪N even,

f(x) = 0 else

defines a Borel PLIF for H∗∗.
A very deep and rather conclusive is a result of D. Blackwell (1980).
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Theorem 2.7. There is no Borel PLIF for the set

H := {X ∈ E(0, 1) : p(X) = 1 OR p(X) = 0}.

A straightforward implication is

Corollary 2.8. There is no Borel PLIF for E(E) whenever E is a separable metric
space with card(E) ≥ 2.

The Blackwell’s sophisticated proof goes along the following lines:
Assume that f(x1, x2, . . . ) is a Borel PLIF for H. We may assume w.l.g. that f

is the indicator of a tail Borel set C ⊂ {0, 1}N which means that it is a Borel set such
that

x = (x1, x2, . . . ) ∈ C, y = (y1, y2, . . . ) ∈ {0, 1}N,
xk = yk, k ≥ n for some n ∈ N ⇒ y ∈ C

holds. By Oxtoby’s category 0-1 law [8, Theorem 21.4] either C or {0, 1}N \ C is a
set of the first category which means that the other set contains a Gδ set H such that
H = {0, 1}N. Assume that H ⊂ C. The corner stone of the proof is a lemma that says
that for arbitrary dense Gδ-set H there is a sequence of 0-1 r.v.’s X = (X1, X2, . . . )
such that

P [X ∈ H] = 1 and p(X) = 0 almost surely,
hence, a contradiction with f(X) = 1.

Surprisingly, skipping the measurability requirement for PLIF’s and allowing the
continuum hypothesis we have all the PLIFs we might need.

Theorem 2.9. Let E be a separable metric space. Then, under the continuum hy-
pothesis, there exists a PLIF for E(E). In other words, there is a map f : EN → E
such that

f(X) = p(X) almost surely
for all sequences X of E-valued r.v.’s that converge in probability.

Theorem was first proved in 1973 in [10] for E = R and generalized to separable
metric spaces in 2010 in [4]. We shall propose a new and more straightforward proof
of the theorem in the coming Section.

3 Proof of Theorem 2.9

First, we employ the continuum hypothesis to prove that there is a PLIF for the set

H = {X ∈ E({0, 1}) : p(X) = 1 or 0}.
What we have to prove is that there exits a set C ⊂ {0, 1}N such that

X ∈ H, p(X) = 1 ⇒ X ∈ C almost surely

and

X ∈ H, p(X) = 0 ⇒ X /∈ C almost surely.



50 Josef Štěpán

This is as to say that that there exists a set C ⊂ {0, 1}N such that

µ ∈M1 ⇒ µ∗(C) = 1, µ ∈M0 ⇒ µ∗({0, 1}N \ C) = 1, (3.1)

where we have denoted

M1 = {PX, X ∈ H, p(X) = 1}, M0 = {PX, X ∈ H, p(X) = 0}.
Note that card(M1) = card(M0) = c. Hence, the continuum hypothesis allows to
enumerate the setM1 as

M1 = {µα, α < Ω},
where Ω denotes the first uncountable ordinal number. Further, by the transfinite
construction we get a net

r(α) = (r1(α) < r2(α) < . . . ), α < Ω
of sequences of natural numbers such that µα(Aα) = 1 holds for all α < Ω, where

Aα := {x = (x1, x2, . . . ) ∈ {0, 1}N : lim
n→∞

xrn(α) = 1}

and such that

α < β ⇒ r(β) is a subsequence of r(α).
The steps of the transfinite construction are performed as follows:

If α is an isolated ordinal, then α = β + 1 for some β < α and r(α) is constructed
as a subsequence of r(β) by means of Riesz theorem If α is a limit ordinal number,
then there are β1 < · · · < βn · · · < α such that α = supn βn. Then, r(α) is received as
a subsequence of all r(βn) sequences by Riesz theorem, again. Observe that {Aα, α <
Ω} is an increasing net and put C :=

⋃
α<ΩAα. Then

µα∗ (C) = 1 ∀α < Ω
and the former implication in (3.1) is satisfied.

Define by

T (x1, x2, . . . , xn, . . . ) = (1−x1, 1−x2, . . . , 1−xn, . . . ), (x1, x2, . . . , xn, . . . ) ∈ {0, 1}N

a homeomorphic map {0, 1}N → {0, 1}N and observe that if X ∈ H then

p(X) = 1 ⇐⇒ p(TX) = 0.
Hence,

M0 = {να := T ◦ µα, α < Ω},
where the measure µ ◦ T is defined on the Borel σ-algebra of {0, 1}N by (T ◦ µ)(B) =
µ(T−1B). Obviously, C ∩ T (C) = ∅ since

x ∈ Aα, T(x) ∈ Aβ (say that α < β) ⇒ x ∈ Aβ ∩ T (Aβ) = ∅.
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Finally, note that

να (TAα) = µα(Aα) = 1 ⇒ να∗
(
{0, 1}N \ C

)
= 1, ∀α < Ω

verifies the latter implication in (3.1) and f = IC defines a PLIF for the set H.
To conclude the proof of Theorem 2.9 apply Corollary 2.4.
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1 Introduction

One of the most important measures are distances which are widely used both in
theoretical considerations and for practical purposes in many areas. It is not possible
to overestimate their importance also in the context of fuzzy sets (Zadeh [45]) or
their generalizations, eg., the A-IFSs. Distances are necessary in analyses related
to the entropy, similarity, when making group decisions, calculating degrees of soft
consensus, in classification, pattern recognition, etc.
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Distances between the A-IFSs are calculated in the literature in two ways, using
two terms only, i.e. the degree of membership and non-membership (e.g., Atanassov [4])
or all three terms. i.e. the membership and non-membership degrees and the hesi-
tation margin (e.g., Szmidt and Kacprzyk [28], [35], Tasseva et al. [43], Atanassov et
al. [5], Szmidt and Baldwin [22], [23], Deng-Feng [8], Tan and Zhang [42], Narukawa
and Torra [13])). Mathematically, both ways are correct from the point of view of just
the formal conditions concerning distances (all properties are fulfilled in both cases).
However, when semantics come to play, one cannot say that both ways are equal when
assessing the results obtained by the two approaches. In this paper we will consider
one of such situations related to the calculating a Hausdorff distance using the two
approaches to represent the A-IFSs.

The Hausdorff distances (cf. Grünbaum [9]) play an important role in practi-
cal applications, notably in image matching, image analysis, motion tracking, visual
navigation of robots, computer-assisted surgery and so on (cf. e.g., Huttenlocher et
al. [10], Huttenlocher and Rucklidge [11], Olson [14], Peitgen et al. [15], Rucklidge [17]-
[21]). The definition of the Hausdorff distances is simple but the calculations needed
to solve the real problems are complex. As a result the efficiency of the algorithms
for computing the Hausdorff distances may be crucial and the use of some approxi-
mations may be relevant and useful (e.g, Aichholzer [1], Atallah [2], Huttenlocher et
al. [10], Preparata and Shamos [16], Rucklidge [21], Veltkamp [44]).

The formulas proposed for calculating the distances should first of all be formally
correct. It is the motivation of this paper. Namely, we consider the results of using the
Hamming distances between the A-IFSs calculated in two possible ways - taking into
account the two term representation (the membership and non-membership values)
of A-IFSs, and next - taking into account the three term representation (the mem-
bership, non-membership values, and hesitation margin) of A-IFSs. We will verify if
the resulting distances fulfill the properties of the Hausdorff distances.

We also consider the problem of calculating the Hausdorff distance based on the
Hamming metric for the interval-valued fuzzy sets. We prove that the formulas that
are effective and efficient for interval-valued fuzzy sets do not work well in the case of
A-IFSs.

2 Brief introduction to the A-IFSs

One of the generalizations of a fuzzy set in X (Zadeh [45]) , given by

A
′

= {< x, µA′ (x) > |x ∈ X} (2.1)

where µA′ (x) ∈ [0, 1] is the membership function of the fuzzy set A′ , is the intuition-
istic fuzzy set, or A-IFS, for short (Atanassov [3], [4]) A given by

A = {< x, µA(x), νA(x) > |x ∈ X} (2.2)

where: µA : X → [0, 1] and νA : X → [0, 1] such that

0<µA(x) + νA(x)<1 (2.3)

and µA(x), νA(x) ∈ [0, 1] denote a degree of membership and a degree of non-
membership of x ∈ A, respectively. These degrees may be specified in different ways,
and a constructive approach is given by Szmidt and Baldwin [24].

Obviously, each fuzzy set may be represented by the following A-IFS

A = {< x, µA′ (x), 1− µA′ (x) > |x ∈ X} (2.4)
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An additional concept for each A-IFS in X, that is not only an obvious result of (2.2)
and (2.3) but which is also relevant for applications, is

πA(x) = 1− µA(x)− νA(x) (2.5)
a hesitation margin (an intuitionistic fuzzy index) of x ∈ A which expresses a lack of
knowledge of whether x belongs to A or not (cf. Atanassov [4]). It is obvious that
0<πA(x)<1, for each x ∈ X.

The hesitation margin turns out to be important while considering the distances
(Szmidt and Kacprzyk [26], [28], [35], entropy (Szmidt and Kacprzyk [31], [38]), sim-
ilarities (Szmidt and Kacprzyk [39]), etc. i.e., measures that play a crucial role in
virtually all information processing tasks.

Also, from the point of view of the applications, the hesitation margin is crucial in
many areas exemplified by image processing (cf. Bustince et al. [6], [7]), classification
of imbalanced and overlapping classes (cf. Szmidt and Kukier [37], [40], [41]), group
decision making, negotiations, voting and other situations (cf. Szmidt and Kacprzyk
[25], [27], [29], [30], [32], [33], [34], [36]).

In other words, the three term representation of the A-IFSs (taking into account
the membership values, non-membership values, and hesitation margins) has already
proved to play important role both from the theoretical point of view and applications.

2.1 Distances Between the A-IFSs
In Szmidt and Kacprzyk [28], [35], Szmidt and Baldwin [22], [23], it is shown why
in the calculation of distances between the A-IFSs one should use all three terms
describing them. Examples of the distances between any two A-IFSs A and B in X =
{x1, x2, . . . , xn} while using the three term representation (Szmidt and Kacprzyk
[28], Szmidt and Baldwin [22], [23]) may be as follows:
• the normalized Hamming distance:

lIF S(A,B) = 1
2n

n∑

i=1
(|µA(xi)− µB(xi)|+

+ |νA(xi)− νB(xi)|+ |πA(xi)− πB(xi)|) (2.6)

• the normalized Euclidean distance:

eIF S(A,B) = ( 1
2n

n∑

i=1
(µA(xi)− µB(xi))2+

+ (νA(xi)− νB(xi))2 + (πA(xi)− πB(xi))2) 1
2 (2.7)

The values of both distances are from the interval [0, 1].
The counterparts of the above distances while using the two term representation

of A-IFSs are:
• the normalized Hamming distance:

l
′
(A,B) = 1

2n

n∑

i=1
(|µA(xi)− µB(xi)|+ |νA(xi)− νB(xi)|) (2.8)

• the normalized Euclidean distance:

q
′
(A,B) = ( 1

2n

n∑

i=1
(µA(xi)− µB(xi))2 + (νA(xi)− νB(xi))2) 1

2 (2.9)
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3 The Hausdorff distance

The Hausdorff distance is the maximum distance of a set to the nearest point in the
other set. More formal description is given by the following

Definition 3.1. Given two finite sets A = {a1, ..., ap} and B = {b1, ..., bq}, the
Hausdorff distance H(A,B) is defined as:

H(A,B) = max{h(A,B), h(B,A)} (3.1)

where
h(A,B) = max

a∈A
min
b∈B

d(a, b) (3.2)

where:
– a and b are elements of sets A and B respectively,
– d(a, b) is any metric between these elements,
– the two distances h(A,B) and h(B,A) (3.2) are called the directed Hausdorff dis-
tances.

The function h(A,B) (the directed Hausdorff distance from A to B) ranks each
element of A based on its distance to the nearest element of B, and then the highest
ranked element specifies the value of the distance. In general h(A,B) and h(B,A)
can be different values (the directed distances are not symmetric).

From Definition 3.1 it follows, that if A and B contain one element each (a1 and
b1, respectively), the Hausdorff distance is just equal to d(a1, b1). In other words,
if a formula which is expected to express the Hausdorff distance gives for separate
elements the results not consistent with the used metric d (e.g., the Hamming distance,
the Euclidean distance, etc.), the formula considered is not a proper definition of the
Hausdorff distance.

3.1 The Hausdorff distance between the interval-valued fuzzy sets
The Hausdorff distance between two intervals: U = [u1, u2] and W = [w1, w2] is
(Moore [12]):

h(U,W ) = max{|u1 − w1|, |u2 − w2|} (3.3)
Assuming the two-term representation for the A-IFSs: A = {x, µA(x), νA(x)} and

B = {x, µB(x), νB(x)}, we may consider the two A-IFSs, A and B, as two intervals,
namely:

[µA(x), 1− νA(x)] and [µB(x), 1− νB(x)] (3.4)

then
h(A,B) = max{|µA(x)− µB(x)|, |νA(x)− νB(x)|} (3.5)

We will verify later if (3.5) is a properly calculated Hausdorff distance between the
A-IFSs while using the Hamming metric.

3.2 Two term representation of A-IFSs and the Hausdorff distance (Hamming
metric)

Due to the algorithm of calculating the directed Hausdorff distances, when applying
the two term type distance (2.8) for the A-IFSs, we obtain:

dh(A,B) = 1
n

n∑

i=1
max{|µA(xi)− µB(xi)| , |νA(xi)− νB(xi)|} (3.6)
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If the above distance is a properly calculated Hausdorff distance, in the case of
degenerated, i.e., one-element sets A = {< x, µA(x), νA(x) >} and B = {< x,
µB(x), νB(x) >}, it should give the same results as the the two term type Ham-
ming distance. It means that in the case of the two term type Hamming distance, for
degenerated, one element A-IFSs, the following equations should give just the same
results:

l
′
(A,B) = 1

2(|µA(x)− µB(x)|+ |νA(x)− νB(x)|) (3.7)

dh(A,B) = max{|µA(x)− µB(x)| , |νA(x)− νB(x)|} (3.8)

where (3.7) is the normalized two term type Hamming distance, and (3.8) should be
its counterpart Hausdorff distance.

We will verify on a simple example if (3.7) and (3.8) give the same results as they
should do following the essence of of the Hausdorff measures.

Example 1
Let consider the following one-element A-IFSs: A, B, ∈ X = {x}

A = {< x, 1, 0 >}, B = {< x,
1
4 ,

1
4 >} (3.9)

The result obtained from (3.8) is:

dh(A,B) = max{|1− 1/4|, |0− 1/4|} = 0.75

The counterpart Hamming distance calculated from (3.7) is:

l
′
(A,B) = 0.5(|1− 1/4|+ |0− 1/4||) = 0.5

i.e. the value of the Hamming distances (3.7) used to propose the Hausdorff measure
(3.8), and the value of the resulting Hausdorff distance (3.8) calculated for the separate
elements are not consistent (as they should be).

Now we will show that the inconsistencies as shown above occur for an infinite
number of other cases.

Let us verify the conditions under which the equation (3.7) and (3.8) give the
consistent results, i.e., when for the separate elements we have

1
2(|µA(x)− µB(x)|+ |νA(x)− νB(x)|) =

= max{|µA(x)− µB(x)| , |νA(x)− νB(x)|} (3.10)

Having in mind that
µA(x) + νA(x) + πA(x) = 1 (3.11)

µB(x) + νB(x) + πB(x) = 1 (3.12)

from (3.11) and (3.12) we obtain

(µA(x)− µB(x)) + (νA(x)− νB(x)) + (πA(x)− πB(x)) = 0 (3.13)

It is easy to verify that (3.13) is not fulfilled for all elements belonging to an A-
IFSs but for some elements only. The following conditions guarantee that (3.10) is
fulfilled
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• for πA(x)− πB(x) = 0, from (3.13) we have

|µA(x)− µB(x)| = |νA(x)− νB(x)| (3.14)

and taking into account (3.14), we can express (3.10) in the following way:

0.5(|µA(x)− µB(x)|+ |µA(x)− µB(x)|) =
= max{|µA(x)− µB(x)| , |µA(x)− µB(x)|} (3.15)

• if πA(x)− πB(x) 6= 0 but the same time

µA(x)− µB(x) = νA(x)− νB(x) = −1
2(πA(x)− πB(x)) (3.16)

guarantee that (3.10) boils down again to (3.15).

In other words, (3.10) is fulfilled (which means that the Hausdorff measure given
by (3.8) is a natural counterpart of (3.7) ) only for such elements belonging to an
A-IFS, for which some additional conditions are given, like πA(x) − πB(x) = 0 or
(3.16). But in general, for an infinite numbers of elements, (3.10) is not valid.

In the above context it seems to be a bad idea to try constructing the Hausdorff
distance using the two term type Hamming distance between the A-IFSs.

An immediate conclusion is that, relating to the results from Section 3.1, the
Hausdorff distance for the A-IFSs can not be constructed in the same way as for the
interval-valued fuzzy sets.

3.3 A straightforward generalizations of the Hamming distance
based on the Hausdorff metric

Now we will show that applying the three term type Hamming distance for the A-IFSs,
we obtain correct (in the sense of Definition 3.1) Hausdorff distance.

Namely, if we calculate the three term type Hamming distance between two degen-
erated, i.e. one-element A-IFSs, A and B in the spirit of Szmidt and Kacprzyk [28],
[35], Szmidt and Baldwin [22], [23], i.e., in the following way:

lIF S(A,B) = 1
2(|µA(x)− µB(x)|+ |νA(x)− νB(x)|+

+ |πA(x)− πB(x)|) (3.17)

we can give a counterpart of the above distance in terms of the max function:

H3(A,B) = max{|µA(x)− µB(x)| , |νA(x)− νB(x)| ,
, |πA(x)− πB(x)|} (3.18)

If H3(A,B) (3.18) is a properly specified Hausdorff distance (in the sense that for two
degenerated, one element A-IFS the result is equal to the metric used), the following
condition should be fulfilled:

1
2(|µA(x)− µB(x)|+ |νA(x)− νB(x)|) + |πA(x)− πB(x)|) =

= max{|µA(x)− µB(x)| , |νA(x)− νB(x)| , |πA(x)− πB(x)|} (3.19)

Let us verify if (3.19) is valid. Without loss of generality we can assume

max {|µA(x)− µB(x)| , |νA(x)− νB(x)| , |πA(x)− πB(x)|} =
= |µA(x)− µB(x)| (3.20)



Acta Univ. M. Belii, ser. Math. 19 (2011), 53–62 59

For |µA(x)− µB(x)| fulfilling (3.20), and because of (3.11) and (3.12), we conclude
that both νA(x) − νB(x), and πA(x) − πB(x) are of the same sign (both values are
either positive or negative). Therefore

|µA(x)− µB(x)| = |νA(x)− νB(x)|+ |πA(x)− πB(x)| (3.21)
Applying (3.21) we can verify that (3.19) always is valid as

0.5{|µA(x)− µB(x)|+ |µA(x)− µB(x)|} =
= max{|µA(x)− µB(x)| , |νA(x)− νB(x)| , |πA(x)− πB(x)|} =
= |µA(x)− µB(x)| (3.22)

Now we will use the above formulas (3.17) and (3.18) for the data used in Exam-
ple 1. But now, as we also take into account the hesitation margins π(x) (2.5), instead
of (3.9) we use the three term, “full” description of the data {< x, µ(x), ν(x), π(x) >},
i.e. employing all three functions (the membership, non-membership and hesitation
margin) describing the considered A-IFSs:

A = {< x, 1, 0, 0 >}, B = {< x,
1
4 ,

1
4 ,

1
2 >} (3.23)

and obtain from (3.18):
H3(A,B) = max(|1− 1/4|, |0− 1/4|, |0− 1/2|) = 0.75

Now we calculate the counterpart Hamming distances using (3.17) (with all three
functions). The results are

lIF S(A,B) = 0.5(|1− 1/4|+ |0− 1/4|+ |0− 1/2|) = 0.75
As we can see, the Hausdorff distance (3.18) proposed in this paper (using the mem-
berships, non-memberships and hesitation margins) and the Hamming distance (3.17)
give for one-element IFS sets fully consistent results. The same situation occurs in a
general case too.

In other words, for the normalized Hamming distance expressed in the spirit of
(Szmidt and Kacprzyk [28], [35]) given by (2.6) we can give the following equivalent
representation in terms of the max function:

H3(A,B) = 1
n

n∑

i=1
max {|µA(xi)− µB(xi)| , |νA(xi)− νB(xi)| ,

|πA(xi)− πB(xi)|} (3.24)
Unfortunately, it can be easily verified that it is impossible to give the counterpart

pairs of the formulas as (2.6) and (3.24) for r > 1 in the Minkowski r-metrics (r = 1
is the Hamming distance, r = 2 is the Euclidean distance, etc.)

For details on other distances between the A-IFSs we refer the interested reader
to Szmidt and Kacprzyk [28] and especially [35]. More details are given in [5] and
[43].

4 Conclusions

A method for the calculation of Hausdorff distances (based on the Hamming met-
ric) between the A-IFSs is presented and analyzed. The method employs all three
terms describing the A-IFSs. The proposed method is both mathematically valid and
intuitively appealing (cf. [35]).
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1 Introduction

The lower integral on the real-valued functions was defined by Topsoe in [7]. An
axiomatic definition of the real-valued upper or lower integral and the fuzzy number
valued lower integral defined on the `-group and the notion of integrability were
introduced in [6], [8], [9] and [10]. We generalize this theory for the partially ordered
metric semigroup valued lower integral. The metric semigroup was used in the case
of Kurzweil–Henstock integral in [2], [3], [4], [11] and also as the range space of
BV mappings of two real variables in [1]. The aim of this paper is to define the
lower integral and the integrable elements, and to prove that the upper limits of the
countable set of integrable elements are integrable.

2 Preliminaries

Definition 2.1. A partially ordered metric semigroup is a structure (X, %,+,≤),
where % : X ×X → R, + : X ×X → X satisfy the following conditions:

(i) (X, %) is a metric space

(ii) (X,+) is a commutative semigroup endowed with a neutral element 0

(iii) (X,≤) is a partially ordered set

Copyright c© 2011 Matej Bel University
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(iv) if u, v, z ∈ X and u ≤ v then u+ z ≤ v + z.

(v) % is translation invariant: %(u, v) = %(u+ w, v + w) for all u, v, w ∈ X
(vi) %(u+ y, v + z) ≤ %(u, v) + %(y, z) for all u, v, y, z ∈ X
Examples 2.2. 1. A simple example of the partially ordered metric semigroup is the
set R with metric %(u, v) = |u− v| and the usual order.

2. Let X be a set of all pointwise ordered bounded real-valued functions defined
on a compact metric space M with the metric %(f, g) = sup{|f(u) − g(u)|; u ∈ M}.
Then (X, %,+,≤) is a partially ordered metric semigroup.

3. An example of the partially ordered metric semigroup which is not a group is
the set of fuzzy numbers E = (E,D,+,≤). The sum of fuzzy numbers u, v is a fuzzy
number z such that

z = u+ v ⇔ (z)α = (u)α + (v)α for every α ∈ (0, 1],

where (u)α = {x ∈ R, u(x) ≥ α} and the sum of intervals [a, b] + [c, d] = [a+ c, b+d].
The partial ordering on the set E is defined in the following way:

u ≤ v ⇔ (u)α ≤ (v)α for every α ∈ (0, 1],

where [a, b] ≤ [c, d] ⇔ (a ≤ c ∧ b ≤ d). The Hausdorff distance d of closed possibly
degenerate intervals is defined by equation:

d([a, b], [c, d]) = max{|c− a|, |d− b|}.

Then (E,D), where D : E × E → [0,∞),

D(u, v) = sup {d ((u)α, (v)α) ; α ∈ (0, 1]}

is a complete metric space. The properties (v) and (vi) of the metric D can be found
in [12].

3 The lower integral

Definition 3.1. Let G be an `-group. The lower integral is a mapping I : G+ → X
which fulfills the following conditions:

1) I(0) = 0,

2) if x ≤ y then I(x) ≤ I(y) for all x, y ∈ G+,

3) I(x) + I(y) ≤ I(x+ y) for all x, y ∈ G+,

4) if xn ↓ x, x, xn ∈ G+ (n = 1, 2, . . .) then limn→∞ %(I(xn), I(x)) = 0.

Definition 3.2. Let G be an `-group and I be a lower integral on G+. An element
x ∈ G+ is called I-integrable iff

I(a) = I(a ∧ x) + I(a− (a ∧ x))

for any a ∈ G+. We denote G+
I = {x ∈ G+; x is I-integrable}.

Theorem 3.3. (i) If a ∈ G+ and x ∈ G+
I then I(a+ x) = I(a) + I(x).

(ii) If x, y ∈ G+
I then x + y, x ∧ y ∈ G+

I . Furthermore, if x, y ∈ G+
I , y ≤ x then

x− y ∈ G+
I .

(iii) If x, y ∈ G+
I then x ∨ y ∈ G+

I .
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Proof. (i) Let a ∈ G+ and x ∈ G+
I . Then from properties of `-group we get

I(a+ x) = I ((a+ x) ∧ x) + I (a+ x− (a+ x) ∧ x) = I(x) + I(a).

(ii) If a, x, y ∈ G, y ≥ 0 then

a ∧ x+ ((a− a ∧ x) ∧ y) = a ∧ ((a ∧ x) + y) = a ∧ (a+ y) ∧ (x+ y) = a ∧ (x+ y) .

Let x, y ∈ G+
I , a ∈ G+. From the property 3) of the lower integral we have

I (a) = I (a ∧ x) + I (a− a ∧ x)
= I (a ∧ x) + I ((a− a ∧ x) ∧ y) + I (a− a ∧ x− (a− a ∧ x) ∧ y)
≤ I (a ∧ (x+ y)) + I (a− a ∧ (x+ y)) ≤ I (a) .

Hence, x+ y ∈ G+
I . Similarly

I (a) = I (a ∧ x) + I (a− a ∧ x)
= I (a ∧ x ∧ y) + I (a ∧ x− a ∧ x ∧ y) + I (a− a ∧ x)
≤ I (a ∧ (x ∧ y)) + I (a− a ∧ (x ∧ y)) ≤ I (a) .

It follows x ∧ y ∈ G+
I . It holds (a+ y) ∧ x = a ∧ (x− y) + y in every `-group. Let

x, y ∈ G+
I , y ≤ x, a ∈ G+. By the proof of the assertion (i),

I (a) + I (y) = I (a+ y) = I ((a+ y) ∧ x) + I (a+ y − (a+ y) ∧ x)
= I (a ∧ (x− y) + y) + I (a− a ∧ (x− y))
= I (y) + I (a ∧ (x− y)) + I (a− a ∧ (x− y)) .

Using the property (v) of the metric % we can write

% (I (a) , I (a ∧ (x− y)) + I (a− a ∧ (x− y)))
= % (I (a) + I (y) , I (a ∧ (x− y)) + I (a− a ∧ (x− y)) + I (y)) = 0.

Because % (x, y) = 0 iff x = y we get

I (a) = I (a ∧ (x− y)) + I (a− a ∧ (x− y)) .

Hence, x− y ∈ G+
I .

(iii) The assertion follows from the part (ii) and the equation x∨y = (x+ y)−x∧y.

Theorem 3.4. Let xn ↑ x, xn ∈ G+
I , n = 1, 2, . . . , x ∈ G+. Then x ∈ G+

I and
I (xn)→ I (x) on the metric %.

Proof. Let xn ↑ x, xn ∈ G+
I , n = 1, 2, . . . , x ∈ X+. Using the integrability of xn and

the property (vi) of the metric % we get

% (I (a ∧ x) + I (a− a ∧ x) , I (a))
= % (I (a ∧ x) + I (a− a ∧ x) , I (a ∧ xn) + I (a− a ∧ xn))
≤ % (I (a ∧ x) , I (a ∧ xn)) + % (I (a− a ∧ x) , I (a− a ∧ xn))

for every n ∈ N, hence

% (I (a ∧ x) + I (a− a ∧ x) , I (a))
≤ lim

n→∞
% (I (a ∧ x) , I (a ∧ xn)) + lim

n→∞
% (I (a− a ∧ x) , I (a− a ∧ xn)) .
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From the property 4) of the lower integral the second limit equals zero. The first limit
equals zero too, because

lim
n→∞

% (I (a ∧ x) , I (a ∧ xn))

= lim
n→∞

% (I (a ∧ x ∧ xn) + I (a ∧ x− a ∧ x ∧ xn) , I (a ∧ xn))

= lim
n→∞

% (I (a ∧ xn) + I (a ∧ x− a ∧ xn) , I (a ∧ xn))

≤ lim
n→∞

% (I (a ∧ xn) , I (a ∧ xn)) + lim
n→∞

% (I (a ∧ x− a ∧ xn) , 0)

= 0 + lim
n→∞

% (I (a ∧ x− a ∧ xn) , I (0)) = 0

by the property (vi) of % and 4) of I. So

% (I (a ∧ x) + I (a− a ∧ x) , I (a)) = 0,

that is I (a ∧ x) + I (a− a ∧ x) = I (a) and x ∈ G+
I . Now we prove I (xn)→ I (x) in

the metric %. It holds

lim
n→∞

% (I (x) , I (xn)) = lim
n→∞

% (I (x ∧ xn) + I (x− x ∧ xn) , I (xn))

= lim
n→∞

% (I (xn) + I (x− xn) , I (xn))

≤ lim
n→∞

% (I (xn) , I (xn)) + lim
n→∞

% (I (x− xn) , 0)
= 0.
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Probability measures on interval–valued fuzzy events . . . . . . . . . . . . . . . . 31

I. Netuka
The Change-of-Variables Theorem for the Lebesgue Integral . . . . . . . . 37
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