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Abstract
We study a differential inequality involving a multiplier transformation and consequently get some suf-
ficient conditions in terms of certain simple differential inequalities for normalized analytic functions to
be starlike and convex of order β, 0 ≤ β < 1.
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1 Introduction

Let H be the class of functions analytic in the open unit disk E = {z : |z| < 1} and for
a ∈ C (set of complex numbers) and n ∈ N = {1, 2, 3, · · · }, let H[a, n] be the subclass of
H consisting of functions of the form f(z) = a + anz

n + an+1z
n+1 + · · · . Let A be the

class of all functions f which are analytic in E and normalized by the conditions that
f(0) = f ′(0)− 1 = 0. Thus, f ∈ A has the Taylor series expansion

f(z) = z +
∞∑
k=2

akz
k.

Denote by S∗(β) and K(β), the classes of starlike functions of order β and convex func-
tions of order β respectively, which are analytically defined as under:

S∗(β) =
{
f ∈ A : <

(
zf ′(z)
f(z)

)
> β, 0 ≤ β < 1, z ∈ E

}
and

K(β) =
{
f ∈ A : <

(
1 + zf ′′(z)

f ′(z)

)
> β, 0 ≤ β < 1, z ∈ E

}
.

We shall use S∗ and K to denote S∗(0) and K(0), respectively which are the classes
of univalent starlike (w.r.t. the origin) and univalent convex functions.

Let Ap denote the class of functions of the form f(z) = zp+
∞∑

k=p+1
akz

k, p ∈ N, which

are analytic and multivalent in the open unit disk E. Note A1 = A. For f ∈ Ap, define
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the multiplier transformation Ip(n, λ) as

Ip(n, λ)f(z) = zp +
∞∑

k=p+1

(
k + λ

p+ λ

)n
akz

k, (λ ≥ 0, n ∈ Z).

The operator Ip(n, λ) has been recently studied by Aghalary et al. [1]. Earlier, the
operator I1(n, λ) was investigated by Cho and Kim [2] and Cho and Srivastava [3],
whereas the operator I1(n, 1) was studied by Uralegaddi and Somanatha [10]. I1(n, 0) is
the well-known Sălăgean [9] derivative operator Dn, defined as:

Dnf(z) = z +
∞∑
k=2

knakz
k, N0 = N ∪ {0},

where f ∈ A. In 1989, the operator I1(n, 0) has been studied by Owa, Shen and Obradovič
[7]. Recently, Li and Owa [5] studied the operator I1(n, 0).

For two analytic functions f and g in the unit disk E, we say that a function f is
subordinate to a function g in E and write f ≺ g if there exists a Schwarz function w
analytic in E with w(0) = 0 and |w(z)| < 1, z ∈ E such that f(z) = g(w(z)), z ∈ E.
In case the function g is univalent, the above subordination is equivalent to f(0) = g(0)
and f(E) ⊂ g(E).

In the present paper, we study the differential inequality defined by the multiplier
transformation Ip(n, λ) in the open unit disk E. As special cases to our main result, we
obtain starlikeness and convexity of members of the class A in terms of certain simple
differential inequalities. To prove our main result, we shall make use of following lemma
of Hallenbeck and Ruscheweyh [4].

Lemma 1. Let G be a convex function in E, with G(0) = a and let γ be a complex
number, with <(γ) > 0. If F (z) = a + anz

n + an+1z
n+1 + · · · , is analytic in E and

F ≺ G, then
1
zγ

∫ z

0
F (w)wγ−1 dw = 1

nzγ/n

∫ z

0
G(w)w

γ
n−1 dw

2 Main Theorem

Theorem 2. Let α, β be real numbers such that α > 2
1− β , 0 ≤ β < 1 and let

0 < M ≡M(α, β, γ, p) = (α+ p+ λ)[α(1− β)− 2]
α[1 + (1− β)(p+ λ)] , (2.1)

If f ∈ Ap satisfies the differential inequality∣∣∣∣(1− α)Ip(n, λ)f(z)
zp

+ α
Ip(n+ 1, λ)f(z)

zp
− 1
∣∣∣∣ < M(α, β, λ, p), z ∈ E, (2.2)

then

<
(
Ip(n+ 1, λ)f(z)
Ip(n, λ)f(z)

)
> β, z ∈ E.
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Proof. Let us define
Ip(n, λ)f(z)

zp
= u(z), z ∈ E.

Differentiate logarithmically, we obtain

zI ′p(n, λ)f(z)
Ip(n, λ)f(z) − p = zu′(z)

u(z) (2.3)

In view of the equality

zI ′p(n, λ)f(z) = (p+ λ)Ip(n+ 1, λ)f(z)− λIp(n, λ)f(z),

(2.3) reduces to
Ip(n+ 1, λ)f(z)
Ip(n, λ)f(z) = 1 + zu′(z)

(p+ λ)u(z)
or

1
p+ λ

zu′(z) = Ip(n+ 1, λ)f(z)
zp

− Ip(n, λ)f(z)
zp

.

Therefore, in view of (2.2), we have

u(z) + α

p+ λ
zu′(z) ≺ 1 +Mz. (2.4)

In view of Lemma 1
(
selecting γ = p+ λ

α

)
from (2.4), we have

u(z) ≺ 1 + (p+ λ)Mz

α+ p+ λ
,

or
|u(z)− 1| < (p+ λ)M

α+ p+ λ
< 1,

therefore, we obtain
|u(z)| > 1− (p+ λ)M

α+ p+ λ
(2.5)

Write Ip(n+ 1, λ)f(z)
Ip(n, λ)f(z) = (1− β)w(z) + β, 0 ≤ β < 1 and therefore

Ip(n+ 1, λ)f(z)
zp

= u(z)[(1− β)w(z) + β].

Therefore (2.2) reduces to

|(1− α)u(z) + αu(z)[(1− β)w(z) + β]− 1| < M.

We need to show that <(w(z)) > 0, z ∈ E. If possible, suppose that <(w(z)) 6> 0, z ∈ E,
then there must exist a point z0 ∈ E such that w(z0) = ix, x ∈ R. To prove the required
result, it is now sufficient to prove that

|(1− α)u(z0) + αu(z0)[(1− β)ix+ β]− 1| ≥M. (2.6)

By making use of (2.5), we have

|(1− α)u(z0) + αu(z0)[(1− β)ix+ β]− 1|
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≥ |[1− α(1− β) + α(1− β)ix]u(z0)| − 1
=

√
[1− α(1− β)]2 + α2(1− β)2x2 |u(z0)| − 1

≥ |1− α(1− β)| |u(z0)| − 1

≥ |1− α(1− β)|
(

1− (p+ λ)M
α+ p+ λ

)
− 1 ≥M. (2.7)

Now (2.7) is true in view of (2.1) and therefore, (2.6) holds. Hence <(w(z)) > 0 or

<
[
Ip(n+ 1, λ)f(z)
Ip(n, λ)f(z)

]
> β, 0 ≤ β < 1, z ∈ E.

3 Deductions

On writing p = 1 and λ = 0 in Theorem 2, we obtain:

Corollary 3. Let α, β be real numbers such that α > 2
1− β , 0 ≤ β < 1 and let f ∈ A

satisfy the differential inequality∣∣∣∣(1− α)D
nf(z)
z

+ α
Dn+1f(z)

z
− 1
∣∣∣∣ < (1 + α)[α(1− β)− 2]

α(2− β) , z ∈ E,

then
<
(
Dn+1f(z)
Dnf(z)

)
> β, 0 ≤ β < 1, z ∈ E.

Taking p = 1, n = 0 and λ = 0 in Theorem 2, we have the following result.

Corollary 4. If α, β are real numbers such that α >
2

1− β , 0 ≤ β < 1 and f ∈ A
satisfies ∣∣∣∣(1− α)f(z)

z
+ αf ′(z)− 1

∣∣∣∣ < (1 + α)[α(1− β)− 2]
α(2− β) , z ∈ E,

then f ∈ S∗(β).

Setting p = n = 1 and λ = 0 in Theorem 2, we obtain:

Corollary 5. Let α, β be real numbers such that α > 2
1− β , 0 ≤ β < 1 and let f ∈ A

satisfy
|f ′(z) + αzf ′′(z)− 1| < (1 + α)[α(1− β)− 2]

α(2− β) , z ∈ E,

then f ∈ K(β).

Write p = 1, n = 0 and λ = 1 in Theorem 2, to get the following result.

Corollary 6. Let α, β be real numbers such that α > 2
1− β , 0 ≤ β < 1 and let f ∈ A

satisfy ∣∣∣∣(1− α

2

) f(z)
z

+ α

2 f
′(z)− 1

∣∣∣∣ < (2 + α)[α(1− β)− 2]
α(3− 2β) , z ∈ E,

then
<
(

1 + zf ′(z)
f(z)

)
> β, z ∈ E.
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Remark 7. From Theorem 2, it follows, if α > 2
1− β , 0 ≤ β < 1 and f ∈ Ap satisfies∣∣∣∣( 1

α
− 1
)
Ip(n, λ)f(z)

zp
+ Ip(n+ 1, λ)f(z)

zp
− 1
α

∣∣∣∣ < (α+ p+ λ)[α(1− β)− 2]
α2[1 + (1− β)(p+ λ)] , z ∈ E,

then
<
(
Ip(n+ 1, λ)f(z)
Ip(n, λ)f(z)

)
> β, z ∈ E.

Letting α→∞ in Remark 7, we have the following result.
Corollary 8. Let β (0 ≤ β < 1) be a real number and let f ∈ Ap satisfy∣∣∣∣Ip(n+ 1, λ)f(z)

zp
− Ip(n, λ)f(z)

zp

∣∣∣∣ < 1− β
1 + (1− β)(p+ λ) , z ∈ E,

then
<
(
Ip(n+ 1, λ)f(z)
Ip(n, λ)f(z)

)
> β, z ∈ E.

Setting p = 1 and λ = 0 in Corollary 8, we get:
Corollary 9. If f ∈ A satisfies∣∣∣∣Dn+1f(z)

z
− Dnf(z)

z

∣∣∣∣ < 1− β
2− β , z ∈ E,

then
<
(
Dn+1f(z)
Dnf(z)

)
> β, 0 ≤ β < 1, z ∈ E.

Writing p = 1 and n = λ = 0 in Corollary 8, we obtain the following result of Oros
[6].
Corollary 10. If f ∈ A satisfies∣∣∣∣f ′(z)− f(z)

z

∣∣∣∣ < 1− β
2− β , z ∈ E,

then f ∈ S∗(β), 0 ≤ β < 1.
Taking p = n = 1 and λ = 0 in Corollary 8, we get:

Corollary 11. If f ∈ A satisfies

|f ′′(z)| < 1− β
2− β , z ∈ E,

then f ∈ K(β), 0 ≤ β < 1.
Note that for β = 0, the above result was obtained by Mocanu [8].
Setting p = λ = 1 and n = 0 in Corollary 8, we obtain the following result.

Corollary 12. If f ∈ A satisfies∣∣∣∣f ′(z)− f(z)
z

∣∣∣∣ < 2(1− β)
3− 2β , 0 ≤ β < 1, z ∈ E,

then
<
(

1 + zf ′(z)
f(z)

)
> β, z ∈ E.
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