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Introduction

It is the aim of this article to provide a unified view for, and a survey of, a class of
problems that occur often in combinatorics, graph theory and related areas but also in
“real life”.

We want to discuss a situation which typically is as follows. Given is a finite set F
of objects called figures, and a symmetric irreflexive relation R on F (the compatibility
rule) which specifies when two figures are compatible. An (F , R)-configuration or simply
a configuration is a set of pairwise compatible figures. A configuration C is maximal
if there is no f ∈ F , f /∈ C such that f ∪ C is also a configuration. In other words,
maximality is here with respect to inclusion.

More generally, the compatibility rule R is a function from a subset of the power set
of F into {0, 1} but we will restrict ourselves to examples which are all of the simpler
type above.

The size of a configuration is the number of its figures. An (F , R)-configuration is
maximum if it is maximal and contains the largest possible number of figures. Maximum
configurations are sometimes called maximum packings or just packings.

Our interest will be mainly in the possible sizes of maximal (F , R)-configurations, i.e.
in the spectrum Sp(F , R) defined by

Sp(F , R) = {m : there exists a maximal (F , R)-configuration of size m}.

To determine the spectrum Sp(F , R), one usually needs to determine first the size of
the smallest maximal, and maximum configurations, that is, the size of the smallest and
the largest element of Sp(F , R).

We may envisage a procedure under which one tries to build maximal (maximum)
configurations of given kind in a naive way: given any configuration, try to enlarge it
by adjoining another figure subject to the compatibility rule, then another one, and so
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on, until this is no longer possible, i.e. you get “stuck”. The elements of the spectrum
represent sizes of all possible outcomes of such a process.

What follows is a (non-exhaustive) survey of problems falling under this framework,
both completely solved (unfortunately, very few), partially solved (a few more) and those
that remain largely open. This article may be viewed as an expanded and updated version
of [61].

Our first example is a problem that has been solved completely.

1 Maximal sets of 1-factors

The figures here are 1-factors of the complete graph K2n on a given set of 2n vertices;
two such 1-factors are compatible if they are edge-disjoint. Let M(2n) be the spectrum
for maximal sets of 1-factors, i.e.

M(2n) = {m : there exists a maximal set of m edge-disjoint 1-factors in K2n}.

As a corollary to Dirac’s Theorem (see, e.g., [70]) one obtains immediately

M(2n) ⊆ {n, n+ 1, . . . , 2n− 1}.

Trivially, 2n− 2 /∈M(2n) since the complement of the union of 2n− 2 one-factors is
itself a 1-factor. Furthermore, n /∈ M(2n) if n is even [16]. On the other hand, when k
is odd and k ∈ {n, n+ 1, . . . , 2n− 1} then k ∈M(2n), as shown by the following simple
construction.

Let Zk ∪ {ai : i = 1, 2, . . . , 2n − k} be the set of vertices of K2n and let the 1-factor
F be defined by

F = {{a1, 0}, {a2, 1}, {a3, k − 1}, . . . , {a2n−k−1,
1
2(2n− k − 1)},

{a2n−k, k −
1
2(2n− k − 1)}, {1

2(2n− k − 1) + 1, k − 1
2(2n− k − 1)− 1},

{1
2(2n− k − 1) + 2, k − 1

2(2n− k − 1)− 2}, . . . , {1
2(k − 1), 1

2(k + 1)}}

(the edges in the last two lines are used only when k 6= n).
Developing F modulo k yields a maximal set of 1-factors, since the complement of

the union of these 1-factors contains an odd component K2n−k.
The case of even k turned out to be much more difficult. It was shown in [60] that

for k even, k ∈M(2n) if and only if 1
3 (4n+ 4) ≤ k ≤ 2n− 4.

Explicitly, we have for small values of n;

M(4) = {3},M(6) = {3, 5},M(8) = {5, 7},M(10) = {5, 7, 9},
M(12) = {7, 9, 11},M(14) = {7, 9, 11, 13},M(16) = {9, 11, 12, 13, 15}, . . . ,
M(30) = {15, 17, 19, 21, 22, 23, 24, 25, 27} and so on.

Although the spectrum for maximal sets of 1-factors has thus been completely deter-
mined, several further problems arise when one puts additional conditions on the 1-factors
comprising the set in question. Among several possible variations of the above problem
that have been treated, at least to some degree, in the literature, is the one concerning
maximal perfect sets of 1-factors. In this variation of the problem, two 1-factors are com-
patible if they are edge-disjoint and their union is a hamiltonian cycle. LetMperf (2n) be
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the spectrum of maximal perfect sets of 1-factors. It is currently not known whether the
maximum possible value 2n − 1 is a member of Mperf (2n) for all n since to determine
this is equivalent to determining whether there exists a perfect 1-factorization of K2n for
all n. The latter remains a difficult unsolved problem (cf., e.g., [56]).

It is easily verified that Mperf (4) = {3},Mperf (6) = {3, 5},Mperf (8) = {5, 7} but the
determination ofMperf (2n) becomes much more difficult for larger orders. Petrenjuk [58],
[59] determined the setsMperf (2n) for 2n = 10, 12: Mperf (10) = {5, 6, 7, 9},Mperf (12) =
{6, 7, 8, 9, 10, 11}. It is established in [56] that Mperf (14) = {7, 8, 9, 10, 11, 12, 13} ∪ I
where either I = ∅ or I = {6}.

When n is an odd prime then n ∈ Mperf (2n) but not much else seems to be known
about Mperf (2n).

One may, of course, consider also the situation where the union of any two 1-factors
in a set F of disjoint 1-factors is isomorphic to a fixed 2-regular factor Q, not necessarily
a hamiltonian cycle. Such a set has been called Q-uniform or simply uniform. Let
MQ(2n) = {s: there exists a maximal Q-uniform set of s 1-factors ofK2n}. The following
results concerning small maximal uniform sets have been established in [56] with the aid
of computer (below Q is represented just as a partition of 2n).

M4+4(8) = {7},M6+4(10) = {3, 9},
M4+4+4(12) = {3},M6+6(12) = {3, 5, 11},M8+4(12) = {6, 9},
M6+4+4(14) = {3, 5, 7},M8+6(14) = {5, 6, 7},M10+4(14) = {5, 6, 7, 8},
M4+4+4+4(16) = {7, 15},M6+6+4(16) = M8+4+4(16) = {3, 4, 5, 7},
{5, 6, 7, 8, 9, 10} ⊆M8+8(16).

2 Maximal sets of 2-factors

The figures here are 2-factors in the complete graph on a given set of n vertices; two
2-factors are compatible if they are edge-disjoint.

Let M (2)(n) = {m: there exists a maximal set of m edge-disjoint 2-factors of Kn}.
Petersen’s theorem about the existence of a 2-factor in any regular graph of even degree
(cf. [70]) implies that for odd n,

M (2)(n) = {1
2(n− 1)}.

The situation is somewhat more involved for n even. This is due to the fact that for
odd d, there exist regular graphs of degree d without proper regular factors. König [53]
calls such graphs primitive. An obvious extension of König’s example for d = 3 yields a
primitive graph of odd degree d (d > 1) with (d+ 1)2 vertices. It is shown in [42] that
this is the minimum number of vertices a primitive graph of odd degree d can have. This
implies that the spectrum M (2)(n) for n even is the following interval:

M (2)(n) = {b12(n−
√
n)c, b12(n−

√
n)c+ 1, . . . , 1

2(n− 2)}.

In the next two examples, the figures are still 2-factors but of a restricted type.

3 Maximal sets of hamiltonian cycles

The figures here are connected 2-factors of Kn, that is, hamiltonian cycles; two hamilto-
nian cycles are compatible if they are edge-disjoint.
Let

MH(n) = {m : there exists a maximal set of m hamiltonian cycles in Kn}.
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Put
Dir(n) = {b14(n+ 3)c, b14(n+ 3)c+ 1, . . . , b12(n− 1)c}.

It follows directly from Dirac’s theorem and a result of Nash-Williams (cf. [70]) that
MH(n) ⊆ Dir(n). One would like to show that, in fact, equality takes place here. To
achieve this, consider the following.

Let n be even, n = 2k, and let m be a positive integer, 2m ≤ k. Let G be a regular
graph of degree 2k − 4m with 2k − 2m vertices, and let H = K̄2m∇ G. Similarly, let n
be odd, n = 2k + 1, m be a positive integer, 2m + 1 ≤ k, and let G be a regular graph
of degree 2k − 4m− 1 with 2k − 2m vertices, and let H = K̄2m+1∇ G (here ∇ denotes
the join, cf. [70]).

In order to show that MH(n) = Dir(n), it clearly suffices to show that the graph H,
with G suitably chosen, has a hamiltonian decomposition. Indeed, the complement H̄ of
H is disconnected, and so the set of hamiltonian cycles in any hamiltonian decomposition
is maximal. The corresponding proof that H has a hamiltonian decomposition for G
suitably chosen is given in [42].

The above provides another example of a problem with completely determined spec-
trum.

4 Maximal sets of ∆-factors

The figures are ∆-factors of Kn, that is, 2-factors whose each component is a triangle
(sometimes also called triangle-factors); two ∆-factors are compatible when they are
edge-disjoint. Clearly, here we must have n ≡ 0 (mod 3).

Let ∆(n) = {m: there exists a maximal set of ∆-factors of Kn}.
A classical result of Corrádi and Hajnal [12] states that a graph with n = 3k vertices

and minimum degree at least 2k has a ∆-factor. Thus a maximal set of ∆-factors on 3k
vertices must contain at least k

2 triangle-factors. This implies

∆(n) ⊆ {dn6 e, d
n

6 e+ 1, . . . , bn− 1
2 c}.

It is easily seen that ∆(3) = ∆(6) = {1}, ∆(9) = {4}.
For every odd k, there is a maximal (in fact, maximum) set of 3k−1

2 ∆-factors in
K3k. For every even k ≥ 6, there is maximal set of 3k−2

2 ∆-factors in K3k. This
just restates the fact that for every n ≡ 3 (mod 6) there exists a Kirkman triple system
KTS(n) of order n, and for every n ≡ 0 (mod 6), n ≥ 18, there exists a nearly Kirkman
system NKTS(n) of order n [13].

Furthermore, it is not difficult to establish that 2 /∈ ∆(12), while 5 /∈ ∆(12) folows
from the nonexistence of a nearly Kirkman triple system of order 12. Thus ∆(12) =
{3, 4}.

On the other hand, it is not easy to establish that ∆(15) = {4, 5, 6, 7} (see [30]). More
precisely, it is difficult to show 3 /∈ ∆(15); no computer-free proof of this fact is known
to us. (In [30], all maximal sets of ∆-factors in K15 are enumerated.)

It is proved in [60] that ∆(18) = {4, 5, 6, 7, 8} (this involved showing 3 /∈ ∆(18)),
∆(21) = {4, 5, 6, 7, 8, 9, 10}, and ∆(24) = {4, 5, 6, 7, 8, 9, 10, 11}. It is also shown that
{6, 7, 8, 9, 10, 11, 12, 13} ⊆ ∆(27) but whether or not 5 ∈ ∆(27) remains undecided. Sim-
ilarly, [6, 14] ⊆ ∆(30) but whether 5 ∈ ∆(30) is undecided.

It was conjectured in [60] that the spectrum ∆(n) contains the interval [dn
6 e,

n−1
2 ],

and proved that [dn
6 e, d

n
4 e] ∈ ∆(n). Several further constructions for maximal sets of

∆-factors are given in [60] but especially for k in the interval [ n
4 ,

n
3 ], new ideas appear to

be needed. Also, for k = dn
6 e when n ≡ 0, 9 or 12 (mod 18), not a single maximal set of
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k ∆-factors is known to exist (and dn
6 e /∈ ∆(n) for n = 9, 12, 18). So, e.g., whether or

not 6 ∈ ∆(33) remains an open problem.

5 Maximal partial latin squares and latin cubes

The figures are elements of N ×N ×N , i.e. ordered triples from a set N of n elements;
two such triples are compatible if they agree in at most one coordinate. We can take
N = {1, 2, . . . , n}.

It is somewhat more convenient to think of a partial latin square as an n × n array
whose cells are either empty or contain an element of N such that no element occurs in
a cell of any row or column more than once. A partial latin square is then maximal if no
further nonempty cell can be filled without violating this condition.

Let ML(n) be the spectrum of maximal partial latin squares of order n, that is,

ML(n) = {m : there exists a maximal partial latin square of order n
with exactly m nonempty cells}.

The set ML(n) was investigated in [44]. Clearly, if t < n2

2 or if t = n2 − 1 then
t /∈ML(n). It is shown in [44] that when either

(i) t = n2

2 + k, 1 ≤ k ≤ n
2 where k is odd and n is even, or

(ii) t = dn2

2 e+ k, 1 ≤ k ≤ n−1
2 where k is odd and n is odd,

we also have t /∈ML(n).
It was also shown in [44] that the spectrum ML(n) contains all integers t in the

interval [ n2

2 , n
2 − 2] except possibly when (1) t = n2

2 + k, n even, k odd, n
2 < k ≤ n− 1,

or when (2) t = n2+1
2 + k, n odd, k odd, n−1

2 ≤ k ≤ n− 1. It is conjectured in [44] that
these possible exceptions are in fact true exceptions.

Recently, in [5] an analogous question was studied for partial latin cubes. Here the
figures are elements of N × N × N × N , i.e. ordered quadruples from a set N of n
elements. Two such quadruples are compatible if they agree in at most two coordinates.
One can picture a partial latin cube as a set of layers where each layer is a partial latin
square, and no element occurs in the same row or column of distinct layers. A partial
latin cube is then maximal if no further cell can be filled without violating this.

LetML(3)(n) = {m: there exists a maximal partial latin cube of order n with exactly
m nonempty cells}.

Neither n3 − 1 nor n3 − 2 can belong to ML(3)(n). In [5] it is shown that, unlike for
maximal partial latin squares, there exist maximal partial latin cubes with substantially
less than half of its n3 cells filled. In fact, while any maximal partial latin cube must
contain at least t > (1− 1√

2n
3 > 0.29289n3 nonempty cells, there exist maximal partial

latin cubes with n3

3 + O(n2) nonempty cells. For instance, when n ≡ 1 (mod 3), there
exists a maximal partial latin cube with at most n3+9n2−6n−4

3 nonempty cells.
A large portion of spectrum is determined in [5]: when n is even, n ≥ 10 then

[ n3

2 , n
3 − 3] ⊆ ML(3)(n), and when n is odd, n ≥ 21 then [ n3+n

2 , n3 − 3] ⊆ ML(3)(n).
But for less than “half-full” maximal partial latin cubes, gaps remain (cf. also [55]).

In the same paper [5], the spectra ML(3)(n) for n = 2, 3, 4 are determined almost
completely, with only three values in the case of n = 4 remaining in doubt. In particular,
it is shown that ML(3)(2) = {4, 5, 8},
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ML(3)(3) = {9, 12, 14, 15, . . . , 24, 27},ML(3)(4) = {31, 32, . . . , 61, 64} ∪ S where
S ⊆ {28, 29, 30}.

6 Row-maximal latin rectangles and maximal latin parallelepipeds

Here the figures are permutations of n symbols, say 1, 2, . . . , n; two such permutations
are compatible if they are discordant, i.e. do not agree in any position.

In 1945, M. Hall Jr. proved [41] that if r < n then any r × n latin rectangle can be
extended to a (r + 1)× n latin rectangle. His proof is a nice application of Philip Hall’s
Theorem on systems of distinct representatives.

It follows that the spectrum of row-maximal r × n latin rectangles

MLR(n) = {r : there exists a row-maximal r × n latin rectangle}

consists of a single element, namely n.
The situation changes dramatically as one tries to extend M. Hall’s result to three

dimensions. Now the figures are (n × n) latin squares; they are compatible if they are
disjoint. A latin (n × n × r)-parallelepiped is maximal if it cannot be extended to a
latin (n × n × (r + 1))-latin parallelepiped. Let MLC(n) = {r: there exists a maximal
n× n× r-latin parallelepiped}.

Horák [43] was the first to show that for all n = 2k, there exist infinitely many Latin
(n × n × (n − 2))-parallelepipeds that cannot be completed to a Latin cube of order n
and are therefore maximal. In [31], [50] further results on maximal (n× n (n− 2))-latin
parallelepipeds were obtained. (Clearly, any latin (n×n (n−1))-latin parallelepiped can
be extended to a latin cube of order n.)

Subsequently Kochol [51], [49], [52] proved that for any r, n such that n
2 < r ≤ n− 2

there exists a noncompletable n × n r latin parallelepiped. In [8] both noncompletable
and nonextendible (that is, maximal) latin parallelepipeds are investigated. A maximal
5 × 5 × 2 and a 6 × 6 × 3 latin parallelepiped is produced, and a construction is given
showing that for all even m > 2, there exists a maximal (2m− 1)× (2m− 1)× (m− 1)-
latin parallelepiped. In particular, that shows the existence of a maximal 7× 7× 3-latin
parallelepiped.

The above are first examples of maximal latin parallelepipeds that are less than “half-
full”. But clearly, lots of work remains towards determining the spectrum MLC(n).

7 Row-maximal orthogonal latin rectangles

The figures are pairs of permutations of degree n. Two pairs (P1, P
′
1) and (P2, P

′
2) are

compatible if (P1, P2) and (P ′1, P ′2) are both discordant, and the two 2×n latin rectangles(
P1
P2

)
and

(P ′1
P ′2

)
are orthogonal.

Let MOR(r, n) be a pair of row-maximal orthogonal latin r × n rectangles. Let the
spectrum for row-maximal orthogonal latin (r × n rectangles be MOR(n) = {r: there
exists a MOR(r, n)}.

For small values of n, we have

MOR(1) = MOR(2) = {1},MOR(3) = {3},MOR(4) = {3, 4},
MOR(5) = {3, 5},MOR(6) = {3, 4, 5},MOR(7) = {3, 4, 5, 6, 7},
MOR(8) = {3, 4, 5, 6, 7, 8}.

Several partial results are obtained in [45] towards settling the following conjecture.

Conjecture. For n ≥ 7,MOR(n) = {r : n
3 < r ≤ n}.
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In particular, it is shown in [45] that MOR(r, n) exists if n ≥ 7 and

(i) n
3 < r ≤ n

2 , except possibly when (r, n) = (6, 12)

(ii) 7
9n ≤ r ≤ n

(iii) 2n−1
3 ≤ r ≤ n− 1, r odd

(iv) 3
7n < r < 3

4n, r ≡ 3 (mod 6), n ≡ 1 (mod 2)

(v) 3
5n < r ≤ 3

4n, r ≡ 3 (mod 6), n ≡ 0 (mod 2)

(vi) n
2 ≤ r ≤

3n+2
4 , r ≡ 0 (mod 2), n ≡ 0 (mod 2).

On the other hand, there exist no MOR(r, n) for r ≤ n
4 .

Several recursive constructions for row-maximal orthogonal latin rectangles are given
in [45]. These, together with the above results, suffice to show, for instance, that {r :
11 ≤ r ≤ 30} ⊆ MOR(30) where the set on the left conincides with the conjectured
spectrum. But in general, quite a few undecided cases remain.

8 Maximal sets of mutually orthogonal Latin squares

This is an extremely important topic, because of its connections to the existence of finite
projective planes.

The figures here are latin squares of order n on N ; two latin squares are compatible if
they are orthogonal. Recall that two latin squares A = (aij), B = (bij) are orthogonal if
|{(aij , bij) : i, j = 1, . . . , n}| = n2, that is, when A and B are superimposed, each ordered
pairs (a, b) with a ∈ A, b ∈ B will appear exactly once.

Let L(n) be the spectrum of sizes of maximal sets of mutually (pairwise) orthogonal
latin squares (MOLS) of order n, i.e.

L(n) = {r : there exists a maximal set of r MOLS of ordern}.

The maximum number of MOLS of order n cannot exceed n − 1, and equals n − 1
whenever n is a prime power. Thus L(n) ⊆ {1, 2, . . . , n − 1}. To determine L(n) in
its entirety would involve, among other things, to settle the existence question for finite
projective planes of order n. Worse yet, even max L(n) remains undetermined for all
values of n other than prime powers or n = 6. Nevertheless, any progress towards
determining L(n) is very desirable.

A latin square without an orthogonal mate is called a bachelor square. It has been
now determined that bachelor squares exist for all n > 3 [29], [69]. Thus 1 ∈ L(n) for all
n > 3. A latin square which has an orthogonal mate but is not contained in any set of
three mutually orthogonal squares is called monogamous (cf. [17]). A monogamous latin
square is known to exist for all orders n > 6 except possibly when n = 2p for some prime
p ≥ 7. Thus 2 ∈ L(n) for all n > 6 except possibly when n = 2p for some prime p ≥ 7.

To determine the set L(n) even for relatively small values of n is not an easy task.
For example, whether or not 4 ∈ L(8) had been an open question for good forty years
before it was recently settled [24].

The set L(n) has now been determined for all n ≤ 9. For n ≤ 7 this has been done
by Drake [22]; the last two outstanding values for n = 8 and n = 9 have been settled in
[24]. In particular, we have

L(3) = {2}, L(4) = {1, 3}, L(5) = {1, 4}, L(6) = {1}, L(7) = {1, 2, 6},
L(8) = {1, 2, 3, 7}, L(9) = {1, 2, 3, 4, 5, 8}.
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We have further {1, 2} ⊆ L(10), {1, 2, 3, 4, 10} ⊆ L(11), {1, 2, 3, 5} ⊆ L(12),
{1, 2, 3, 4, 6, 12} ⊆ L(13),{1, 2, 3, 4, 7, 8, 11, 15} ⊆ L(16) (cf. [1]), [3]).

As for general results, a theorem of Bruck [7] implies that for n > 4, n − 2 /∈ L(n),
n−3 /∈ L(n). If n = q1.q2. . . . . qr is the prime power factorization of n thenmin (qi−1) ∈
L(n).

If p ≥ 7 is a prime, p ≡ 3 (mod 4), then p−3
2 ∈ L(p). If p ≥ 13 is a prime,

p ≡ 1 (mod 4), then p−1
2 ∈ L(p). If q is a prime power then q2 − q − 1 ∈ L(q2), and if

q = pr, p ≥ 5, then q2 − q − 2, q2 − q ∈ L(q2) (cf. [1]). For many additional results on
maximal sets of MOLS, see [1], [3], [25], [27], [28], [38], [47], [48] and references therein.

9 Maximal partial Steiner triple systems

The figures are 3-subsets (triples) of a given v-set; two triples are compatible if they
intersect in at most one element.

Alternatively, the figures are triangles in the complete graph Kv; two triangles are
compatible if they are edge-disjoint.

Let S(3)(v) be the spectrum for maximal partial Steiner triple systems (STS), i.e.

S(3)(v) = {m : there exists a maximal partial STS of order v with exactly m triples}.

The largest element M (3)(v) of S(3)(v) was determined already in the 1840’s by
Kirkman [?] (and since then repeatedly by many others) :

M (3)(v) = v(v − 1)/6 v ≡ 1, 3 (mod 6)
= [v(v − 1)− 8]/6 v ≡ 5 (mod 6)
= v(v − 2)/6 v ≡ 0, 2 (mod 6)
= [v(v − 2)− 2]/6 v ≡ 4 (mod 6).

The smallest element m(3)(v) of S(3)(v) was determined in 1974 by Novák [57]:
m(3)(v) = (v2 + δv)/12 where

δv = −2v + 36 v ≡ 0, 8 (mod 12)
= −1 v ≡ 1, 5 (mod 12)
= −2v v ≡ 2, 6 (mod 12)
= 3 v ≡ 3 (mod 12)
= −2v + 4 v ≡ 4 (mod 12)
= 11 v ≡ 7, 11 (mod 12)
= 15 v ≡ 9 (mod 12)
= −2v + 16 v ≡ 10 (mod 12)

The spectrum S(3)(v) for odd v was determined completely by Severn [65].
Let R(v) be the interval {m(3)(v),M (3)v)}. It was shown in [65] that

S(3)(v) = R(v) \ {M (3) − 1} if v ≡ 1, 3 (mod 6)
= R(v) if v ≡ 5 (mod 6).

For even v, the situation is slightly more complicated. The spectrum S(3)(v) in this
case has been determined “almost completely” by [65] who left only a few open cases.
These have been settled in [14] so that the spectrum S(3)(v) has now been completely
determined:
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For v even, S(3)(v) = R(v) \Q(v), where

Q(v) = {r : m(3)(v) < s < Y (v) and s− v − 1
2 ≡ 1 (mod 2),

and
Y (v) = 12k2 + 2k if v = 12k

= 12k2 + 6k + 1 if v = 12k + 2
= 12k2 + 10k + 2 if v = 12k + 4
= 12k2 + 14k + 5 if v = 12k + 6
= 12k2 + 18k + 6 if v = 12k + 8
= 12k2 + 22k + 11 if v = 12k + 10

(cf. [14], [13]).

10 Maximal partial 4-cycle systems

The figures here are quadrangles (cycles with 4 edges, 4-cycles); two quadrangles are
compatible when they are edge-disjoint.

Let S(4)(n) = {r: there exists a maximal set of quadrangles with exactly r quadrangles}.
Let the smallest and largest element of S(4)(n) be m(4)(n) and M (4)(n), respectively.

The numbers M (4)(n) have been determined completely in [64] (cf. also [32]). For
odd n, when n ≡ 1 (mod 8), there exists a 4-cycle system of order n, thus M (4)(n) =
n(n−1

8 , the number of 4-cycles in such a system. For n ≡ 3, 5, 7 (mod 8), there exists a
maximum packing of 4-cycles whose leave is a triangle, a 2-regular graph with 6 edges
(and thus either a 6-cycle, or two vertex-disjoint triangles, or a “bowtie”), or a pentagon,
respectively [64]. Thus we have

M (4)(n) = bn(n−1)
8 c if n ≡ 1 or 3 (mod 8)

= bn(n−1)
8 c − 1 if n ≡ 5 or 7 (mod 8).

In order to determine the spectrum S(4)(n), it is necessary to know the values of
m(4)(n) but therein lies the difficulty: to determine the maximum number of edges in an
n-vertex graph without 4-cycles is a difficult unsolved problem [33], [34], [37], [10], [71].

Nevertheless, the values ex(n;C4), the largest number of edges in a graph with n
vertices without a 4-cycle, has been determined exactly for all n ≤ 31 [37], [71] which
makes it possible to determinemin(4)(n) , and also the whole spectrum S(4)(n) for certain
small values of n. No exact formula for ex(n;C4) appears to be known although it is
known that ex(n;C4) < 1

4n(1 +
√

4n− 3) when n > 3, and asymptotically ex(n;C4) '
1
2n

3
2 .
[The value of ex(n;C4) has also been determined exactly for n = q2 + q + 1 when q

is either a power of 2 [33] or when q is a prime power greater than 13 [34]].
While knowing the maximum number of edges in an n-vertex graph is, in turn, a

necessary step in determining m(4)(n), what is actually needed is the maximum number
of edges in an n-vertex eulerian and antieulerian graph without 4-cycles, according as
n is odd and even, respectively. This numbers are usually somewhat smaller than the
former; for example, the maximum number of edges in a 9-vertex graph without 4-cycles
is 13 [10], that in a 9-vertex eulerian graph is 12. Similarly, for example, the maximum
number of edges in a 10-vertex graph without 4-cycles is 16 [10], that in an antieulerian
graph is 13.

Clearly, n(n−1
8 − 1 /∈ S(4)(n) when n ≡ 1 (mod 8).
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The bounds given in [10] plus ad hoc considerations enable one to determine the
spectrum S(4)(n) for small values of n. In particular, we have
S(4)(4) = S(4)(5) = {1}, S(4)(6) = {3}, S4)(7) = {3, 4}, S(4)(8) = {5, 6}
S(4)(9) = {6, 7, 9}, S(4)(10) = {8, 9, 10}, S(4)(11) = {10, 11, 12, 13},
S(4)(12) = {12, 13, 14, 15}, S(4)(13) = {15, 16, 17, 18} ∪ I where I = ∅ or I = {14}. At
this time, I am unable to decide whether 14 ∈ S(4)(13) or not.

11 Maximal partial 5-cycle systems

The figures here are pentagons (cycles with 5 edges, 5-cycles); two pentagons are com-
patible if they are edge-disjoint.

Let

S(5)(n) = {r : there exists a maximal set of pentagons with exactly r pentagons}.

Let the smallest and largest element of S(5)(n) be m(5)(n) and M (5)(n), respectively.
The numbers M (5)(n) have been determined completely in [63]:

M (5)(n) = b en

5 c if n 6≡ 7, 9 (mod 10)
= b en

5 c − 1 if n ≡ 7, 9 (mod 10)

where en = n(n−1)
2 or n(n−2)

2 according as n is odd or even.
To determine m(5)(n) turned out to be much more difficult. The first step in this was

to obtain bounds on m(5)(n) by determining extremal graphs not containing a pentagon.
While for n ≥ 7 the maximal size of a graph with n vertices without a pentagon is bn2

4 c,
for a nonbipartite graph the maximal size is f(n) = bn2

4 c − n+ 4, a slight improvement
[63]. Furthermore, a nonbipartite eulerian graph (all degrees even) without a pentagon
with an odd number of vertices n ≥ 11 has at most bn2

4 c − n + 3 edges. It follows that
for a maximal size E(n) of an eulerian graph without a pentagon we have

E(n) = n2

4 if n ≡ 0 (mod 4)
= (n−1)2

4 if n ≡ 1 (mod 4)
= n2−4

4 if n ≡ 2 (mod 4)
= n2−2n−3

4 if n ≡ 3 (mod 4).

When n ≡ 0 (mod 4) and n ≡ 2 (mod 4), the extremal graph is Kn
2 , n

2
and Kn+1

2 , n−3
2

,
respectively. When n ≡ 1 (mod 4) and n ≡ 3 (mod 4), one of the extremal graphs is
Kn−1

2 , n−1
2

and Kn+1
2 , n−3

2
, respectively.

Similarly, let A(n) be the maximal size of an antieulerian (all degrees odd) graph
without a pentagon. Then

A(n) = n2−4
4 if n ≡ 0 (mod 4)

= n2

4 if n ≡ 2 (mod 4),

and the extremal graphs are Kn+2
2 , n−2

2
and Kn

2 , n
2
, respectively.

Let
∆n = dn(n−1)

2 − E(n)
5 e if n is odd,

= dn(n−1)
2 − A(n)

5 e if n is even.

It is shown in [63] that
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m(5)(n) ≥ ∆n if n ≥ 11
≥ ∆n + 1 if n ≡ 13, 14, 15, 16, 17, 18 (mod 20)
≥ ∆n + 2 if n ≡ 4, 8 (mod 20), n ≥ 24.

Equality in the above for all n ≥ 11 is then established by three special constructions
(see [63]).
Clearly, the spectrum S(5)(n) is a subset of the interval [m(5)(n),M (5)(n)]. This spectrum
has not been determined completely yet, except when n ≡ 3 (mod 40). In [15], the
following conjecture on the shape of the spectrum S(5)(n) was formulated.

Conjecture. For any n ≥ 6, there is a number zn (for n ≥ 45, zn −m(5)(n) ≥ n
5 − 5)

such that

(i) if t ∈ [m(5)(n), zn] then t ∈ S(5)(n) if and only if t has the same parity as m(5)(n);

(ii) if t ∈ [zn,M
(5)(n)] then t ∈ S(5)(n).

It is shown in [15] that (i) holds for all n ≥ 45. This has required determining the
maximum number of edges in a pentagon-free nonbipartite eulerian (antieulerian) graph.

The conjecture has been proved in full only for n ≡ 3 (mod 40) (see [15]). If n =
40k + 3, k ≥ 2, then m(5)(40k + 3) = 80k2 + 12k + 1, M (5)(40k + 3) = 160k2 + 20k,
z40k+3 = m(5)(40k + 3) + 8k − 1, and
S(5)(40k+3) = {80k2 +12k+1, 80k2 +12k+3, . . . , 80k2 +20k−1, 80k2 +12k+1, 80k2 +
20k + 2, . . . , 160k2 + 20k}.

For n 6≡ 3 (mod 40), part (ii) of the Conjecture remains open.

To determine the spectra in the following two sections appears quite difficult.

12 Maximal sets of disjoint Steiner triple systems

The figures are Steiner triple systems on a given v-set; they are compatible if they are
disjoint, i.e. they have no triple in common. Here, of course, we must have v ≡ 1 or
3 (mod 6).

Let DS(v) = {m: there exists a maximal set of m pairwise disjoint STS(v)s}. It
is well known that DS(7) = {2}, a result by Cayley that goes back to the middle of
the 19th century. For v > 7, the largest element of DS(v) was determined in [54], [68]:
max DS(v) = v − 2.

The only other general results are:

(1) for v ≥ 7, every Steiner triple system of order v has a disjoint mate, thus 1 /∈ DS(v)
[67],

(2) v − 4 ∈ DS(v) for v = 5.2i − 1, i ≥ 1,

(3) v − 5 ∈ DS(v) for v = 2i+2 − 1, 5.2i − 1, i ≥ 1 [12].

Cooper [9] determined DS(9) (follows also from [12]): DS(9) = {4, 5, 7}. He also deter-
mined the isomorphism classes of all maximal sets of disjoint STS(9)s. At this point, for
no other values of v has DS(v) been determined.
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13 Maximal sets of orthogonal Steiner triple systems

A property stronger than disjointness is the orthogonality property. Two Steiner triple
systems (V,B1), (V,B2) are orthogonal if they are disjoint, and, moreover, whenever
{x, y, a}, {w, z, a} ∈ B1, {x, y, b}, {w, z, c} ∈ B2 then b 6= c. In other words, whenever two
pairs of elements occur with the same third element in triples in one of the systems, they
must occur with different third elements in the triples of the other system. Orthogonal
STSs were originally introduced for the purpose of constructing Room squares.

For all v ≡ 1, 3 (mod 6), v 6= 9, there exists a pair of orthogonal STS(v) [11]; there
exists no such pair for v = 9. Moreover, it is shown in [18] that a set of three pairwise
orthogonal STS(v) exists for all v ≡ 1, 3 (mod 6), except when v ≤ 15, and except
possibly for 24 values of v, all of which are ≡ 3 ( mod 6), and smallest of which is v = 21.
Many multiple sets of pairwise orthogonal STS(v) were constructed in [39] where it is
shown, among other things, that for any positive integer t there exists a set of t pairwise
orthogonal STS(v) provided v ≡ 1 (mod 6) and v is sufficiently large. No maximality of
these sets seems to have been investigated though, and while some of the sets constructed
may indeed be maximal, it appears hard to either verify or disprove maximality.

Concerning maximal sets of orthogonal STS(v), let OM(v) = {r: there exists a
maximal set of r orthogonal STS(v)}. It is known that OM(7) = {2}, OM(9) =
{1}, OM(13) = {1, 2}, OM(15) = {1, 2} [36] but hardly anything else. It is believed that
max OM(v) ≤ v−1

2 but no nontrivial upper bound on max OM(v) has been proved.

14 Row-maximal Room rectangles

Let N be a 2n-set; a Room (r, 2n)-rectangle on N is an r × 2n − 1 array (r ≤ 2n − 1)
whose cells are either empty or contain a 2-subset of N . Each element of N occurs in
exactly one cell of each row and in at most one cell of each column, and no 2-subset
appears more than once in the array. A Room (2n − 1, 2n)-rectangle is called a Room
square (of order 2n, or of side 2n − 1). A Room (r, 2n) rectangle is row-maximal if no
further row can be added to it to produce a Room (r + 1, 2n)-rectangle.

The figures are pairs (f, α) where f is a 1-factor of K2n on a given 2n-set N , and α is
an injection from f into {1, 2, . . . , 2n−1}. Two figures (f1, α1), (f2, α2) are compatible if
α−1

1 (i) ∩ α−1
2 (i) = ∅ whenever α−1

1 (i) 6= ∅ and α−1
2 (i) 6= ∅. Less formally, the figures are

rows with 2n− 1 cells of which n− 1 are empty such that the n nonempty cells contain a
partition of N into 2-subsets; two such rows are compatible if no element occurs in any
of the 2n− 1 columns more than once.

Here we have the following result.
Let

MRR(2n) = {r : there exist a row-maximal Room (r, 2n)-rectangle}.

A row-maximal Room (r, 2n)-rectangle exists if

(i) (r, 2n) = (1, 4)

(ii) n ≤ r ≤ 2n− 1 except when (r, 2n) ∈ {(2, 4), (3, 4), (5, 6)}.

Indeed, (i) is trivial while (ii) follows from the fact that there exists no Room square
of order 4 or 6 (i.e. there exists no Room (3, 4)-rectangle or Room (5, 6)-rectangle, and
there exists no Howell design H(2, 4) [19]. It remains to be observed that while a Howell
design H(5, 8) does not exist, either, a row-maximal Room (5, 8)-rectangle does:
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12 34 56 78 − − −
− − − 13 24 57 68
67 − 14 − 58 23 −
− 15 − 26 − 48 37
38 − 27 − 16 − 45

(For a general reference on Room squares and Howell designs, see, e.g., [19]).

15 Packings of dominoes

A different kind of a problem on packing dominoes onto a square n × n board was
considered in [40]. It is trivial to see that the maximum number M (d)(n) of dominoes
(1× 2 tiles) that may be packed onto an n×n board (without overlap) is n2

2 if n is even,
and n2

2 − 1 when n is odd. The authors of [40] were interested in the minimum number
m(d)(n) of dominoes that can be placed on an n×n board in such a way that no further
domino can be placed on it without an overlap. It is shown in [40] that m(d)(n) = n2

3 if
n ≡ 0 (mod 3), and m(d)(n) > n2

3 + n
111 otherwise, provided n is large.

While m(d)(n) = bn2+2
3 c for 2 ≤ n ≤ 12, the exact value of m(d)(n) for n 6≡

0 (mod 3) is not known. The best upper bound known is m(d)(n) < n2

3 + n
12 + 1. In any

case, in any maximal packing of dominoes roughly at least two thirds of the cells must
be covered.

Let S(d)(n) = {r: there exists a maximal packing of the n× n board with exactly m
dominoes}. The constructions given in [40] allow one to deduce that

S(d)(n) =
{
n2

3 ,
n2

3 + 1, . . . , bn
2

2 c
}

when n ≡ 0 (mod 3), and{
n2

3 + n

12 + 1, n
2

3 + n

12 + 2, . . . , bn
2

2 c
}
⊆ S(d)(n) for n 6≡ 0 (mod 3).

The case of maximal packing of “dominoes” on triangular and hexa(gonal) boards
is also considered in [40]. For example, a “domino” for a hexaboard is a pair of two
neighbouring hexagonal cells. Hexa board itself has a triangular shape and consists of n
rows containing a total of

(
n
2
)
hexagonal cells.

While clearly one can cover the entire n-hexaboard (a board with n rows) by bn(n+1)
4 c

dominoes (except for one hexagonal cell when
(

n
2
)
is odd), in this case one is also able

to determine the minimum number of dominoes in a maximal packing; this minimum
equals bn(n+1)

6 c. Thus this case turns out to be easier than that of the regular n × n
board (cf. [40]).

Conclusion and some open problems

This survey cannot, and does not attempt to, encompass all situations where the spec-
trum problem for maximal designs and configurations arises - this would anyway be
virtually impossible. There are many further examples of problems of the kind similar to
those explored above. To name just a few further examples of problems that have been
studied to various degrees of depth in the literature, maximal sets of orthogonal hamil-
tonian cycles [46], maximal sets of orthogonal hamiltonian decompositions [46], maximal
sets of disjoint 1-factorizations [2], [9] maximal sets of orthogonal 1-factorizations (or,
equivalently, dimension-maximal Room cubes) [2], maximal k-cliques [21], [23], [26], [35],
maximal partial projective planes [20], and several others come to mind.
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A concept closely related to maximal configurations is that of premature configura-
tions (see, e.g., [4], [62]). While maximal configurations are not extendible, premature
configurations are not completable (to maximum configurations) but may themselves not
be maximal. Although in the context of some of the problems discussed above, prema-
ture configurations have been explored in the literature, for example, premature sets of
1-factors (cf. Section 1), premature sets of latin parallelepipeds (cf. Section 6), or prema-
ture sets of MOLS (cf. Section 8), we refrained in this article from discussing premature
configurations in more detail.

The spectrum problems treated in Sections 1, 2, 3, 9 and 14 have been solved com-
pletely. In the remaining sections, many open problems remain. Some open problems
that I would like to see solved, or at least seriously attacked, are:

(i) Maximal partial Steiner systems S(2, 4, v).
Here the figures are 4-subsets of a given v-set; two 4-subsets are compatible if
they intersect in at most one element. Let S4(v) be the spectrum for maximal
partial Steiner systems S(2, 4, v), and let m4(v) and M4(v) be the smallest and
largest element of S4(v), respectively. The numbersM4(v) have been determined
by Brouwer [6] (cf. also [66]. The numbers m4(v) and the spectrum S4(v) have
not been determined yet.

(ii) Maximal partial Room squares.
Here I am not aware of any results in this direction.

It is hoped that by bringing together the most up-to-date results on these and poten-
tially many other similar or related problems a renewed interest will be generated.
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