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Abstract
We present a short proof of the change-of-variables theorem for diffeomorphic mappings.
This is a modification of the proof given in [3].
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The following change-of-variables theorem for the Lebesgue integral is standard1.

Theorem 1. Let V ⊂ Rd be an open set and ϕ : V → Rd be a one-to-one C1-mapping
with non-vanishing Jacobian Jϕ. Then∫

ϕ(V )
h dλd =

∫
V

(h ◦ ϕ)|Jϕ| dλd, h ∈ Cc
(
ϕ(V )

)
. (1)

The proof that we shall describe is based on a smearing technique and uses the follow-
ing standard result on the transformation of Lebesgue measure by linear mappings:
Let ψ : Rd → Rd be a one-to-one linear mapping. Then, for every Lebesgue measur-
able set A ⊂ Rd,

λd
(
ψ(A)

)
= |Jψ| · λd(A). (2)

∗This work is supported by the project MSM 0021620839 financed by MSMT.
1We use the usual terminology and notation: our assumption says that ϕ is a diffeomorphism of V
onto ϕ(V ); λd stands for d-dimensional Lebesgue measure; for U ⊂ Rd open, Cc(U) is the set of all
continuous functions g : U → R such that their support S(g) := {x ∈ U : g(x) 6= 0} is a compact
subset of U .
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Here, of course, Jψ = detψ. It follows immediately from (2) (by integration with
respect to the image measure) that∫

Rd

(g ◦ ψ) dλd =
(
1/|Jψ|

) ∫
Rd

g dλd, g ∈ Cc(Rd). (3)

Let us fix a positive function ω ∈ Cc(Rd) such that
∫
Rd ω dλd = 1, and, for r > 0,

define

ωr(y) := r−dω(y/r), y ∈ Rd.

For f ∈ Cc(Rd) and r > 0, the convolution of f and ωr is defined by2

f ∗ ωr : x 7→
∫
Rd

f(x− y)ωr(y) dy.

Then f ∗ ωr ∈ Cc(Rd) and, using (3),

(f ∗ ωr)(x)− f(x) =
∫
Rd

(
f(x− rz)− f(x)

)
ω(z) dz, x ∈ Rd.

Since f is uniformly continuous, it follows that

f ∗ ωr → f uniformly on Rd for r → 0 + . (4)
Let V and ϕ be as in the theorem. The following result will be useful.

Lemma 2. For r > 0, let us define

gr : y 7→
∫
V

ωr
(
ϕ(z)− y

)
dz, y ∈ ϕ(V ).

If K ⊂ ϕ(V ) is a compact set, then

lim
r→0+

gr(y) = 1/|Jϕ
(
ϕ−1(y)

)
|, y ∈ K. (5)

Proof. Let us fix a ballB centered at 0 and containing S(ω). Since ϕ−1(K) is compact,
there exists ρ > 0 such that ϕ−1(K) + ρB ⊂ V . Then, for every r ∈ (0, ρ) and every
y ∈ K,

Vr(y) := 1
r

(
V − ϕ−1(y)

)
⊃ B ⊃ S(ω).

An affine change of variables (cf. (3)) yields

gr(y) =
∫
S(ω)

ω
(1
r

(
ϕ(ϕ−1(y) + rt)− ϕ(ϕ−1(y))

))
dt, y ∈ K, r ∈ (0, ρ).

(Here we replaced the integration over Vr(y) by integration over S(ω). For later
use, let us notice that {gr : r ∈ (0, ρ)} is a uniformly bounded family of continuous
functions on K.) By Lebesgue’s Dominated Convergence Theorem,

lim
r→0+

gr(y) =
∫
S(ω)

ω
(
ϕ′(ϕ−1(y))(t)

)
dt,

which, in view of (3), yields (5).
2Sometimes we write, for instance,

∫
A
g(y) dy instead of

∫
A
g dλd.
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Now we shall prove the equality (1). Let h ∈ Cc
(
ϕ(V )

)
and K := S(h). We may

suppose that h is positive. For r > 0, let us define

Ir :=
∫
V×ϕ(V )

h(y)
∣∣Jϕ(ϕ−1(y)

)∣∣ωr(ϕ(z)− y
)
dz dy

(integration with respect to the product measure λd × λd). By the Fubini theorem,

Ir =
∫
K

h(y)
∣∣Jϕ(ϕ−1(y)

)∣∣gr(y) dy.

Obviously, {h|Jϕ ◦ ϕ−1| gr : r ∈ (0, ρ)} is a uniformly bounded family of continuous
functions on K. Applying Lebesgue’s Dominated Convergence Theorem and using
(5) we see that

lim
r→0+

Ir =
∫
K

h(y) dy =
∫
ϕ(V )

h dλd. (6)

Let us define f := h|Jϕ ◦ϕ−1| on ϕ(V ) and f = 0 elsewhere on Rd. Then f ∈ Cc(Rd)
and there exist ξ > 0 and a compact set L ⊂ ϕ(V ) such that S(f ∗ ωr) ⊂ L for every
r ∈ (0, ξ). The Fubini theorem yields

Ir =
∫
ϕ−1(L)

(f ∗ ωr)
(
ϕ(z)

)
dz, r ∈ (0, ξ).

By (4) and Lebesgue’s Dominated Convergence Theorem it follows that

lim
r→0+

Ir =
∫
ϕ−1(L)

f
(
ϕ(z)

)
dz =

∫
V

f
(
ϕ(z)

)
dz =

∫
V

(h ◦ ϕ)|Jϕ| dλd, (7)

since S(f) ⊂ L. Now (1) follows from (6) and (7) and this finishes the proof.

Comments.

1. The proof of the integral calculus version of the change-of-variables formula is
based on smearing of the value of f

(
ϕ(z)

)
on small neighbourhoods. I learned this

approach from Professor A. Cornea3 some twenty years ago; cf. [3]. It seems that
this method of proof does not appear in textbooks on integration and, in my opinion,
deserves to be better known. Cornea’s proof provides the inequality ≤ in (1), which,
of course, is sufficient in view of the symmetry of ϕ and ϕ−1. In our proof we establish
the equality (6) instead of the inequality∫

ϕ(V )
h dλd ≤ lim inf

r→0+
Ir

obtained by Fatou’s Lemma.
3Aurel Cornea (1933–2005) was born in Romania. At the age of 14 he had an accident during a
chemical experiment and lost his eyesight. He studied mathematics and completed his Ph.D. thesis
under S. Stoilow. He worked at the University of Bucharest and the Academy of Sciences. In 1978
he left Romania. After short stays in Canada and USA, he spent the rest of his life in Germany. In
1980, he was appointed as a professor at the Katholische Universität Eichstätt. Aurel Cornea was
a distinguished specialist in potential theory, an excellent scientist, and an exceptional man. For
further information, see [32].
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2. Clearly, (1) holds for much more general functions h. To see this, one can first
deduce from (1) the equality

λd
(
ϕ(A)

)
=
∫
A

|Jϕ| dλd (8)

for every Lebesgue measurable set A ⊂ V . (In particular, the mapping ϕ has the
N -property, which means that the image of every set of zero measure is also of zero
measure.) The equality (8) can be shown, for instance, using a Lusin’s Theorem type
of argument; see Corollary to Theorem 2.24 in [26]. Then integration with respect
to the image measure shows that the integral of a function h over ϕ(V ) exists if and
only if the integral of (h ◦ ϕ)|Jϕ| over V exists, and we have the equality (1).

3. The equality (2) is usually proved using a factorization of the linear mapping and
the multiplicative property for determinants; see, for instance, [5], [6], [9], [10], [18],
[21], [26]. Group theoretical arguments are used in [4]. An approach based on Fubini’s
theorem is employed in [29].

4. The calculus version of the change-of-variables formula has a long history and is
connected with names such as L. Euler, J.-L. Lagrange, S. Laplace, C. F. Gauss, M.
Ostrogradski, C. Jacobi and others; see [16]. For various methods of proofs one may
consult [2], [3], [9], [10], [15], [18], [19], [20], [21], [27], [28], [29].

5. Of course, the conditions imposed on ϕ may be substantially weakened in various
respects. This issue is discussed in numerous textbooks as well as articles. Let us
mention at least some references: [12], [14], [24], [25], [26], [31].

6. It turns out that the change-of-variables formula is a very special case of the
so-called area theorem, which has been extensively studied in various degrees of gen-
erality in the setting of geometric measure theory. As a sample, we list the following
books and papers: [1], [7], [8], [10], [11], [13], [17], [22], [23], [30], [33].
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