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Slovakia
E-mail: actamath@savbb.sk

Scope of Journal: Acta Universitatis Matthiae Belii, series Mathematics, publishes
original research articles and survey papers in all areas of math-
ematics and theoretical computer science. Occasionally valuable
papers dealing with applications of mathematics in other fields
can be published.

Manuscripts: We only consider original articles not under consideration in other
journal and written in English. For the preparation of your
manuscript use please aumbart LATEX document class, available
from http://actamath.savbb.sk. Send the source file and fig-
ures needed to compile the output form as an attachment via
e-mail to the address actamath@savbb.sk.

Subscriptions: Acta Universitatis Matthiae Belii series Mathematics is usu-
ally published once a year. The journal is available for ex-
change. Information on the exchange is available from the Ed-
itorial Office. On-line version of the journal is available at
http://actamath.savbb.sk.



Matej Bel University
Faculty of Natural Sciences

Acta Universitatis Matthiae Belii
series Mathematics

Volume 23 (2015)





Acta Universitatis Matthiae Belii, series Mathematics
Volume 23 (2015), 3–8, ISSN 1338-712X, ISBN 978-80-557-1038-9

Online version available at http://actamath.savbb.sk

Professor Ľubomír Snoha, 60 years old

Gabriela Monoszová
Department of Mathematics, Faculty of Natural Sciences, Matej Bel University,

Tajovského 40, 974 01 Banská Bystrica, Slovakia
gabriela.monoszova@umb.sk

Alfonz Haviar
Povstalecká 6, 974 09 Banská Bystrica, Slovakia

Received September 29, 2015
Revised October 27, 2015
Accepted in final form November 5, 2015
Communicated with Miroslav Haviar.

On 18 March 2015, we celebrated the 60th birthday of
our colleague, Prof. RNDr. Ľubomír Snoha, DSc., DrSc.
His arrival to our Department of Mathematics in 1978 has
significantly influenced its further development. With his
admirable diligence, commitment and general knowledge
(which he acquired during his studies at the Faculty of
Natural Sciences, Comenius University in Bratislava), he
proved that even small departments can achieve excellent
results at the international level.

Ľubomír Snoha attended the secondary school in
Lučenec between 1970 and 1973. After graduation in 1973,
he enrolled at the Faculty of Natural Sciences, Comenius
University in Bratislava, where he studied Mathematics
and Physics from 1973 to 1978. Due to his excellent study
results (Honours diploma) and admirable achievements
within his master’s thesis (on a theorem of Sophie Piccard
and on points of connectivity and Darboux continuity of
real functions), that were later published, he managed to acquire the post-graduate aca-
demic degree RNDr (Rerum Naturalium Doctor), only several months after finishing his
studies in 1978. He was recommended by the Professors Štefan Znám and Jaroslav Smí-
tal from the Faculty of Natural Sciences, Comenius University, to work as an assistant
at the then Pedagogical Faculty in Banská Bystrica.

In 1978, he was appointed as an assistant to the Department of Mathematics of the
above-mentioned faculty, and works there to this day. Today, the department is a part
of the Faculty of Natural Sciences of Matej Bel University. In 1979, immediately after
finishing his duty in the army, he went onto to hold a position of teaching, and in 1980,
he was appointed to the Faculty of Mathematics and Physics at the Comenius University
in Bratislava, where he studied within an external research assistantship (today known as
a postgraduate doctoral study) in the field of Mathematical Analysis. During his studies
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there, he was tutored by Prof. Jaroslav Smítal, under whose guidance he elaborated two
works within ŠVOČ (Student Scientific and Professional Activity), the master’s thesis
and the RNDr dissertation. Being an enthusiast, he regularly attended the scientific
seminars that were led by Prof. Tibor Šalát (seminar on real functions) and Prof. Jaroslav
Smítal (seminar on dynamical systems) at the Faculty of Mathematics and Physics,
Comenius University in Bratislava. In 1986, he became a Candidate of Sciences of the
Faculty of Mathematics and Physics, after he had defended the doctoral dissertation
on dynamical systems, in which he completed the characterization of minimal periodic
orbits of continuous maps of an interval (the same results were independently proven
by Ll. Alseda, J. Llibre and R. Serra). At the age of 34, he managed to obtain the
scientific-pedagogical degree “docent” (equivalent to associate professor) at the Faculty
of Mathematics and Physics, Comenius University (in 1989). In 2005, he was awarded an
academic degree DSc (the Doctor of Science) by the Academy of Sciences of the Czech
Republic and in 2007, an academic degree DrSc (the Doctor of Science) by the Comenius
University in Bratislava. In 2008, the Silesian University in Opava awarded him the
scientific-pedagogical degree of a Professor.

Initially, he dealt with the theory of real functions, however, he soon moved to the
theory of discrete dynamical systems, in which he is a highly respected figure today. He
deals mainly with topological dynamics, chaos theory and low-dimensional dynamics. He
began with interval dynamics, explored minimal periodic orbits, generic and dense chaos
and mappings of type 2∞. For instance, he found a full characterization of generically
chaotic maps and densely chaotic maps. He also published several papers with V. Jiménez
López; one of their outstanding findings is that there are no continuous piecewise linear
maps (with finitely many pieces and no constant piece) of type 2∞. Along with inter-
val dynamics, he engaged in dynamics of triangular maps (skew products), dynamics on
graphs, dendrites and spaces with a free interval, as well as in dynamics on metric spaces.
He explored, for example, ω-limit sets, topological transitivity, topological entropy, stro-
boscopical property, scrambled sets etc. In collaboration with Ll. Alseda, S. Kolyada
and J. Llibre, they investigated the connection between qualitative dynamical properties
and possible values of topological entropy. In an extensive paper with F. Blanchard and
W. Huang they investigated in great depth the question of how large (from the topolog-
ical point of view) scrambled sets may be. In the theory of non-autonomous dynamical
systems, his seminal paper with S. Kolyada on topological entropy is best known. Jointly
with J. Auslander and S. Kolyada they introduced the notion of the functional envelope
of a dynamical system. With M. Misiurewicz and S. Kolyada they explored the topology
of the space of transitive interval maps; they propose the name Dynamical Topology for
the investigation of topological properties of spaces of maps that can be described in
dynamical terms.

His favourite subjects within his field of scientific research are minimal dynamical
systems, i.e. the systems with all orbits dense. He is a highly reputable expert in the
field of topological structure of minimal sets and topological properties of minimal maps.
Jointly with S. Kolyada and S. Trofimchuk they showed that minimal maps in compact
metric spaces are almost one-to-one. They also proved that proper minimal sets on
compact connected 2-manifolds are nowhere dense. Further, they described topological
structure of minimal sets of fibre-preserving maps in graph bundles. Another deep result
on minimality, now obtained jointly with F. Balibrea, T. Downarowicz, R. Hric and V.
Špitalský, is that an almost totally disconnected compact metric space admits a minimal
map if and only if either it is a finite set or it has no isolated point. Let us also mention
that very recently, with T. Downarowicz and D. Tywoniuk, they have constructed a
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continuum that is uniquely minimal in the sense that its group of self-homeomorphisms
is isomorphic to Z and all the self-homeomorphisms, except of the identity, are minimal.

He has been an author or co-author of approximately 50 scientific works that have
been followed by many respected foreign mathematicians. He has given lectures on many
foreign scientific conferences, very often as an invited speaker. He is an editor of Journal of
Difference Equations and Applications (Taylor and Francis), Non-autonomous Dynamical
Systems (de Gruyter) and Acta Universitatis Matthiae Belii, series Mathematics.

Prof. Snoha spent a year as a visiting professor at University of Murcia. He has visited
Max Planck Institute for Mathematics in Bonn several times, and spent a semester in
Stefan Banach International Mathematical Center in Warsaw. He has also visited many
other research institutes and universities (Barcelona, Murcia, Lisbon, Marseille, Paris,
Oberwolfach, Vienna, Warsaw, Kiev, Santiago, Talca, Vadodara, Hefei, ...).

Since 1995, he has been running a scientific seminar on Dynamical Systems at Matej
Bel University. He is the team leader of the dynamical systems group whose members
are also his former PhD students, Roman Hric, Vladimír Špitalský and Matúš Dirbák.

Ľ. Snoha loves teaching. He has been teaching mainly subjects from the field of math-
ematical analysis and dynamical systems. Apart from scientific and pedagogical activities
at the university, he has dealt with gifted pupils in elementary and secondary schools. In
the 1980s, he was an organizer of ten summer camps for young ‘mathematicians’ (in fact
schoolchildren) from central Slovakia and he led mathematics correspondence courses in
problem solving for secondary school students from central Slovakia for five years. More-
over, he has lectured dozens of seminars for gifted secondary school students, mainly
from grammar schools in the regions of central Slovakia.

He has always endeavoured to build the department, faculty, university, mainly for
the purpose of maintaining a high level of science. In 1992, after merging the former
faculties in Banská Bystrica, the present Matej Bel University came into existence, in
which he was appointed the Vice-Rector for Science and as such, he urged to enhance
the role of science at the university. In other words, his main idea was to substitute the
regional research for international standards.

Our colleague, Ľ. Snoha, has left a deep mark in our department during his 37 years
of work and has succeeded in building an outstanding school of dynamical systems. His
opinions have had a positive influence on the direction of the department in recent years.
Thanks also to him, the Department of Mathematics has been valued as one of the best
mathematics departments in Slovakia today.

Dear Ľubo, on the occasion of your jubilee, we would like to thank you for your
on-going and outstanding work you have done for our department and mathematics
in Slovakia. We wish you a good health, a success not only in scientific but also in
pedagogical activities, and a lot of professional and personal satisfaction.
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Introduction

It is the aim of this article to provide a unified view for, and a survey of, a class of
problems that occur often in combinatorics, graph theory and related areas but also in
“real life”.

We want to discuss a situation which typically is as follows. Given is a finite set F
of objects called figures, and a symmetric irreflexive relation R on F (the compatibility
rule) which specifies when two figures are compatible. An (F , R)-configuration or simply
a configuration is a set of pairwise compatible figures. A configuration C is maximal
if there is no f ∈ F , f /∈ C such that f ∪ C is also a configuration. In other words,
maximality is here with respect to inclusion.

More generally, the compatibility rule R is a function from a subset of the power set
of F into {0, 1} but we will restrict ourselves to examples which are all of the simpler
type above.

The size of a configuration is the number of its figures. An (F , R)-configuration is
maximum if it is maximal and contains the largest possible number of figures. Maximum
configurations are sometimes called maximum packings or just packings.

Our interest will be mainly in the possible sizes of maximal (F , R)-configurations, i.e.
in the spectrum Sp(F , R) defined by

Sp(F , R) = {m : there exists a maximal (F , R)-configuration of size m}.

To determine the spectrum Sp(F , R), one usually needs to determine first the size of
the smallest maximal, and maximum configurations, that is, the size of the smallest and
the largest element of Sp(F , R).

We may envisage a procedure under which one tries to build maximal (maximum)
configurations of given kind in a naive way: given any configuration, try to enlarge it
by adjoining another figure subject to the compatibility rule, then another one, and so

Copyright c© 2015 Matej Bel University
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on, until this is no longer possible, i.e. you get “stuck”. The elements of the spectrum
represent sizes of all possible outcomes of such a process.

What follows is a (non-exhaustive) survey of problems falling under this framework,
both completely solved (unfortunately, very few), partially solved (a few more) and those
that remain largely open. This article may be viewed as an expanded and updated version
of [61].

Our first example is a problem that has been solved completely.

1 Maximal sets of 1-factors

The figures here are 1-factors of the complete graph K2n on a given set of 2n vertices;
two such 1-factors are compatible if they are edge-disjoint. Let M(2n) be the spectrum
for maximal sets of 1-factors, i.e.

M(2n) = {m : there exists a maximal set of m edge-disjoint 1-factors in K2n}.

As a corollary to Dirac’s Theorem (see, e.g., [70]) one obtains immediately

M(2n) ⊆ {n, n+ 1, . . . , 2n− 1}.
Trivially, 2n− 2 /∈M(2n) since the complement of the union of 2n− 2 one-factors is

itself a 1-factor. Furthermore, n /∈ M(2n) if n is even [16]. On the other hand, when k
is odd and k ∈ {n, n+ 1, . . . , 2n− 1} then k ∈M(2n), as shown by the following simple
construction.

Let Zk ∪ {ai : i = 1, 2, . . . , 2n − k} be the set of vertices of K2n and let the 1-factor
F be defined by

F = {{a1, 0}, {a2, 1}, {a3, k − 1}, . . . , {a2n−k−1,
1
2(2n− k − 1)},

{a2n−k, k −
1
2(2n− k − 1)}, {1

2(2n− k − 1) + 1, k − 1
2(2n− k − 1)− 1},

{1
2(2n− k − 1) + 2, k − 1

2(2n− k − 1)− 2}, . . . , {1
2(k − 1), 1

2(k + 1)}}

(the edges in the last two lines are used only when k 6= n).
Developing F modulo k yields a maximal set of 1-factors, since the complement of

the union of these 1-factors contains an odd component K2n−k.
The case of even k turned out to be much more difficult. It was shown in [60] that

for k even, k ∈M(2n) if and only if 1
3 (4n+ 4) ≤ k ≤ 2n− 4.

Explicitly, we have for small values of n;

M(4) = {3},M(6) = {3, 5},M(8) = {5, 7},M(10) = {5, 7, 9},
M(12) = {7, 9, 11},M(14) = {7, 9, 11, 13},M(16) = {9, 11, 12, 13, 15}, . . . ,
M(30) = {15, 17, 19, 21, 22, 23, 24, 25, 27} and so on.

Although the spectrum for maximal sets of 1-factors has thus been completely deter-
mined, several further problems arise when one puts additional conditions on the 1-factors
comprising the set in question. Among several possible variations of the above problem
that have been treated, at least to some degree, in the literature, is the one concerning
maximal perfect sets of 1-factors. In this variation of the problem, two 1-factors are com-
patible if they are edge-disjoint and their union is a hamiltonian cycle. LetMperf (2n) be
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the spectrum of maximal perfect sets of 1-factors. It is currently not known whether the
maximum possible value 2n − 1 is a member of Mperf (2n) for all n since to determine
this is equivalent to determining whether there exists a perfect 1-factorization of K2n for
all n. The latter remains a difficult unsolved problem (cf., e.g., [56]).

It is easily verified that Mperf (4) = {3},Mperf (6) = {3, 5},Mperf (8) = {5, 7} but the
determination ofMperf (2n) becomes much more difficult for larger orders. Petrenjuk [58],
[59] determined the setsMperf (2n) for 2n = 10, 12: Mperf (10) = {5, 6, 7, 9},Mperf (12) =
{6, 7, 8, 9, 10, 11}. It is established in [56] that Mperf (14) = {7, 8, 9, 10, 11, 12, 13} ∪ I
where either I = ∅ or I = {6}. Matan Ziv-Av (private communication) has now shown
that 6 /∈Mperf (14).

When n is an odd prime then n ∈ Mperf (2n) but not much else seems to be known
about Mperf (2n).

One may, of course, consider also the situation where the union of any two 1-factors
in a set F of disjoint 1-factors is isomorphic to a fixed 2-regular factor Q, not necessarily
a hamiltonian cycle. Such a set has been called Q-uniform or simply uniform. Let
MQ(2n) = {s: there exists a maximal Q-uniform set of s 1-factors ofK2n}. The following
results concerning small maximal uniform sets have been established in [56] with the aid
of computer (below Q is represented just as a partition of 2n).

M4+4(8) = {7},M6+4(10) = {3, 9},
M4+4+4(12) = {3},M6+6(12) = {3, 5, 11},M8+4(12) = {6, 9},
M6+4+4(14) = {3, 5, 7},M8+6(14) = {5, 6, 7},M10+4(14) = {5, 6, 7, 8},
M4+4+4+4(16) = {7, 15},M6+6+4(16) = M8+4+4(16) = {3, 4, 5, 7},
{5, 6, 7, 8, 9, 10} ⊆M8+8(16).

2 Maximal sets of 2-factors

The figures here are 2-factors in the complete graph on a given set of n vertices; two
2-factors are compatible if they are edge-disjoint.

Let M (2)(n) = {m: there exists a maximal set of m edge-disjoint 2-factors of Kn}.
Petersen’s theorem about the existence of a 2-factor in any regular graph of even degree
(cf. [70]) implies that for odd n,

M (2)(n) = {1
2(n− 1)}.

The situation is somewhat more involved for n even. This is due to the fact that for
odd d, there exist regular graphs of degree d without proper regular factors. König [53]
calls such graphs primitive. An obvious extension of König’s example for d = 3 yields a
primitive graph of odd degree d (d > 1) with (d+ 1)2 vertices. It is shown in [42] that
this is the minimum number of vertices a primitive graph of odd degree d can have. This
implies that the spectrum M (2)(n) for n even is the following interval:

M (2)(n) = {b12(n−√n)c, b12(n−√n)c+ 1, . . . , 1
2(n− 2)}.

In the next two examples, the figures are still 2-factors but of a restricted type.

3 Maximal sets of hamiltonian cycles

The figures here are connected 2-factors of Kn, that is, hamiltonian cycles; two hamilto-
nian cycles are compatible if they are edge-disjoint.



12 Alexander Rosa

Let

MH(n) = {m : there exists a maximal set of m hamiltonian cycles in Kn}.

Put
Dir(n) = {b14(n+ 3)c, b14(n+ 3)c+ 1, . . . , b12(n− 1)c}.

It follows directly from Dirac’s theorem and a result of Nash-Williams (cf. [70]) that
MH(n) ⊆ Dir(n). One would like to show that, in fact, equality takes place here. To
achieve this, consider the following.

Let n be even, n = 2k, and let m be a positive integer, 2m ≤ k. Let G be a regular
graph of degree 2k − 4m with 2k − 2m vertices, and let H = K̄2m∇ G. Similarly, let n
be odd, n = 2k + 1, m be a positive integer, 2m + 1 ≤ k, and let G be a regular graph
of degree 2k − 4m− 1 with 2k − 2m vertices, and let H = K̄2m+1∇ G (here ∇ denotes
the join, cf. [70]).

In order to show that MH(n) = Dir(n), it clearly suffices to show that the graph H,
with G suitably chosen, has a hamiltonian decomposition. Indeed, the complement H̄ of
H is disconnected, and so the set of hamiltonian cycles in any hamiltonian decomposition
is maximal. The corresponding proof that H has a hamiltonian decomposition for G
suitably chosen is given in [42].

The above provides another example of a problem with completely determined spec-
trum.

4 Maximal sets of ∆-factors

The figures are ∆-factors of Kn, that is, 2-factors whose each component is a triangle
(sometimes also called triangle-factors); two ∆-factors are compatible when they are
edge-disjoint. Clearly, here we must have n ≡ 0 (mod 3).

Let ∆(n) = {m: there exists a maximal set of ∆-factors of Kn}.
A classical result of Corrádi and Hajnal [12] states that a graph with n = 3k vertices

and minimum degree at least 2k has a ∆-factor. Thus a maximal set of ∆-factors on 3k
vertices must contain at least k

2 triangle-factors. This implies

∆(n) ⊆ {dn6 e, d
n

6 e+ 1, . . . , bn− 1
2 c}.

It is easily seen that ∆(3) = ∆(6) = {1}, ∆(9) = {4}.
For every odd k, there is a maximal (in fact, maximum) set of 3k−1

2 ∆-factors in
K3k. For every even k ≥ 6, there is maximal set of 3k−2

2 ∆-factors in K3k. This
just restates the fact that for every n ≡ 3 (mod 6) there exists a Kirkman triple system
KTS(n) of order n, and for every n ≡ 0 (mod 6), n ≥ 18, there exists a nearly Kirkman
system NKTS(n) of order n [13].

Furthermore, it is not difficult to establish that 2 /∈ ∆(12), while 5 /∈ ∆(12) folows
from the nonexistence of a nearly Kirkman triple system of order 12. Thus ∆(12) =
{3, 4}.

On the other hand, it is not easy to establish that ∆(15) = {4, 5, 6, 7} (see [30]). More
precisely, it is difficult to show 3 /∈ ∆(15); no computer-free proof of this fact is known
to us. (In [30], all maximal sets of ∆-factors in K15 are enumerated.)

It is proved in [60] that ∆(18) = {4, 5, 6, 7, 8} (this involved showing 3 /∈ ∆(18)),
∆(21) = {4, 5, 6, 7, 8, 9, 10}, and ∆(24) = {4, 5, 6, 7, 8, 9, 10, 11}. It is also shown that
{6, 7, 8, 9, 10, 11, 12, 13} ⊆ ∆(27) but whether or not 5 ∈ ∆(27) remains undecided. Sim-
ilarly, [6, 14] ⊆ ∆(30) but whether 5 ∈ ∆(30) is undecided.
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It was conjectured in [60] that the spectrum ∆(n) contains the interval [dn
6 e, n−1

2 ],
and proved that [dn

6 e, dn
4 e] ∈ ∆(n). Several further constructions for maximal sets of

∆-factors are given in [60] but especially for k in the interval [ n
4 ,

n
3 ], new ideas appear to

be needed. Also, for k = dn
6 e when n ≡ 0, 9 or 12 (mod 18), not a single maximal set of

k ∆-factors is known to exist (and dn
6 e /∈ ∆(n) for n = 9, 12, 18). So, e.g., whether or

not 6 ∈ ∆(33) remains an open problem.

5 Maximal partial latin squares and latin cubes

The figures are elements of N ×N ×N , i.e. ordered triples from a set N of n elements;
two such triples are compatible if they agree in at most one coordinate. We can take
N = {1, 2, . . . , n}.

It is somewhat more convenient to think of a partial latin square as an n × n array
whose cells are either empty or contain an element of N such that no element occurs in
a cell of any row or column more than once. A partial latin square is then maximal if no
further nonempty cell can be filled without violating this condition.

Let ML(n) be the spectrum of maximal partial latin squares of order n, that is,

ML(n) = {m : there exists a maximal partial latin square of order n
with exactly m nonempty cells}.

The set ML(n) was investigated in [44]. Clearly, if t < n2

2 or if t = n2 − 1 then
t /∈ML(n). It is shown in [44] that when either

(i) t = n2

2 + k, 1 ≤ k ≤ n
2 where k is odd and n is even, or

(ii) t = dn2

2 e+ k, 1 ≤ k ≤ n−1
2 where k is odd and n is odd,

we also have t /∈ML(n).
It was also shown in [44] that the spectrum ML(n) contains all integers t in the

interval [ n2

2 , n
2 − 2] except possibly when (1) t = n2

2 + k, n even, k odd, n
2 < k ≤ n− 1,

or when (2) t = n2+1
2 + k, n odd, k odd, n−1

2 ≤ k ≤ n− 1. It is conjectured in [44] that
these possible exceptions are in fact true exceptions.

Recently, in [5] an analogous question was studied for partial latin cubes. Here the
figures are elements of N × N × N × N , i.e. ordered quadruples from a set N of n
elements. Two such quadruples are compatible if they agree in at most two coordinates.
One can picture a partial latin cube as a set of layers where each layer is a partial latin
square, and no element occurs in the same row or column of distinct layers. A partial
latin cube is then maximal if no further cell can be filled without violating this.

LetML(3)(n) = {m: there exists a maximal partial latin cube of order n with exactly
m nonempty cells}.

Neither n3 − 1 nor n3 − 2 can belong to ML(3)(n). In [5] it is shown that, unlike for
maximal partial latin squares, there exist maximal partial latin cubes with substantially
less than half of its n3 cells filled. In fact, while any maximal partial latin cube must
contain at least t > (1− 1√

2n
3 > 0.29289n3 nonempty cells, there exist maximal partial

latin cubes with n3

3 + O(n2) nonempty cells. For instance, when n ≡ 1 (mod 3), there
exists a maximal partial latin cube with at most n3+9n2−6n−4

3 nonempty cells.
A large portion of spectrum is determined in [5]: when n is even, n ≥ 10 then

[ n3

2 , n
3 − 3] ⊆ ML(3)(n), and when n is odd, n ≥ 21 then [ n3+n

2 , n3 − 3] ⊆ ML(3)(n).
But for less than “half-full” maximal partial latin cubes, gaps remain (cf. also [55]).
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In the same paper [5], the spectra ML(3)(n) for n = 2, 3, 4 are determined almost
completely, with only three values in the case of n = 4 remaining in doubt. In particular,
it is shown that ML(3)(2) = {4, 5, 8},
ML(3)(3) = {9, 12, 14, 15, . . . , 24, 27},ML(3)(4) = {31, 32, . . . , 61, 64} ∪ S where
S ⊆ {28, 29, 30}.
6 Row-maximal latin rectangles and maximal latin parallelepipeds

Here the figures are permutations of n symbols, say 1, 2, . . . , n; two such permutations
are compatible if they are discordant, i.e. do not agree in any position.

In 1945, M. Hall Jr. proved [41] that if r < n then any r × n latin rectangle can be
extended to a (r + 1)× n latin rectangle. His proof is a nice application of Philip Hall’s
Theorem on systems of distinct representatives.

It follows that the spectrum of row-maximal r × n latin rectangles

MLR(n) = {r : there exists a row-maximal r × n latin rectangle}
consists of a single element, namely n.

The situation changes dramatically as one tries to extend M. Hall’s result to three
dimensions. Now the figures are (n × n) latin squares; they are compatible if they are
disjoint. A latin (n × n × r)-parallelepiped is maximal if it cannot be extended to a
latin (n × n × (r + 1))-latin parallelepiped. Let MLC(n) = {r: there exists a maximal
n× n× r-latin parallelepiped}.

Horák [43] was the first to show that for all n = 2k, there exist infinitely many Latin
(n × n × (n − 2))-parallelepipeds that cannot be completed to a Latin cube of order n
and are therefore maximal. In [31], [50] further results on maximal (n× n (n− 2))-latin
parallelepipeds were obtained. (Clearly, any latin (n×n (n−1))-latin parallelepiped can
be extended to a latin cube of order n.)

Subsequently Kochol [51], [49], [52] proved that for any r, n such that n
2 < r ≤ n− 2

there exists a noncompletable n × n r latin parallelepiped. In [8] both noncompletable
and nonextendible (that is, maximal) latin parallelepipeds are investigated. A maximal
5 × 5 × 2 and a 6 × 6 × 3 latin parallelepiped is produced, and a construction is given
showing that for all even m > 2, there exists a maximal (2m− 1)× (2m− 1)× (m− 1)-
latin parallelepiped. In particular, that shows the existence of a maximal 7× 7× 3-latin
parallelepiped.

The above are first examples of maximal latin parallelepipeds that are less than “half-
full”. But clearly, lots of work remains towards determining the spectrum MLC(n).

7 Row-maximal orthogonal latin rectangles

The figures are pairs of permutations of degree n. Two pairs (P1, P
′
1) and (P2, P

′
2) are

compatible if (P1, P2) and (P ′1, P ′2) are both discordant, and the two 2×n latin rectangles(
P1
P2

)
and

(P ′1
P ′2

)
are orthogonal.

Let MOR(r, n) be a pair of row-maximal orthogonal latin r × n rectangles. Let the
spectrum for row-maximal orthogonal latin (r × n rectangles be MOR(n) = {r: there
exists a MOR(r, n)}.

For small values of n, we have

MOR(1) = MOR(2) = {1},MOR(3) = {3},MOR(4) = {3, 4},
MOR(5) = {3, 5},MOR(6) = {3, 4, 5},MOR(7) = {3, 4, 5, 6, 7},
MOR(8) = {3, 4, 5, 6, 7, 8}.

Several partial results are obtained in [45] towards settling the following conjecture.
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Conjecture. For n ≥ 7,MOR(n) = {r : n
3 < r ≤ n}.

In particular, it is shown in [45] that MOR(r, n) exists if n ≥ 7 and

(i) n
3 < r ≤ n

2 , except possibly when (r, n) = (6, 12)

(ii) 7
9n ≤ r ≤ n

(iii) 2n−1
3 ≤ r ≤ n− 1, r odd

(iv) 3
7n < r < 3

4n, r ≡ 3 (mod 6), n ≡ 1 (mod 2)

(v) 3
5n < r ≤ 3

4n, r ≡ 3 (mod 6), n ≡ 0 (mod 2)

(vi) n
2 ≤ r ≤ 3n+2

4 , r ≡ 0 (mod 2), n ≡ 0 (mod 2).

On the other hand, there exist no MOR(r, n) for r ≤ n
4 .

Several recursive constructions for row-maximal orthogonal latin rectangles are given
in [45]. These, together with the above results, suffice to show, for instance, that {r :
11 ≤ r ≤ 30} ⊆ MOR(30) where the set on the left conincides with the conjectured
spectrum. But in general, quite a few undecided cases remain.

8 Maximal sets of mutually orthogonal Latin squares

This is an extremely important topic, because of its connections to the existence of finite
projective planes.

The figures here are latin squares of order n on N ; two latin squares are compatible if
they are orthogonal. Recall that two latin squares A = (aij), B = (bij) are orthogonal if
|{(aij , bij) : i, j = 1, . . . , n}| = n2, that is, when A and B are superimposed, each ordered
pairs (a, b) with a ∈ A, b ∈ B will appear exactly once.

Let L(n) be the spectrum of sizes of maximal sets of mutually (pairwise) orthogonal
latin squares (MOLS) of order n, i.e.

L(n) = {r : there exists a maximal set of r MOLS of ordern}.

The maximum number of MOLS of order n cannot exceed n − 1, and equals n − 1
whenever n is a prime power. Thus L(n) ⊆ {1, 2, . . . , n − 1}. To determine L(n) in
its entirety would involve, among other things, to settle the existence question for finite
projective planes of order n. Worse yet, even max L(n) remains undetermined for all
values of n other than prime powers or n = 6. Nevertheless, any progress towards
determining L(n) is very desirable.

A latin square without an orthogonal mate is called a bachelor square. It has been
now determined that bachelor squares exist for all n > 3 [29], [69]. Thus 1 ∈ L(n) for all
n > 3. A latin square which has an orthogonal mate but is not contained in any set of
three mutually orthogonal squares is called monogamous (cf. [17]). A monogamous latin
square is known to exist for all orders n > 6 except possibly when n = 2p for some prime
p ≥ 7. Thus 2 ∈ L(n) for all n > 6 except possibly when n = 2p for some prime p ≥ 7.

To determine the set L(n) even for relatively small values of n is not an easy task.
For example, whether or not 4 ∈ L(8) had been an open question for good forty years
before it was recently settled [24].

The set L(n) has now been determined for all n ≤ 9. For n ≤ 7 this has been done
by Drake [22]; the last two outstanding values for n = 8 and n = 9 have been settled in
[24]. In particular, we have
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L(3) = {2}, L(4) = {1, 3}, L(5) = {1, 4}, L(6) = {1}, L(7) = {1, 2, 6},
L(8) = {1, 2, 3, 7}, L(9) = {1, 2, 3, 4, 5, 8}.

We have further {1, 2} ⊆ L(10), {1, 2, 3, 4, 10} ⊆ L(11), {1, 2, 3, 5} ⊆ L(12),
{1, 2, 3, 4, 6, 12} ⊆ L(13),{1, 2, 3, 4, 7, 8, 11, 15} ⊆ L(16) (cf. [1]), [3]).

As for general results, a theorem of Bruck [7] implies that for n > 4, n − 2 /∈ L(n),
n−3 /∈ L(n). If n = q1.q2. . . . . qr is the prime power factorization of n thenmin (qi−1) ∈
L(n).

If p ≥ 7 is a prime, p ≡ 3 (mod 4), then p−3
2 ∈ L(p). If p ≥ 13 is a prime,

p ≡ 1 (mod 4), then p−1
2 ∈ L(p). If q is a prime power then q2 − q − 1 ∈ L(q2), and if

q = pr, p ≥ 5, then q2 − q − 2, q2 − q ∈ L(q2) (cf. [1]). For many additional results on
maximal sets of MOLS, see [1], [3], [25], [27], [28], [38], [47], [48] and references therein.

9 Maximal partial Steiner triple systems

The figures are 3-subsets (triples) of a given v-set; two triples are compatible if they
intersect in at most one element.

Alternatively, the figures are triangles in the complete graph Kv; two triangles are
compatible if they are edge-disjoint.

Let S(3)(v) be the spectrum for maximal partial Steiner triple systems (STS), i.e.

S(3)(v) = {m : there exists a maximal partial STS of order v with exactly m triples}.

The largest element M (3)(v) of S(3)(v) was determined already in the 1840’s by
Kirkman (and since then repeatedly by many others) :

M (3)(v) = v(v − 1)/6 v ≡ 1, 3 (mod 6)
= [v(v − 1)− 8]/6 v ≡ 5 (mod 6)
= v(v − 2)/6 v ≡ 0, 2 (mod 6)
= [v(v − 2)− 2]/6 v ≡ 4 (mod 6).

The smallest element m(3)(v) of S(3)(v) was determined in 1974 by Novák [57]:
m(3)(v) = (v2 + δv)/12 where

δv = −2v + 36 v ≡ 0, 8 (mod 12)
= −1 v ≡ 1, 5 (mod 12)
= −2v v ≡ 2, 6 (mod 12)
= 3 v ≡ 3 (mod 12)
= −2v + 4 v ≡ 4 (mod 12)
= 11 v ≡ 7, 11 (mod 12)
= 15 v ≡ 9 (mod 12)
= −2v + 16 v ≡ 10 (mod 12)

The spectrum S(3)(v) for odd v was determined completely by Severn [65].
Let R(v) be the interval {m(3)(v),M (3)v)}. It was shown in [65] that

S(3)(v) = R(v) \ {M (3) − 1} if v ≡ 1, 3 (mod 6)
= R(v) if v ≡ 5 (mod 6).

For even v, the situation is slightly more complicated. The spectrum S(3)(v) in this
case has been determined “almost completely” by [65] who left only a few open cases.
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These have been settled in [14] so that the spectrum S(3)(v) has now been completely
determined:

For v even, S(3)(v) = R(v) \Q(v), where

Q(v) = {r : m(3)(v) < s < Y (v) and s− v − 1
2 ≡ 1 (mod 2),

and
Y (v) = 12k2 + 2k if v = 12k

= 12k2 + 6k + 1 if v = 12k + 2
= 12k2 + 10k + 2 if v = 12k + 4
= 12k2 + 14k + 5 if v = 12k + 6
= 12k2 + 18k + 6 if v = 12k + 8
= 12k2 + 22k + 11 if v = 12k + 10

(cf. [14], [13]).

10 Maximal partial 4-cycle systems

The figures here are quadrangles (cycles with 4 edges, 4-cycles); two quadrangles are
compatible when they are edge-disjoint.

Let S(4)(n) = {r: there exists a maximal set of quadrangles with exactly r quadrangles}.
Let the smallest and largest element of S(4)(n) be m(4)(n) and M (4)(n), respectively.

The numbers M (4)(n) have been determined completely in [64] (cf. also [32]). For
odd n, when n ≡ 1 (mod 8), there exists a 4-cycle system of order n, thus M (4)(n) =
n(n−1

8 , the number of 4-cycles in such a system. For n ≡ 3, 5, 7 (mod 8), there exists a
maximum packing of 4-cycles whose leave is a triangle, a 2-regular graph with 6 edges
(and thus either a 6-cycle, or two vertex-disjoint triangles, or a “bowtie”), or a pentagon,
respectively [64]. Thus we have

M (4)(n) = bn(n−1)
8 c if n ≡ 1 or 3 (mod 8)

= bn(n−1)
8 c − 1 if n ≡ 5 or 7 (mod 8).

In order to determine the spectrum S(4)(n), it is necessary to know the values of
m(4)(n) but therein lies the difficulty: to determine the maximum number of edges in an
n-vertex graph without 4-cycles is a difficult unsolved problem [33], [34], [37], [10], [71].

Nevertheless, the values ex(n;C4), the largest number of edges in a graph with n
vertices without a 4-cycle, has been determined exactly for all n ≤ 31 [37], [71] which
makes it possible to determinemin(4)(n) , and also the whole spectrum S(4)(n) for certain
small values of n. No exact formula for ex(n;C4) appears to be known although it is
known that ex(n;C4) < 1

4n(1 +
√

4n− 3) when n > 3, and asymptotically ex(n;C4) '
1
2n

3
2 .
[The value of ex(n;C4) has also been determined exactly for n = q2 + q + 1 when q

is either a power of 2 [33] or when q is a prime power greater than 13 [34]].
While knowing the maximum number of edges in an n-vertex graph is, in turn, a

necessary step in determining m(4)(n), what is actually needed is the maximum number
of edges in an n-vertex eulerian and antieulerian graph without 4-cycles, according as
n is odd and even, respectively. This numbers are usually somewhat smaller than the
former; for example, the maximum number of edges in a 9-vertex graph without 4-cycles
is 13 [10], that in a 9-vertex eulerian graph is 12. Similarly, for example, the maximum
number of edges in a 10-vertex graph without 4-cycles is 16 [10], that in an antieulerian
graph is 13.
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Clearly, n(n−1
8 − 1 /∈ S(4)(n) when n ≡ 1 (mod 8).

The bounds given in [10] plus ad hoc considerations enable one to determine the
spectrum S(4)(n) for small values of n. In particular, we have
S(4)(4) = S(4)(5) = {1}, S(4)(6) = {3}, S4)(7) = {3, 4}, S(4)(8) = {5, 6}
S(4)(9) = {6, 7, 9}, S(4)(10) = {8, 9, 10}, S(4)(11) = {10, 11, 12, 13},
S(4)(12) = {12, 13, 14, 15}, S(4)(13) = {15, 16, 17, 18} ∪ I where I = ∅ or I = {14}. At
this time, I am unable to decide whether 14 ∈ S(4)(13) or not.

11 Maximal partial 5-cycle systems

The figures here are pentagons (cycles with 5 edges, 5-cycles); two pentagons are com-
patible if they are edge-disjoint.

Let

S(5)(n) = {r : there exists a maximal set of pentagons with exactly r pentagons}.

Let the smallest and largest element of S(5)(n) be m(5)(n) and M (5)(n), respectively.
The numbers M (5)(n) have been determined completely in [63]:

M (5)(n) = b en

5 c if n 6≡ 7, 9 (mod 10)
= b en

5 c − 1 if n ≡ 7, 9 (mod 10)

where en = n(n−1)
2 or n(n−2)

2 according as n is odd or even.
To determine m(5)(n) turned out to be much more difficult. The first step in this was

to obtain bounds on m(5)(n) by determining extremal graphs not containing a pentagon.
While for n ≥ 7 the maximal size of a graph with n vertices without a pentagon is bn2

4 c,
for a nonbipartite graph the maximal size is f(n) = bn2

4 c − n+ 4, a slight improvement
[63]. Furthermore, a nonbipartite eulerian graph (all degrees even) without a pentagon
with an odd number of vertices n ≥ 11 has at most bn2

4 c − n + 3 edges. It follows that
for a maximal size E(n) of an eulerian graph without a pentagon we have

E(n) = n2

4 if n ≡ 0 (mod 4)
= (n−1)2

4 if n ≡ 1 (mod 4)
= n2−4

4 if n ≡ 2 (mod 4)
= n2−2n−3

4 if n ≡ 3 (mod 4).

When n ≡ 0 (mod 4) and n ≡ 2 (mod 4), the extremal graph is Kn
2 , n

2
and Kn+1

2 , n−3
2

,
respectively. When n ≡ 1 (mod 4) and n ≡ 3 (mod 4), one of the extremal graphs is
Kn−1

2 , n−1
2

and Kn+1
2 , n−3

2
, respectively.

Similarly, let A(n) be the maximal size of an antieulerian (all degrees odd) graph
without a pentagon. Then

A(n) = n2−4
4 if n ≡ 0 (mod 4)

= n2

4 if n ≡ 2 (mod 4),
and the extremal graphs are Kn+2

2 , n−2
2

and Kn
2 , n

2
, respectively.

Let
∆n = dn(n−1)

2 − E(n)
5 e if n is odd,

= dn(n−1)
2 − A(n)

5 e if n is even.

It is shown in [63] that
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m(5)(n) ≥ ∆n if n ≥ 11
≥ ∆n + 1 if n ≡ 13, 14, 15, 16, 17, 18 (mod 20)
≥ ∆n + 2 if n ≡ 4, 8 (mod 20), n ≥ 24.

Equality in the above for all n ≥ 11 is then established by three special constructions
(see [63]).
Clearly, the spectrum S(5)(n) is a subset of the interval [m(5)(n),M (5)(n)]. This spectrum
has not been determined completely yet, except when n ≡ 3 (mod 40). In [15], the
following conjecture on the shape of the spectrum S(5)(n) was formulated.

Conjecture. For any n ≥ 6, there is a number zn (for n ≥ 45, zn −m(5)(n) ≥ n
5 − 5)

such that

(i) if t ∈ [m(5)(n), zn] then t ∈ S(5)(n) if and only if t has the same parity as m(5)(n);

(ii) if t ∈ [zn,M
(5)(n)] then t ∈ S(5)(n).

It is shown in [15] that (i) holds for all n ≥ 45. This has required determining the
maximum number of edges in a pentagon-free nonbipartite eulerian (antieulerian) graph.

The conjecture has been proved in full only for n ≡ 3 (mod 40) (see [15]). If n =
40k + 3, k ≥ 2, then m(5)(40k + 3) = 80k2 + 12k + 1, M (5)(40k + 3) = 160k2 + 20k,
z40k+3 = m(5)(40k + 3) + 8k − 1, and
S(5)(40k+3) = {80k2 +12k+1, 80k2 +12k+3, . . . , 80k2 +20k−1, 80k2 +12k+1, 80k2 +
20k + 2, . . . , 160k2 + 20k}.

For n 6≡ 3 (mod 40), part (ii) of the Conjecture remains open.

To determine the spectra in the following two sections appears quite difficult.

12 Maximal sets of disjoint Steiner triple systems

The figures are Steiner triple systems on a given v-set; they are compatible if they are
disjoint, i.e. they have no triple in common. Here, of course, we must have v ≡ 1 or
3 (mod 6).

Let DS(v) = {m: there exists a maximal set of m pairwise disjoint STS(v)s}. It
is well known that DS(7) = {2}, a result by Cayley that goes back to the middle of
the 19th century. For v > 7, the largest element of DS(v) was determined in [54], [68]:
max DS(v) = v − 2.

The only other general results are:

(1) for v ≥ 7, every Steiner triple system of order v has a disjoint mate, thus 1 /∈ DS(v)
[67],

(2) v − 4 ∈ DS(v) for v = 5.2i − 1, i ≥ 1,

(3) v − 5 ∈ DS(v) for v = 2i+2 − 1, 5.2i − 1, i ≥ 1 [12].

Cooper [9] determined DS(9) (follows also from [12]): DS(9) = {4, 5, 7}. He also deter-
mined the isomorphism classes of all maximal sets of disjoint STS(9)s. At this point, for
no other values of v has DS(v) been determined.
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13 Maximal sets of orthogonal Steiner triple systems

A property stronger than disjointness is the orthogonality property. Two Steiner triple
systems (V,B1), (V,B2) are orthogonal if they are disjoint, and, moreover, whenever
{x, y, a}, {w, z, a} ∈ B1, {x, y, b}, {w, z, c} ∈ B2 then b 6= c. In other words, whenever two
pairs of elements occur with the same third element in triples in one of the systems, they
must occur with different third elements in the triples of the other system. Orthogonal
STSs were originally introduced for the purpose of constructing Room squares.

For all v ≡ 1, 3 (mod 6), v 6= 9, there exists a pair of orthogonal STS(v) [11]; there
exists no such pair for v = 9. Moreover, it is shown in [18] that a set of three pairwise
orthogonal STS(v) exists for all v ≡ 1, 3 (mod 6), except when v ≤ 15, and except
possibly for 24 values of v, all of which are ≡ 3 ( mod 6), and smallest of which is v = 21.
Many multiple sets of pairwise orthogonal STS(v) were constructed in [39] where it is
shown, among other things, that for any positive integer t there exists a set of t pairwise
orthogonal STS(v) provided v ≡ 1 (mod 6) and v is sufficiently large. No maximality of
these sets seems to have been investigated though, and while some of the sets constructed
may indeed be maximal, it appears hard to either verify or disprove maximality.

Concerning maximal sets of orthogonal STS(v), let OM(v) = {r: there exists a
maximal set of r orthogonal STS(v)}. It is known that OM(7) = {2}, OM(9) =
{1}, OM(13) = {1, 2}, OM(15) = {1, 2} [36] but hardly anything else. It is believed that
max OM(v) ≤ v−1

2 but no nontrivial upper bound on max OM(v) has been proved.

14 Row-maximal Room rectangles

Let N be a 2n-set; a Room (r, 2n)-rectangle on N is an r × 2n − 1 array (r ≤ 2n − 1)
whose cells are either empty or contain a 2-subset of N . Each element of N occurs in
exactly one cell of each row and in at most one cell of each column, and no 2-subset
appears more than once in the array. A Room (2n − 1, 2n)-rectangle is called a Room
square (of order 2n, or of side 2n − 1). A Room (r, 2n) rectangle is row-maximal if no
further row can be added to it to produce a Room (r + 1, 2n)-rectangle.

The figures are pairs (f, α) where f is a 1-factor of K2n on a given 2n-set N , and α is
an injection from f into {1, 2, . . . , 2n−1}. Two figures (f1, α1), (f2, α2) are compatible if
α−1

1 (i) ∩ α−1
2 (i) = ∅ whenever α−1

1 (i) 6= ∅ and α−1
2 (i) 6= ∅. Less formally, the figures are

rows with 2n− 1 cells of which n− 1 are empty such that the n nonempty cells contain a
partition of N into 2-subsets; two such rows are compatible if no element occurs in any
of the 2n− 1 columns more than once.

Here we have the following result.
Let

MRR(2n) = {r : there exist a row-maximal Room (r, 2n)-rectangle}.

A row-maximal Room (r, 2n)-rectangle exists if

(i) (r, 2n) = (1, 4)

(ii) n ≤ r ≤ 2n− 1 except when (r, 2n) ∈ {(2, 4), (3, 4), (5, 6)}.

Indeed, (i) is trivial while (ii) follows from the fact that there exists no Room square
of order 4 or 6 (i.e. there exists no Room (3, 4)-rectangle or Room (5, 6)-rectangle, and
there exists no Howell design H(2, 4) [19]. It remains to be observed that while a Howell
design H(5, 8) does not exist, either, a row-maximal Room (5, 8)-rectangle does:
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12 34 56 78 − − −
− − − 13 24 57 68
67 − 14 − 58 23 −
− 15 − 26 − 48 37
38 − 27 − 16 − 45

(For a general reference on Room squares and Howell designs, see, e.g., [19]).

15 Packings of dominoes

A different kind of a problem on packing dominoes onto a square n × n board was
considered in [40]. It is trivial to see that the maximum number M (d)(n) of dominoes
(1× 2 tiles) that may be packed onto an n×n board (without overlap) is n2

2 if n is even,
and n2

2 − 1 when n is odd. The authors of [40] were interested in the minimum number
m(d)(n) of dominoes that can be placed on an n×n board in such a way that no further
domino can be placed on it without an overlap. It is shown in [40] that m(d)(n) = n2

3 if
n ≡ 0 (mod 3), and m(d)(n) > n2

3 + n
111 otherwise, provided n is large.

While m(d)(n) = bn2+2
3 c for 2 ≤ n ≤ 12, the exact value of m(d)(n) for n 6≡

0 (mod 3) is not known. The best upper bound known is m(d)(n) < n2

3 + n
12 + 1. In any

case, in any maximal packing of dominoes roughly at least two thirds of the cells must
be covered.

Let S(d)(n) = {r: there exists a maximal packing of the n× n board with exactly m
dominoes}. The constructions given in [40] allow one to deduce that

S(d)(n) =
{
n2

3 ,
n2

3 + 1, . . . , bn
2

2 c
}

when n ≡ 0 (mod 3), and
{
n2

3 + n

12 + 1, n
2

3 + n

12 + 2, . . . , bn
2

2 c
}
⊆ S(d)(n) for n 6≡ 0 (mod 3).

The case of maximal packing of “dominoes” on triangular and hexa(gonal) boards
is also considered in [40]. For example, a “domino” for a hexaboard is a pair of two
neighbouring hexagonal cells. Hexa board itself has a triangular shape and consists of n
rows containing a total of

(
n
2
)
hexagonal cells.

While clearly one can cover the entire n-hexaboard (a board with n rows) by bn(n+1)
4 c

dominoes (except for one hexagonal cell when
(

n
2
)
is odd), in this case one is also able

to determine the minimum number of dominoes in a maximal packing; this minimum
equals bn(n+1)

6 c. Thus this case turns out to be easier than that of the regular n × n
board (cf. [40]).

Conclusion and some open problems

This survey cannot, and does not attempt to, encompass all situations where the spec-
trum problem for maximal designs and configurations arises - this would anyway be
virtually impossible. There are many further examples of problems of the kind similar to
those explored above. To name just a few further examples of problems that have been
studied to various degrees of depth in the literature, maximal sets of orthogonal hamil-
tonian cycles [46], maximal sets of orthogonal hamiltonian decompositions [46], maximal
sets of disjoint 1-factorizations [2], [9] maximal sets of orthogonal 1-factorizations (or,
equivalently, dimension-maximal Room cubes) [2], maximal k-cliques [21], [23], [26], [35],
maximal partial projective planes [20], and several others come to mind.
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A concept closely related to maximal configurations is that of premature configura-
tions (see, e.g., [4], [62]). While maximal configurations are not extendible, premature
configurations are not completable (to maximum configurations) but may themselves not
be maximal. Although in the context of some of the problems discussed above, prema-
ture configurations have been explored in the literature, for example, premature sets of
1-factors (cf. Section 1), premature sets of latin parallelepipeds (cf. Section 6), or prema-
ture sets of MOLS (cf. Section 8), we refrained in this article from discussing premature
configurations in more detail.

The spectrum problems treated in Sections 1, 2, 3, 9 and 14 have been solved com-
pletely. In the remaining sections, many open problems remain. Some open problems
that I would like to see solved, or at least seriously attacked, are:

(i) Maximal partial Steiner systems S(2, 4, v).
Here the figures are 4-subsets of a given v-set; two 4-subsets are compatible if
they intersect in at most one element. Let S4(v) be the spectrum for maximal
partial Steiner systems S(2, 4, v), and let m4(v) and M4(v) be the smallest and
largest element of S4(v), respectively. The numbersM4(v) have been determined
by Brouwer [6] (cf. also [66]. The numbers m4(v) and the spectrum S4(v) have
not been determined yet.

(ii) Maximal partial Room squares.
Here I am not aware of any results in this direction.

It is hoped that by bringing together the most up-to-date results on these and poten-
tially many other similar or related problems a renewed interest will be generated.
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1 Introduction and Definitions

Let A denote the class of analytic functions in the unit disk

U = {z ∈ C : |z| < 1}

that have the form
f(z) = z +

∞∑

n=2
anz

n. (1.1)

Further, by S we shall denote the class of all functions in A which are univalent in U.
The Koebe one-quarter theorem [8] states that the image of U under every function

f from S contains a disk of radius 1
4 . Thus every such univalent function has an inverse

f−1 which satisfies
f−1 (f (z)) = z , (z ∈ U)

and
f
(
f−1 (w)

)
= w ,

(
|w| < r0 (f) , r0 (f) ≥ 1

4

)
,

where

f−1 (w) = w − a2w
2 +

(
2a2

2 − a3
)
w3 −

(
5a3

2 − 5a2a3 + a4
)
w4 + · · · .

∗corresponding author.
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A function f (z) ∈ A is said to be bi-univalent in U if both f (z) and f−1 (z) are
univalent in U. Let Σ denote the class of bi-univalent functions defined in the unit disk
U.

If the functions f and g are analytic in U, then f is said to be subordinate to g,
written as

f (z) ≺ g (z) , (z ∈ U)

if there exists a Schwarz function w (z) , analytic in U, with

w (0) = 0 and |w (z)| < 1 (z ∈ U)

such that
f (z) = g (w (z)) (z ∈ U) .

Lewin [15] studied the class of bi-univalent functions, obtaining the bound 1.51
for modulus of the second coefficient |a2| . Subsequently, Netanyahu [17] showed that
max |a2| = 4

3 if f (z) ∈ Σ. Brannan and Clunie [5] conjectured that |a2| ≤
√

2 for f ∈ Σ.
Brannan and Taha [4] introduced certain subclasses of the bi-univalent function class Σ
similar to the familiar subclasses of univalent functions consisting of strongly starlike,
starlike and convex functions. They introduced bi-starlike functions and obtained esti-
mates on the initial coefficients. Bounds for the initial coefficients of several classes of
functions were also investigated in ([1], [3], [7], [9], [13], [14], [16], [19], [21], [22], [23]).

Not much is known about the bounds on the general coefficient |an| for n ≥ 4. In the
literature, the only a few works determining the general coefficient bounds |an| for the
analytic bi-univalent functions ([2], [6], [10], [11], [12]). The coefficient estimate problem
for each of |an| ( n ∈ N\ {1, 2} ; N = {1, 2, 3, ...}) is still an open problem.

Motivated by the earlier work of Sakaguchi [20] on the class of starlike functions with
respect to symmetric points denoted by SS consisting of functions f ∈ A satisfy the
condition Re

(
zf ′(z)

f(z)−f(−z)

)
> 0, (z ∈ U), we introduce a new subclass of the function

class Σ of bi-univalent functions, and find estimates on the coefficients |a2| and |a3| for
functions in this new subclass.

Definition 1. Let h : U −→ C, be a convex univalent function such that h(0) = 1 and
h(z̄) = h(z), for z ∈ U and Re(h(z)) > 0. A function f ∈ Σ is said to be in the class
SλΣ (β, s, t, h) if the following conditions are satisfied:

f ∈ Σ, eiβ
[(s− t)z]1−λ f ′ (z)
[f (sz)− f(tz)]1−λ

≺ h (z) cosβ + i sin β, z ∈ U (1.2)

and

eiβ
[(s− t)w]1−λ g′ (w)
[g (sw)− g(tw)]1−λ

≺ h (w) cosβ + i sin β, w ∈ U (1.3)

where g (w) = f−1 (w) , s, t ∈ C with s 6= t, |t| ≤ 1, β ∈ (−π2 , π2 ) and λ ≥ 0.

Remark 2. If we set h(z) = 1 +Az

1 +Bz
, −1 ≤ B < A ≤ 1, in the class SλΣ (β, s, t, h) , we

have SλΣ
(
β, s, t, 1+Az

1+Bz

)
and defined as

f ∈ Σ, eiβ
[(s− t)z]1−λ f ′ (z)
[f (sz)− f(tz)]1−λ

≺ 1 +Az

1 +Bz
cosβ + i sin β, z ∈ U
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and
eiβ

[(s− t)w]1−λ g′ (w)
[g (sw)− g(tw)]1−λ

≺ 1 +Aw

1 +Bw
cosβ + i sin β, w ∈ U

where g (w) = f−1 (w) , s, t ∈ C with s 6= t, |t| ≤ 1, β ∈ (−π2 , π2 ) and λ ≥ 0.

Remark 3. If we set h(z) = 1 + (1− 2α)z
1− z , 0 ≤ α < 1, in the class SλΣ (β, s, t, h) , we

have SλΣ (β, s, t, α) and defined as

f ∈ Σ, Re
{
eiβ

[(s− t)z]1−λ f ′ (z)
[f (sz)− f(tz)]1−λ

}
> α cosβ, z ∈ U

and

Re
{
eiβ

[(s− t)w]1−λ g′ (w)
[g (sw)− g(tw)]1−λ

}
> α cosβ, w ∈ U

where g (w) = f−1 (w) , s, t ∈ C with s 6= t, |t| ≤ 1, β ∈ (−π2 , π2 ) and λ ≥ 0.

Lemma 4. (see [18]) Let the function φ(z) given by

φ(z) =
∞∑

n=1
Bnz

n

be convex in U. Suppose also that the function h(z) given by

h(z) =
∞∑

n=1
hnz

n

is holomorphic in U. If h(z) ≺ φ(z), z ∈ U, then |hn| ≤ |B1| , n ∈ N = {1, 2, 3, ...} .
2 Coefficient Estimates

Theorem 5. Let f given by (1.1) be in the class SλΣ (β, s, t, h). Then

|a2| ≤
√

2|B1| cos β
|2(λ−1)(s+t)[2+(λ−1)(s+t)]+2[(λ−1)(s2+st+t2)+3]−λ(λ−1)(s+t)2| , (2.1)

and
|a3| ≤ 2|B1| cos β

|2(λ−1)(s+t)[2+(λ−1)(s+t)]+2[(λ−1)(s2+st+t2)+3]−λ(λ−1)(s+t)2| . (2.2)

Proof. Let f ∈ SλΣ (β, s, t, h), g be the analytic extension of f−1 to U and s, t ∈ C with
s 6= t, |t| ≤ 1 and λ ≥ 0. It follows from (1.2) and (1.3) that there exists p, q ∈ P such
that

eiβ
[(s− t)z]1−λ f ′ (z)
[f (sz)− f(tz)]1−λ

= p (z) cosβ + i sin β, (z ∈ U) (2.3)

and
eiβ

[(s− t)w]1−λ g′ (w)
[g (sw)− g(tw)]1−λ

= q (w) cosβ + i sin β, (w ∈ U) (2.4)

where p (z) ≺ h (z) and q (w) ≺ h (w) have the forms

p (z) = 1 + p1z + p2z
2 + · · ·
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and
q (w) = 1 + q1w + q2w

2 + · · · ,
respectively. It follows from (2.3) and (2.4), we deduce

eiβ [(λ− 1) (s+ t) + 2] a2 = p1 cosβ, (2.5)

eiβ
{[

(λ− 1)
(
s2 + t2 + st

)
+ 3
]
a3 − λ(λ−1)

2 (s+ t)2a2
2 + (λ− 1) (s+ t) [2 + (λ− 1)(s+ t)] a2

2

}

= p2 cosβ,
(2.6)

and
− eiβ [(λ− 1) (s+ t) + 2] a2 = q1 cosβ, (2.7)

eiβ
{

2
[
(λ− 1)

(
s2 + t2 + st

)
+ 3
]
− λ(λ−1)

2 (s+ t)2 + (λ− 1) (s+ t) [2 + (λ− 1)(s+ t)]
}
a2

2

−eiβ
[
(λ− 1)

(
s2 + t2 + st

)
+ 3
]
a3 = q2 cosβ.

(2.8)
From (2.5) and (2.7) we obtain

p1 = −q1,

By adding (2.6) to (2.8), we get

eiβ
{

2 (λ− 1) (s+ t) [2 + (λ− 1) (s+ t)] + 2
[
(λ− 1) (s2 + st+ t2) + 3

]
− λ (λ− 1) (s+ t)2

}
a2

2

= (p2 + q2) cosβ.
(2.9)

Since p, q ∈ h(U), applying Lemma 4, we have

|pm| =
∣∣∣∣
p(m)(0)
m!

∣∣∣∣ ≤ |B1| , m ∈ N (2.10)

and
|qm| =

∣∣∣∣
q(m)(0)
m!

∣∣∣∣ ≤ |B1| , m ∈ N. (2.11)

Applying (2.10), (2.11) and Lemma 4 for the coefficients p1, p2, q1 and q2, we readily get

|a2| ≤
√

2|B1| cos β
|2(λ−1)(s+t)[2+(λ−1)(s+t)]+2[(λ−1)(s2+st+t2)+3]−λ(λ−1)(s+t)2| .

Subtracting (2.8) from (2.6) we have

eiβ
{

2
[
(λ− 1)(s2 + t2 + st) + 3

]
a3 − 2

[
(λ− 1)(s2 + t2 + st) + 3

]
a2

2
}

= (p2 − q2) cosβ.
(2.12)

or, equivalently

a3 = e−iβ(p2+q2) cos β
2(λ−1)(s+t)[2+(λ−1)(s+t)]+2[(λ−1)(s2+st+t2)+3]−λ(λ−1)(s+t)2 + e−iβ(p2−q2) cos β

2[(λ−1)(s2+t2+st)+3] .

Applying (2.10), (2.11) and Lemma 4 once again for the coefficients p1, p2, q1 and q2, we
readily get

|a3| ≤ 2|B1| cos β
|2(λ−1)(s+t)[2+(λ−1)(s+t)]+2[(λ−1)(s2+st+t2)+3]−λ(λ−1)(s+t)2| .

This completes the proof of Theorem 5.
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3 Corollaries and Consequences

Corollary 6. Let f given by (1.1) be in the class SλΣ
(
β, s, t, 1+Az

1+Bz

)
. Then

|a2| ≤
√

2(A−B) cos β
|2(λ−1)(s+t)[2+(λ−1)(s+t)]+2[(λ−1)(s2+st+t2)+3]−λ(λ−1)(s+t)2|

and
|a3| ≤ 2(A−B) cos β

|2(λ−1)(s+t)[2+(λ−1)(s+t)]+2[(λ−1)(s2+st+t2)+3]−λ(λ−1)(s+t)2| .

where −1 ≤ B < A ≤ 1, s, t ∈ C with s 6= t, |t| ≤ 1 and β ∈ (−π2 , π2 ), λ ≥ 0.

Corollary 7. Let f given by (1.1) be in the class SλΣ (β, s, t, α). Then

|a2| ≤
√

4(1−α) cos β
|2(λ−1)(s+t)[2+(λ−1)(s+t)]+2[(λ−1)(s2+st+t2)+3]−λ(λ−1)(s+t)2| ,

and
|a3| ≤ 4(1−α) cos β

|2(λ−1)(s+t)[2+(λ−1)(s+t)]+2[(λ−1)(s2+st+t2)+3]−λ(λ−1)(s+t)2| .

where 0 ≤ α < 1, s, t ∈ C with s 6= t, |t| ≤ 1 and β ∈ (−π2 , π2 ).

If we get λ = 0 in Theorem 5,

Corollary 8. Let f given by (1.1) be in the class S0
Σ (β, s, t, h). Then

|a2| ≤
√

|B1| cosβ
|3− 2s− 2t+ st| ,

and
|a3| ≤

|B1| cosβ
|3− 2s− 2t+ st| .

If we get λ = 0 in Corollary 6,

Corollary 9. Let f given by (1.1) be in the class S0
Σ

(
β, s, t, 1+Az

1+Bz

)
. Then

|a2| ≤
√

(A−B) cosβ
|3− 2s− 2t+ st|

and
|a3| ≤

(A−B) cosβ
|3− 2s− 2t+ st|

where −1 ≤ B < A ≤ 1, s, t ∈ C with s 6= t, |t| ≤ 1 and β ∈ (−π2 , π2 ).

If we get λ = 0 in Corollary 7,

Corollary 10. Let f given by (1.1) be in the class S0
Σ (β, s, t, α). Then

|a2| ≤
√

2(1− α) cosβ
|3− 2s− 2t+ st| ,

and
|a3| ≤

2(1− α) cosβ
|3− 2s− 2t+ st| .

where 0 ≤ α < 1, s, t ∈ C with s 6= t, |t| ≤ 1 and β ∈ (−π2 , π2 ).
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Abstract
In this paper, a simple efficient method for the numerical solution of a class of nonlinear Volterra
integral equations (VIEs) is presented. The approach starts by expanding the existing functions in
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1 Introduction

As is noted in [32], Volterra integral equations arise in many physical problems, e.g., heat
conduction problem [5], concrete problem of mechanics or physics [44], on the unsteady
Poiseuille flow in a pipe [16], diffusion problems [4], electroelastic [14], contact problems
[23], etc. Due to this fact that analytical solutions of integral equations either do not
exist or are hard to find, many different methods have been proposed to approximate
solutions of these equations [1, 7, 8, 13, 21, 25, 27].

Recently, in [2] Aziz and Islam used Haar wavelets and in [34] Maleknejad and Rahimi
used ε modified block pulse functions (εMBPFs) to solve these kinds of equations. A
method based on Bernstein polynomials is also presented by Maleknejad, Basirat and
Hashemizadeh in [31].

In the present paper, we consider the nonlinear Volterra integral equations of the
form

u(x) = f(x) +
∫ x

0
k(x, t)N

(
u(t)

)
dt, x ∈ Ω := [0, 1], (1.1)

∗corresponding author

Copyright c© 2015 Matej Bel University
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where u(x) is an unknown real valued function and f(x) and k(x, t) are given continuous
functions defined, respectively on Ω and Ω × Ω, and N

(
u(x)

)
is a polynomial of u(x)

with constant coefficients. It follows from the classical theory of Volterra equations (see,
for example, [8], [9]) that (1.1) has a unique continuous solution u∗(x) on Ω. Moreover,
if functions f and k are r times continuously differentiable on Ω and S := {(x, t) : 0 ≤
t ≤ x ≤ 1}, respectively, then u∗ is r times continuously differentiable on Ω.

The method of this paper consists of reducing (1.1) into a set of nonlinear algebraic
equations. The underlying idea employed is the following integral property

∫ x

0
Ψ(t)dt ' PΨ(x), (1.2)

where Ψ(x) = [ψ0(x), ψ1(x), . . . , ψn−1(x)]T is the basis vector and P is a square constant
matrix called the operational matrix of integration. Up to now, the operational matrix
of integration P has been derived for several types of basis functions such as Walsh [12],
block-pulse [41], Legendre wavelets [40], Haar wavelets [18], Laguerre [20], Chebyshev
[19, 37], Legendre [11], Bernstein [45], Bessel [38], Fourier [39] and Jacobi [28]. We are
interested here in the use of the Bernoulli polynomials. Some interesting properties of
the Bernoulli polynomials are:

• Comparing the structure of the Bernoulli operational matrix of integration P given
in (2.17) with the corresponding matrices of other basis functions, we may observe
that the setting up of P is simpler.

• The Bernoulli operational matrix of integration P appears to be computationally
very attractive because, compared with other types of basis functions, it has more
zero elements. Indeed, the nonzero entries of the Bernoulli operational matrix of
integration are located only on the superdiagonal and its first column, while the
corresponding matrices of the Bessel and the Bernstein polynomials are full and it
is an upper triangular matrix for the block-pulse functions and a tridiagonal matrix
for the Legendre wavelet basis. The nonzero elements of the shifted Chebyshev and
shifted Jacobi operational matrices of integration are located on the subdiagonals,
diagonals, superdiagonals and their first columns which are more than the case of
Bernoulli polynomials. Also, the shifted Legendre, Laguerre and Hermite opera-
tional matrices of integration have the same number of nonzero elements with the
Bernoulli operational matrix of integration. A same argument can be made for the
operational matrix of derivatives.

• The Bernoulli polynomials have less terms than the shifted Chebyshev, shifted
Legendre and shifted Jacobi polynomials which makes them attractive from the
computational point of view. For example B6(x) (the 6th Bernoulli polynomial),
has five terms while T6(x) (the 6th shifted Chebyshev polynomial) and L6(t) (the
6th shifted legendre polynomial), have seven terms, and this difference will increase
by increasing the degree. Hence for approximating an arbitrary function we use
less CPU time by applying Bernoulli polynomials as compared to any classical or-
thogonal polynomials; this issue is claimed in [35] for shifted Legendre polynomials.

• The coefficient of individual terms in Bernoulli polynomials Bk(t), are smaller than
the coefficient of individual terms in the shifted Legendre and shifted Chebyshev
polynomials Lk(t) and Tk(t), respectively (it can be easily checked by the Mathe-
matica software). Since the computational errors in the product are related to the
coefficients of individual terms, the computational errors are less by using Bernoulli
polynomials [35].
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For convenience, we assume that

N(u(x)) = um(x), (1.3)

where m is a positive integer, but the method can be easily extended and applied to any
nonlinear VIE of the form (1.1), where N

(
u(x)

)
is a polynomial of u(x) with constant

coefficients.
The reminder of the paper is organized as follows. We give a brief review of Bernoulli

polynomials and their properties in Sections 2.1 and 2.2. New Bernoulli operational ma-
trices of integration and the product are derived in Section 2.3. In Section 3, how the new
introduced Bernoulli operational matrices can be used to reduce the problem (1.1)-(1.3)
into a set of nonlinear algebraic equations is explained. The error analysis and rate of
convergence are also given in this section. In Section 4, we show that the Bernoulli poly-
nomial coefficients vector of um(x) can be computed in terms of the Bernoulli polynomial
coefficients vector of u(x). Some numerical examples are presented in Section 5, which
show the efficiency and accuracy of the proposed method. Conclusions of the work are
given in Section 6.

2 Some properties of Bernoulli polynomials

To facilitate the presentation of the material that follows, we present in this section some
background on the Bernoulli polynomials.

2.1 Definition
The generalized Bernoulli polynomials B(a)

k (x) of degree k can be defined by the gener-
ating formula [29, Section 2.8]

taext

(et − 1)a =
∞∑

k=0

tk

k!B
(a)
k (x), |t| ≤ 2π.

If a = 1, we have the Bernoulli polynomials B(1)
k (x) ≡ Bk(x), and if, further, x = 0, we

have the Bernoulli numbers Bk(0) = Bk.
The Bernoulli polynomials satisfy the familiar expansion [15, Section 1.13]

k−1∑

r=0

(
k

r

)
Br(x) = kxk−1, k = 1, 2, . . . . (2.1)

The first five Bernoulli polynomials are as follows

B0(x) = 1,

B1(x) = x− 1
2 ,

B2(x) = x2 − x+ 1
6 ,

B3(x) = x3 − 3
2x

2 + 1
2x,

B4(x) = x4 − 2x3 + x2 − 1
30 .
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Also, the Bernoulli polynomials satisfy the following relations ([15], Section 1.13)

B′k(x) = kBk−1(x), k ≥ 1,
∫ 1

0 Bk(x)dx = 0, k ≥ 1,

Bk(x+ 1)−Bk(x) = kxk−1, k ≥ 1,

Bk(x) =
k∑

r=0

(
k

r

)
Brx

k−r, k ≥ 1.

(2.2)

With the aid of equation (2.1), the Bernoulli polynomial vector

B(x) = [B0(x), B1(x), . . . , BN (x)]T , (2.3)

can be written of the form
B(x) = D−1TN (x), (2.4)

where
TN (x) = [1, x, x2, . . . , xN ]T , (2.5)

and D is a lower triangular matrix defined by

D = [dij ]Ni,j=0, dij =





1
i+1
(
i+1
j

)
, 0 ≤ j ≤ i,

0, i < j ≤ N.

On the other hand, if in the third part of equation (2.2), k varies from 0 to N we have

B(x) = D̂TN (x), (2.6)

where D̂ is a lower triangular matrix as

D̂ = [d̂ij ]Ni,j=0, d̂ij =





(
i
i−j
)
Bi−j , 0 ≤ j ≤ i,

0, i < j ≤ N,
(2.7)

and TN (x) is the vector defined by equation (2.5). So, from equations (2.4) and (2.6) we
obtain D̂ = D−1. The dual matrix of B(x) is defined by

Q =
∫ 1

0
B(x)BT (x)dx =

∫ 1

0

(
D̂TN (x)

)(
D̂TN (x)

)T
dx

= D̂

(∫ 1

0
TN (x)TTN (x)dx

)
D̂T = D̂HD̂T ,

(2.8)

where D̂ is the matrix defined in (2.7) and H is the Hilbert matrix

H =
∫ 1

0
TN (x)TTN (x)dx =

[
1

i+ j + 1

]N

i,j=0
.
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2.2 Function approximation and error analysis
Let H = L2([0, 1]) be the space of square integrable functions with respect to Lebesgue
measure on the closed interval [0, 1]. The inner product in this space is defined by

〈f, g〉 =
∫ 1

0
f(x)g(x)dx, (2.9)

and the norm is as follows

‖f‖2 = 〈f, f〉 1
2 =

(∫ 1

0
f2(x)dx

) 1
2
. (2.10)

Let
HN = span{B0(x), B1(x), . . . , BN (x)}. (2.11)

Since HN is a finite dimensional subspace of H, then it is closed [24, Theorem 2.4-3] and
for every given g ∈ H there exists a unique best approximation ḡ ∈ HN [24, Theorem
6.2-5] such that

‖g − ḡ‖2 ≤ ‖g − f‖2, ∀f ∈ HN . (2.12)
Since ḡ ∈ HN , there exist unique coefficients g0, g1, . . . , gN such that

g(x) ' ḡ(x) =
N∑

k=0
gkBk(x) = BT (x)G, (2.13)

where B(x) is the Bernoulli polynomial vector defined in equation (2.3) and G is the
Bernoulli polynomial coefficients vector of g(x) defined as

G = [g0, g1, . . . , gN ]T . (2.14)

Also, for a positive integer m, gm(x) may be approximated as

gm(x) ' BT (x)G(m),

where G(m) is a column vector whose elements are nonlinear functions of the elements of
G. The form of these functions will be explained later in Section 4.

Let us denote by Cm(Ω) the space of functions f : Ω→ R with continuous derivatives

f (i)(x) = di

dxi
f(x), x ∈ Ω,

for all i such that 0 ≤ i ≤ m and by Cm,n(Ω× Ω) the space of functions f : Ω× Ω→ R
with continuous partial derivatives

f (i,j)(x, t) = ∂i+j

∂xm∂tn
f(x, t), (x, t) ∈ Ω× Ω,

for all (i, j) such that 0 ≤ i ≤ m, 0 ≤ j ≤ n. The following results are satisfied.

Corollary 1. [42] Suppose that g(x) ∈ CN (Ω) is approximated by the truncated Bernoulli

series PN [g](x) =
N∑

k=0
gkBk(x). Then the coefficients gn can be calculated from the fol-

lowing relation

gn = 1
n!

∫ 1

0
g(n)(x)dx, n = 0, 1, . . . , N.
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It follows from the next corollary that Bernoulli coefficients will decay rapidly with
increasing n.

Corollary 2. [42] Assume that the function g(x) ∈ CN (Ω) is approximated by Bernoulli
polynomials as argued in Corollary 1. Then the coefficients gn decay as follows

gn ≤
Ḡn
n! , n = 0, 1, . . . , N,

where Ḡn denotes the maximum of g(n)(x) in the interval Ω.

The following theorem provides an error term for the approximation presented in
Corollary 1.

Theorem 3. [42] Suppose that g(x) ∈ CN (Ω) and PN [g](x) is its approximation in
terms of Bernoulli polynomials and RN [g](x) is the remainder term. Then, the associated
formulas are stated as follows

g(x) = PN [g](x) +RN [g](x), x ∈ Ω,

PN [g](x) =
∫ 1

0
g(x)dx+

N∑

j=1

Bj(x)
j! (g(j−1)(1)− g(j−1)(0)),

RN [g](x) = − 1
N !

∫ 1

0
B∗N (x− t)g(N)(t)dt,

where B∗N (x) = BN (x− [x]) and [x] denotes the largest integer not greater than x.

Theorem 4. [43] Suppose g(x) ∈ CN (Ω) and PN [g](x) is its approximation in terms of
Bernoulli polynomials. Then the error bound would be obtained as follows

E(g) = ‖g(x)− PN [g](x)‖∞ ≤ CĜ(2π)−N , x ∈ Ω,

where C is a positive constant independent of N and Ĝ is such that

‖g(i)(x)‖∞ ≤ Ĝ, i = 0, 1, . . . , N.

The above results can be extended to the case of functions of two (or more) variables.
Let k(x, t) ∈ H ×H, then it can be approximated in terms of truncated Bernoulli series
as

k(x, t) '
N∑

i=0

N∑

j=0
kijBi(x)Bj(t) = BT (x)KB(t), (2.15)

where K = [kij ]Ni,j=0 is an (N + 1)× (N + 1) matrix.

Corollary 5. [6] Assume that the function k(x, t) ∈ CN,N (Ω × Ω) is approximated by

the two variable truncated Bernoulli series PN [k](x, t) =
N∑

i=0

N∑

j=0
kijBi(x)Bj(t), then the

coefficients kij can be calculated from the following relation

kij = 1
i!j!

∫ 1

0

∫ 1

0

∂i+j

∂xi∂tj
k(x, t)dxdt, i, j = 0, 1, . . . , N.
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Corollary 6. Assume that the function k(x, t) ∈ CN,N (Ω × Ω) is approximated by
Bernoulli polynomials as argued in Corollary 5. Then the coefficients kij decay as follows

kmn ≤
K̄i,j

i!j! , i, j = 0, 1, . . . , N,

where K̄i,j denotes the maximum of ∂i+j

∂xi∂tj k(x, t) in the unit square Ω× Ω.

Proof. Since it is trivial we omit the proof.

Theorem 7. [43] Suppose k(x, t) ∈ CN,N (Ω × Ω) and PN [k](x, t) be its approximation
in terms of Bernoulli polynomials. Then the error bound would be obtained as follows

E(k) = ‖k(x, t)− PN [k](x, t)‖∞ ≤ CK̂N(2π)−N ,

where C is a positive constant independent of N and K̂ is such that
∥∥∥∥
∂i+j

∂xi∂tj
k(x, t)

∥∥∥∥
∞
≤ K̂, i, j = 0, 1, . . . , N.

2.3 Operational matrices of integration
In this section, the Bernoulli operational matrices of integration and the product will be
derived.

Theorem 8. Let B(x) be the Bernoulli vector defined in (2.3). Then
∫ x

0
B(t)dt ' PB(x), (2.16)

where P is the (N + 1)× (N + 1) operational matrix of integration defined by

P =




−B1 1 0 . . . 0

−B2
2 0 1

2 . . . 0

...
...

... . . . ...

−BN

N 0 0 . . . 1
N

−BN+1
N+1 0 0 . . . 0




. (2.17)

Proof. It follows from the first part of (2.2) that
∫ x

0
Bk(t)dt = 1

k + 1(Bk+1(x)−Bk+1), k ≥ 0.

So, the integration of the vector B(x) is given by
∫ x

0
B(t)dt = P ∗B∗(x), (2.18)
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where P ∗ is an (N + 1)× (N + 2) matrix having the form

P ∗ =
[
P p

]
=




−B1 1 0 . . . 0 0

−B2
2 0 1

2 . . . 0 0

...
...

... . . . ...
...

−BN

N 0 0 . . . 1
N 0

−BN+1
N+1 0 0 . . . 0 1

N+1




,

and B∗(x) is an (N + 2)× 1 vector of the form

B∗(x) =
[

B(x)
BN+1(x)

]
.

If we trunctate the term BN+1(x) in the vector B∗(x), i.e., if we drop the vector p in the
matrix P ∗, relation (2.18) becomes the approximate relation (2.16).

Note that, the structure of P is simple, since all its elements are zero, except for its
first column and its superdiagonal, and hence the Bernoulli basis may be computationally
more attractive than other sets of basis functions.

Comparing the structure of the Bernoulli integral operational matrix P (denoted for
the moment as PB) with the corresponding matrices of Walsh PW , block-pulse Pb, and
Laguerre PL, we may observe that PB has the following characteristics:

• Using PB , instead of P ∗B is a rather insignificant approximation, particularly if
one considers the fact that αN = 1

N+1 diminishes with N . The same approach is
applied in the Laguerre case [20], but the approximation there is more significant
since the corresponding term αN in the P matrix is independent of N and is
always equal to −1. For the Walsh case, the approximation of the form (2.16) is
definitely significant since, for any given N , many non-zero terms in determining
P are truncated. Finally, the case of block-pulse functions appears not to involve
this type of approximation. This fact may be of great importance, since it could
considerably reduce the overall approximation error.

• The accuracy in relation (1.2) depends on two factors, namely, the dimension (N+1)
of the basis vector Ψ(x) and the particular Ψ(x) used. From the remarks of the
previous paragraph it appears that relation (1.2) could be more accurate if Bernoulli
functions were used rather than Walsh or Laguerre functions.

It is to be noted that, using equations (2.13) and (2.16), the integral of any function g(x)
can be approximated as

∫ x

0
g(t)dt '

∫ x

0
GTB(t)dt ' GTPB(x).

We also need to evaluate the product of B(x) and BT (x), which is called the product
matrix of Bernoulli polynomials. For this purpose, we first approximate the functions
xkBi(x), for i, k = 0, 1, . . . , N , in terms of B(x). By using (2.13), we can write

xkBi(x) ' BT (x)ek,i, (2.19)
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where ek,i is the Bernoulli polynomial coefficients vector defined as

ek,i = [ek,i0 , ek,i1 , . . . , ek,iN ]T . (2.20)

Using Eqs. (2.8) and (2.19), we obtain

ek,i ' Q−1
∫ 1

0
xkB(x)Bi(x)dx = Q−1




∫ 1

0
xkBi(x)B0(x)dx

∫ 1

0
xkBi(x)B1(x)dx

...
∫ 1

0
xkBi(x)BN (x)dx




.

Now, for any arbitrary vector C = [c0, c1, . . . , cN ]T in RN+1 we define the notations

Ẽk = EkC, k = 0, 1, . . . , N,

C̃ = [Ẽ0, Ẽ1, . . . , ẼN ],

where D̂ is the matrix defined by (2.7) and Ek is an (N + 1)× (N + 1) matrix with ek,i,
i = 0, 1, . . . , N , as its columns.

Theorem 9. Let C = [c0, c1, . . . , cN ]T be an arbitrary vector in RN+1. Then

B(x)BT (x)C ' ĈB(x), (2.21)

where Ĉ is the (N + 1)× (N + 1) product operational matrix defined by

Ĉ = D̂C̃T .

Proof. Using (2.6) we obtain

B(x)BT (x)C =
(
D̂TN (x)

)
BT (x)C

= D̂
[
BT (x)C, xBT (x)C, . . . , xNBT (x)C

]T

= D̂

[
N∑

i=0
ciBi(x),

N∑

i=0
cixBi(x), . . . ,

N∑

i=0
cix

NBi(x)
]T

,

(2.22)
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and using (2.19) and (2.20) yield

N∑

i=0
cix

kBi(x) '
N∑

i=0
ci
(
BT (x)ek,i

)
=

N∑

i=0
ci




N∑

j=0
ek,ij Bj(x)




= BT (x)




N∑

i=0
cie

k,i
0

N∑

i=0
cie

k,i
1

...

N∑

i=0
cie

k,i
N




= BT (x)[ek,0, ek,1, . . . , ek,N ]C = BT (x)ẼK .

(2.23)

Combining equations (2.22) and (2.23) gives the result.

3 Numerical solution of nonlinear VIEs

In this section, we use the operational matrices of the Bernoulli polynomials and a collo-
cation method to numerically solve problem (1.1) with assumption (1.3). So, we consider
the following integral equation

u(x) = f(x) +
∫ x

0
k(x, t)um(t)dt, x ∈ Ω. (3.1)

If we approximate functions f(x), u(x), um(x) and k(x, t) using Bernoulli polynomi-
als, as described by equations (2.13) and (2.15), then we obtain

f(x) ' BT (x)F, (3.2)

u(x) ' BT (x)U, (3.3)

um(x) ' BT (x)U (m), (3.4)

k(x, t) ' BT (x)KB(t), (3.5)

where the vectors F,U, U (m) and matrix K are Bernoulli polynomial coefficients of f(x),
u(x), um(x) and k(x, t) respectively. We again note that U (m) is a column vector whose
elements are nonlinear functions of the elements of the unknown vector U . With substi-
tuting approximations (3.2)-(3.5) into (3.1), we get

BT (x)U ' BT (x)F +
∫ x

0
BT (x)KB(t)BT (t)U (m)dt

= BT (x)F +BT (x)K
∫ x

0
B(t)BT (t)U (m)dt.
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Using (2.21) leads to

BT (x)U ' BT (x)F +BT (x)K
∫ x

0

(
Û (m)

)T
B(t)dt

= BT (x)F +BT (x)K
(
Û (m)

)T ∫ x

0
B(t)dt.

Now, using (2.16) gives

BT (x)U ' BT (x)F +BT (x)K
(
Û (m)

)T
PB(x), (3.6)

where P is the Bernoulli operational matrix of integration given in (2.17). Collocating
equation (3.6) at the (N + 1) Newton-Cotes nodes as

xl = 2l + 1
2(N + 1) , l = 0, 1, . . . , N, (3.7)

will result in

BT (xl)U ' BT (xl)F +BT (xl)
(
K
(
Û (m)

)T
P

)
B(xl), l = 0, 1, . . . , N. (3.8)

Since U (m) is a column vector whose elements are nonlinear functions of the element of
the unknown vector U = [ui]Ni=0, then equation (3.8) is a nonlinear system of (N + 1)
algebraic equations with (N + 1) unknowns u0, u1, . . . , uN . This nonlinear system
of algebraic equations can be solved by numerical methods such as Newton’s iterative
method. If Ū be an approximate solution of this system, then Ūm(x) = BT (x)Ū is an
approximate solution of equation (3.1).

In the following theorem we shall find an upper bound for the error between the exact
solution u(x) and the approximate solution uN (x) of equation (3.1) with the considered
assumptions.

Theorem 10. Let u(x) be the exact solution and uN (x) = BT (x)Ū be the approximated
solution of (3.1) where the unknown Bernoulli coefficient vector Ū is determined by solv-
ing the nonlinear algebraic system of equations (3.8). Moreover assume that

(1) |u(x)| ≤ ρ, ∀x ∈ Ω,

(2) |k(x, t)| ≤ k̃, ∀(x, t) ∈ Ω× Ω,

(3) M
(
k̃ + E(k)

)
< 1 in which M > 0 satisfies

|um(t)− umN (t)| ≤M |u(t)− uN (t)|, ∀t ∈ Ω. (3.9)

Then we have
‖u− uN‖∞ ≤

E(f) + ρmE(k)
1−M

(
k̃ + E(k)

) .

Proof. If we approximate both the driving term f(x) and kernel k(x, t) in terms of
Bernoulli polynomials as described by equations (2.13) and (2.15), then the obtained
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solution is an approximated polynomial; uN (x) and we have

|u(x)− uN (x)| =
∣∣∣∣f(x)− fN (x) +

∫ x

0

(
k(x, t)um(t)− kN (x, t)umN (t)

)
dt

∣∣∣∣

≤
∣∣f(x)− fN (x)

∣∣+
∫ x

0

∣∣∣k(x, t)um(t)− kN (x, t)umN (t)
∣∣∣dt.

(3.10)

Moreover, using assumptions (1)-(3) we get
∣∣∣k(x, t)um(t)− kN (x, t)um

N (t)
∣∣∣ =

∣∣∣k(x, t)
(
um(t)− um

N (t)
)

+
(
k(x, t)− kN (x, t)

)
um

N (t)
∣∣∣

≤ |k(x, t)|
∣∣um(t)− um

N (t)
∣∣+
∣∣k(x, t)− kN (x, t)

∣∣∣∣um
N (t)

∣∣

≤ k̃M‖u− uN‖∞ + E(k)
(∣∣um(t)− um

N (t)
∣∣+
∣∣um

N (t)
∣∣
)

≤ M
(
k̃ + E(k)

)
‖u− uN‖∞ + ρmE(k).

(3.11)

Substituting (3.11) in (3.10), and noting that x ∈ [0, 1], we obtain

‖u− uN‖∞ ≤ E(f) +
(
k̃ + E(k)

)
‖u− uN‖∞ + ρmE(k).

Then, by assumption (3) we get

‖u− uN‖∞ ≤
E(f) + ρmE(k)

1−M
(
k̃ + E(k)

) ,

which completes the proof.

For a given function f(x) if f ′(x) is continuous in [−1, 1] except for a finite number
of bounded jumps, then f(x) can be expanded in a convergent series as [29, pp. 309]

f(x) = 1
2c0 +

∞∑

j=1
cjTj(x), (3.12)

where
cj = 2

π

∫ 1

−1

f(x)Tj(x)
(1− x2) 1

2
dx,

and Tn(x) denotes the Chebyshev polynomial of the first kind of degree n.

Theorem 11. [17, Theorem 3.12] When a function f has r + 1 continuous derivatives
on [−1, 1], where r is a finite number, then |f(x) − Sn(x)| = O(n−r) as n → ∞ for all

x ∈ [−1, 1], in which Sn(x) = 1
2c0 +

n∑

j=1
cjTj(x) denotes the partial sum of expansion

(3.12).

We define the residual function rN (x) on Ω as

rN (x) = uN (x)− f(x)−
∫ x

0
k(x, t)umN (t)dt, (3.13)
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where u(x) is the exact solution of (3.1) and uN (x) is the approximation of u(x) in terms
of Bernoulli polynomials as described by equations (2.13). The next theorem gives an
estimation of the residual error.

Theorem 12. Let r is a finite number and the exact solution u(x) of (3.1) has r + 1
continuous derivatives on Ω. If M = ‖k(x, t)‖∞ < ∞, then ‖rN‖∞ = O(N−r) as
N →∞.

Proof. It follows from equations (3.13) and (3.1) that

‖rN‖∞ ≤ (1 +M)‖u− uN‖∞. (3.14)

Suppose that uN (x) =
N∑

n=0
aN,nBn(x). Since the Bernoulli polynomials can be expressed

in terms of Chebyshev polynomials of the first kind [22, Theorem 2.1], then uN (x) can
be expanded as

uN (x) =
N∑

k=0
bN,kTk(x),

where bN,k can be expressed in terms of aN,n, n, k = 0, . . . , N . Therefore, by Theorem
11 we have ‖u − uN‖∞ = O(N−r) as N → ∞ which along with (3.14) completes the
proof.

4 Expressing U (m) in terms of U

For the numerical implementation of the presented method, we need to express the
components of the vector U (m) as nonlinear functions of the elements of the vector U ,
where U (m) and U are the Bernoulli polynomial coefficients vectors of u(x) and um(x)
respectively. To do this, we state the following lemma.

Lemma 13. let m be a positive integer and U and U (m) are respectively the Bernoulli
polynomial coefficients vectors of u(x) and um(x), that are defined on Ω. Also, let Q be
the matrix defined in (2.8). Then, we have

U (m) = Q−1(ÛT )me1, (4.1)

where e1 denotes the first standard unit vector of order (N + 1).

Proof. We have

QU (m) =
(∫ 1

0
B(x)BT (x)dx

)
U (m) =

∫ 1

0
B(x)BT (x)U (m)dx.
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Using relations (3.4), (3.3), (2.2) and (2.21), we can write
∫ 1

0
B(x)BT (x)U (m)dx '

∫ 1

0
B(x)um(x)dx

'
∫ 1

0
B(x)

(
BT (x)U

)m
dx

=
∫ 1

0

(
B(x)BT (x)U

)(
BT (x)U

)m−1
dx

' ÛT
∫ 1

0
B(x)

(
BT (x)U

)m−1
dx

= ÛT
∫ 1

0

(
B(x)BT (x)U

)(
BT (x)U

)m−2
dx

'
(
ÛT
)2 ∫ 1

0
B(x)

(
BT (x)U

)m−2
dx

...

'
(
ÛT
)m ∫ 1

0
B(x)dx

=
(
ÛT
)m

e1.

Since Q is invertible, we obtain (4.1).

5 Illustrative examples

To demonstrate the applicability and accuracy of our method, we have applied it to
several examples. These examples are solved in different references, so the numerical
results obtained here can be compared with those of other numerical methods.

In order to analyze the error of the method we introduce notations

eN (x) = u(x)− uN (x),

and
‖eN‖∞ = max

{∣∣eN (xl)
∣∣, l = 0, 1, . . . , N

}
,

where uN (x) denotes the approximate solution of order N of integral equation, which is
obtained by the method presented in Section 3, and u(x) is the exact solution of integral
equation. Also, xl, l = 0, 1, . . . , N , denote the Newton-Cotes nodes defined by (3.7).

Moreover, we define the global error as [26]

εN = 1
|u|max

√√√√ 1
N

N∑

l=0

[
eN (xl)

]2
,

where |u|max denotes the maximum absolute value of the exact solution u on Ω.
Experiments were performed on a personal computer using a 2.50 GHz processor and

the codes were written in Mathematica 9.
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Example 14. Consider the nonlinear Volterra integral equation

u(x) = 2− ex +
∫ x

0
ex−tu2(t)dt, x ∈ [0, 1]. (5.1)

The exact solution of this equation is u(x) = 1. Numerical results obtained by the present
method for this example has been shown in the first column of Table 1. Also, Fig. 1
shows the error graph of eN , for N = 8.

Table 1. Computed errors ‖eN‖∞ for Examples 14-16.

N Example 14 Example 15 Example 16

1 9.883× 10−2 1.138× 10−2 3.349× 10−2

2 4.703× 10−2 5.551× 10−3 1.849× 10−2

3 9.026× 10−3 1.271× 10−3 7.851× 10−3

4 7.014× 10−4 3.847× 10−4 2.364× 10−3

5 1.938× 10−4 1.393× 10−4 1.277× 10−3

6 1.637× 10−5 4.172× 10−5 2.925× 10−4

7 5.109× 10−6 1.397× 10−5 1.742× 10−4

8 4.010× 10−7 4.301× 10−6 3.982× 10−5

0.0 0.2 0.4 0.6 0.8 1.0

0

1.´10
-7

2.´10
-7

3.´10
-7

4.´10
-7

Figure 1. Graph of eN (x) for Example 14 with N = 8.

Example 15. [2, 30] Consider the following nonlinear Volterra integral equation

u(x) = 3
2 −

1
2e
−2x −

∫ x

0

(
u2(t) + u(t)

)
dt, x ∈ [0, 1]. (5.2)

The exact solution of this problem is u(x) = e−x. The second column of Table 1 illustrates
the numerical results obtained by the present method for this example. Also, Fig. 2 shows
the error graph of eN , for N = 10.

Integral equation (5.2) is solved in [2] and [30], respectively by Haar wavelets method
and triangular functions (TF) method. Comparison of the second column of Table 1 with
Fig. 3 of [2] shows better accuracy of our method using fewer number of basis functions
and collocation points.
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0.0 0.2 0.4 0.6 0.8 1.0

-8.´10
-7

-6.´10
-7

-4.´10
-7

-2.´10
-7

0

2.´10
-7

4.´10
-7

6.´10
-7

Figure 2. Graph of eN (x) for Example 15 with N = 10.

Example 16. [26] Let us consider the following linear Volterra integral equation

u(x) = f(x) +
∫ x

0
x cos(t)u(t)dt, x ∈ [0, 1], (5.3)

where
f(x) = 1

4x cos(2x) + sin(x)− 1
2x.

The exact solution of this problem is u(x) = sin(x). The third column of Table 1
illustrates the numerical results obtained by the present method for this example. Also,
Fig. 3 shows the error graph of eN , for N = 15.

0.0 0.2 0.4 0.6 0.8 1.0

-4.´ 10
-8

-2.´ 10
-8

0

2.´ 10
-8

4.´ 10
-8

Figure 3. Graph of eN (x) for Example 16 with N = 15.

The random integral quadrature (RIQ) method is used in [26] to approximate the
solution of integral equation (5.3) where 0 ≤ x ≤ π. In the case of 5 field nodes distributed
uniformly and randomly, the global errors obtained by RIQ method are 1.6462E− 3 and
2.4302E − 3 respectively. Also, in the case of 5 collocation points used, the global error
obtained by the presented method for Example 16 is 2.0504E − 3 which shows similar
accuracies for our method and RIQ method.
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Example 17. [3, 33] Consider the nonlinear Volterra integral equation

u(x) = x+ cos(x)− 1 +
∫ x

0
sin
(
u(t)

)
dt, x ∈ [0, 1], (5.4)

with the exact solution u(x) = x. Integral equation (5.4) is not in the desired form (1.1),
but it can be converted by approximating sin(u) using a finite number of terms of its
Taylor series as

sin(u) = u− u3

3! + u5

5! + · · ·+ (−1)d u2d+1

(2d+ 1)! , d ∈ Z≥0.

Table 2 illustrates the numerical results obtained by the present method for N = 5 and
different values of d. Also, Fig. 4 shows the error graph of eN , for N = 6 and d = 3.

Table 2. Computed errors ‖eN‖∞ for Example 17.

N d = 0 d = 1 d = 2 d = 3

5 3.482× 10−2 8.735× 10−4 9.372× 10−6 2.960× 10−6

Integral equation (5.4) is solved in [33] using cubic B-spline wavelets basis. A com-
parison between the absolute errors obtained by the present method and the method
of [33] is done in Table 3. This table shows that our method needs fewer number of
basis functions (and therefore fewer number of collocation points) to achieve the desired
accuracy.

Table 3. Comparison of absolute errors for Example 17.

x Present method with 7 basis Algorithm 1 of [33] with 11 basis
functions (N=6) and d=3 functions (m = 4, sµ = 3)

0 7.13684× 10−7 4.14485× 10−6

0.1 6.29968× 10−7 1.61021× 10−7

0.2 3.08742× 10−7 4.15844× 10−7

0.3 1.22505× 10−7 7.48669× 10−7

0.4 4.93745× 10−7 5.50796× 10−7

0.5 6.64531× 10−7 4.08869× 10−7

0.6 5.71379× 10−7 4.95687× 10−7

0.7 2.50408× 10−7 1.71069× 10−7

0.8 1.64765× 10−7 1.40256× 10−6

0.9 4.69861× 10−7 1.62347× 10−6

0.9 4.41524× 10−7 7.31106× 10−6

Example 18. [36] Consider the following second kind linear Volterra integral equation

3u(x)−
∫ x

0
(x+ t)2u(t)dt = f(x), x ∈ [0, 1]. (5.5)

The function f(x) was chosen so that the analytical solution of (5.5) is u(x) = ex. Fig.
5 shows the error graph of eN , for N = 12.
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Figure 4. Graph of eN (x) for Example 17 with N = 6 and d = 3.

Table 4. Comparison of errors ‖eN‖∞ for Example 18.

N Present method N Moving least squares (MLS) method [36]
Linear (q = 1) Quadratic (q = 2)

2 7.09× 10−2 5 9.13× 10−3 2.39× 10−4

4 7.69× 10−3 9 2.70× 10−3 2.37× 10−5

6 4.21× 10−4 17 7.84× 10−4 7.59× 10−6

8 1.93× 10−5 33 2.09× 10−4 6.14× 10−6

10 7.74× 10−7 65 5.11× 10−5 5.31× 10−4

12 2.99× 10−8 129 1.37× 10−5 2.73× 10−3

0.0 0.2 0.4 0.6 0.8 1.0

-3.´10
-8

-2.´10
-8

-1.´10
-8

0

1.´10
-8

2.´10
-8

Figure 5. Graph of eN (x) for Example 18 with N = 12.

Integral equation (5.5) was previously considered in [36] by the moving least squares
(MLS) method. A comparison between our results and the results of [36] has done in
Table 4. The values of N in the first and the third columns of this table show the
number of collocation points used for our method and the number of nodal points used
for the MLS method, respectively. Based upon the results of Table 4, compared to the
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MLS method, our method gives more accurate solutions by solving a very smaller linear
system of equations.

Example 19. For our final example we consider the following Volterra integral equation
of the second kind

u(x) = f(x) +
∫ x

0
(x− t)u(t)dt, x ∈ [0, 1].

The function f(x) was chosen so that the analytical solution of (5.1) is

u(x) = γxe1−γx,

with γ denoting a given (real) parameter. Table 5 illustrates the numerical results ob-
tained by the present method for γ = 1,−1,−2,−3 and different values of N . In the
case of γ = −1, the numerical results obtained by the present method can be compared
with those of Brunner and Yan [10] who used the collocation and iterated collocation
methods for the numerical solution of this problem. We see that when γ decreases the
total variation of the exact solution u(x) (which is denoted by utv) increases and the
method converges slowly. Also, Fig. 6 shows the error graph of eN , for N = 15 and
γ = −1.

Table 5. Computed errors ‖eN‖∞ for Example 19.

N γ = 1(utv = 1) γ = −1(utv = e2) γ = −2(utv = 2e3) γ = −3(utv = 3e4)

5 7.204× 10−4 2.597× 10−3 3.450× 10−2 1.574× 10+0

10 3.126× 10−7 1.086× 10−6 7.229× 10−4 6.114× 10−2

15 1.952× 10−8 4.549× 10−9 5.239× 10−6 2.101× 10−3

0.0 0.2 0.4 0.6 0.8 1.0

-2.´ 10
-9

-1.´ 10
-9

0

1.´ 10
-9

2.´ 10
-9

3.´ 10
-9

4.´ 10
-9

Figure 6. Graph of eN (x) for Example 19 with N = 15 and γ = −1.

6 Conclusion and comments

In this article we proposed an efficient and simple numerical method for solving a class
of nonlinear Volterra integral equations of the form (1.1) and (1.3). For this purpose
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the existing functions expanded in terms of Bernoulli polynomials. Then, using the new
derived Bernoulli operational matrices and the collocation method, the problem reduced
to a nonlinear system of algebraic equations. The obtained results show that this method
is competitive with the other ones.
The proposed method has some notable advantages such as:

• The required computational effort to implement the method is small while the
accuracy is high (the computations can be carried out on a personal computer).

• As the numerical results show, in the case of smooth solutions, a small number of
basis functions (N ≤ 15) is enough to obtain a high accuracy approximation of the
solution

(
error norm less than 10−8).

Nevertheless, the method has some limitations and drawbacks, including:

• As we see in Example 19, when the exact solution u(x) of the problem has large
total variation, the method converges slowly.

• Since the coefficients of the Bernoulli polynomials grow quite fast in absolute value
when N increases, then for large values of N the accuracy of the method is affected
badly due to round off errors. This drawback will be also encountered when other
classical orthogonal basis such as the shifted Legendre and shifted Chebyshev poly-
nomials is used (since the coefficient of individual terms are greater than the ones
of Bernoulli polynomials).

At the end, as it done in Example 17, if the part N
(
u(x)

)
in equation (1.1) is not a

polynomial of u(x) but is continuous then the Weierstrass approximation theorem can
be used to convert the problem to the desired form.
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1 Introduction and main results

Consider for k ≥ 2 the linear differential equations

f (k) +Ak−1 (z) f (k−1) + · · ·+A1 (z) f ′ +A0 (z) f = 0, (1.1)

f (k) +Ak−1 (z) f (k−1) + · · ·+A1 (z) f ′ +A0 (z) f = F (z) , (1.2)

where A0 (z) , · · · , Ak−1 (z) , F (z) are meromorphic functions. In [11, 12] Juneja, Kapoor
and Bajpai have investigated some properties of entire functions of [p, q]-order and ob-
tained some results about their growth. In [16], in order to maintain accordance with
general definitions of the entire function f of iterated p-order [13, 14], Liu-Tu-Shi gave
a minor modification of the original definition of the [p, q]-order given in [11, 12] . With
this new concept of [p, q]-order, Liu, Tu and Shi [16] have considered equations (1.1),
(1.2) with entire coefficients and obtained different results concerning the growth of their
solutions. In this paper, we continue to consider this subject and investigate the complex
linear differential equations (1.1) and (1.2) when the coefficients A0, A1, · · · , Ak−1, F are
meromorphic functions of [p, q]−order.

In this paper, it is assumed that the reader is familiar with the fundamental results
and the standard notations of the Nevanlinna value distribution theory of meromorphic
functions [9, 14, 20]. For all r ∈ R, we define exp1 r := er and expp+1 r := exp

(
expp r

)
,

p ∈ N. We also define for all r sufficiently large log1 r := log r and logp+1 r := log
(
logp r

)
,

p ∈ N. Moreover, we denote by exp0 r := r, log0 r := r, log−1 r := exp1 r and exp−1 r :=
log1 r.

Copyright c© 2015 Matej Bel University



58 Benharrat Belaïdi

Definition 1. ([13]) Let p ≥ 1 be an integer. The iterated p−order of a meromorphic
function f (z) is defined by

ρp (f) = lim sup
r−→+∞

logp T (r, f)
log r ,

where T (r, f) is the Nevanlinna characteristic function of f.

Now, we shall introduce the definition of meromorphic functions of [p, q]-order, where
p, q are positive integers satisfying p ≥ q ≥ 1 or 2 ≤ q = p + 1. In order to keep
accordance with Definition 1, we will give a minor modification to the original definition
of [p, q]-order (e.g. see, [11, 12]).

Definition 2. ([15]) Let p ≥ q ≥ 1 or 2 ≤ q = p+1 be integers. If f (z) is a transcendental
meromorphic function, then the [p, q]-order of f (z) is defined by

ρ[p,q] (f) = lim sup
r−→+∞

logp T (r, f)
logq r

.

It is easy to see that 0 ≤ ρ[p,q] (f) ≤ ∞. If f (z) is a rational, then ρ[p,q] (f) = 0 for any
p ≥ q ≥ 1. By Definition 2, we have that ρ[1,1] (f) = ρ1 (f) = ρ (f) , ρ[2,1] (f) = ρ2 (f)
and ρ[p+1,1] (f) = ρp+1 (f) .

Definition 3. ([15]) A transcendental meromorphic function f (z) is said to have index-
pair [p, q] if 0 < ρ[p,q] (f) <∞ and ρ[p−1,q−1] (f) is not a nonzero finite number.

Definition 4. ([15]) Let p ≥ q ≥ 1 or 2 ≤ q = p+ 1 be integers. The [p, q] convergence
exponent of the sequence of zeros of a meromorphic function f (z) is defined by

λ[p,q] (f) = lim sup
r→+∞

logpN
(
r, 1
f

)

logq r
,

where N
(
r, 1
f

)
is the integrated counting function of zeros of f (z) in {z : |z| ≤ r}. Sim-

ilarly, the [p, q] convergence exponent of the sequence of distinct zeros of f (z) is defined
by

λ[p,q] (f) = lim sup
r→+∞

logpN
(
r, 1
f

)

logq r
,

whereN
(
r, 1
f

)
is the integrated counting function of distinct zeros of f (z) in {z : |z| ≤ r}.

Remark 5. ([15]) If f (z) is a meromorphic function satisfying 0 < ρ[p,q] (f) <∞, then
(i) ρ[p−n,q] =∞ (n < p), ρ[p,q−n] = 0 (n < q), ρ[p+n,q+n] = 1 (n < p) for n = 1, 2, 3, · · ·
(ii) If [p1, q1] is any pair of integers satisfying q1 = p1 + q−p and p1 < p, then ρ[p1,q1] = 0
if 0 < ρ[p,q] < 1 and ρ[p1,q1] =∞ if 1 < ρ[p,q] <∞.
(iii) ρ[p1,q1] =∞ for q1 − p1 > q − p and ρ[p1,q1] = 0 for q1 − p1 < q − p.

Remark 6. ([15]) Suppose that f1 is a meromorphic function of [p, q]-order ρ1 and f2 is
a meromorphic function of [p1, q1]-order ρ2, let p ≤ p1. We can easily deduce the result
about their comparative growth:
(i) If p1 − p > q1 − q, then the growth of f1 is slower than the growth of f2.
(ii) If p1 − p < q1 − q, then f1 grows faster than f2.
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(iii) If p1−p = q1−q > 0, then the growth of f1 is slower than the growth of f2 if ρ2 ≥ 1,
and the growth of f1 is faster than the growth of f2 if ρ2 < 1.
(iv) Especially, when p1 = p and q1 = q then f1 and f2 are of the same index-pair [p, q].
If ρ1 > ρ2, then f1 grows faster than f2; and if ρ1 < ρ2, then f1 grows slower than f2. If
ρ1 = ρ2, Definition 2 does not show any precise estimate about the relative growth of
f1 and f2.

We recall the following definitions. The linear measure of a set E ⊂ (0,+∞) is defined
as m (E) =

∫ +∞
0 χE (t) dt and the logarithmic measure of a set F ⊂ (1,+∞) is defined

by lm (F ) =
∫ +∞

1
χF (t)
t dt, where χH (t) is the characteristic function of a set H. The

upper density of a set E ⊂ (0,+∞) is defined by

densE = lim sup
r−→+∞

m (E ∩ [0, r])
r

.

The upper logarithmic density of a set F ⊂ (1,+∞) is defined by

log dens (F ) = lim sup
r−→+∞

lm (F ∩ [1, r])
log r .

Proposition 7. For all H ⊂ [1,+∞) the following statements hold :
(i) If lm (H) =∞, then m (H) =∞;
(ii) If densH > 0, then m (H) =∞;
(iii) If log densH > 0, then lm (H) =∞.
Proof. (i) Since we have χH (t)

t ≤ χH (t) for all t ∈ H ⊂ [1,+∞) , then

m (H) ≥ lm (H) .

So, if lm (H) = ∞, then m (H) = ∞. We can easily prove the results (ii) and (iii)
by applying the definition of the limit and the properties m (H ∩ [0, r]) ≤ m (H) and
lm (H ∩ [1, r]) ≤ lm (H) .

Definition 8. ([9, 20]) For a ∈ C = C ∪ {∞}, the deficiency of a with respect to a
meromorphic function f is defined as

δ (a, f) = lim inf
r→+∞

m
(
r, 1
f−a

)

T (r, f) = 1− lim sup
r→+∞

N
(
r, 1
f−a

)

T (r, f) .

Extensive work in recent years has been concerned with the growth of solutions of
[p, q]-order of complex linear differential equations in the complex plane and in the unit
disc. Many results have been obtained [2, 3, 4, 10, 15, 16, 17, 18, 19]. Examples of such
results are the following two theorems:
Theorem 9. ([16]) Let H be a set of complex numbers satisfying dens{|z| : z ∈ H} > 0,
and let A0 (z) , · · · , Ak−1 (z) be entire functions satisfying max{ρ[p,q] (Aj) : j = 0, 1, · · · , k−
1} ≤ α. Suppose that there exists a positive constant β satisfying β < α such that for
any given ε (0 < ε < α− β), we have

|A0 (z)| ≥ expp+1
{

(α− ε) logq r
}

and
|Aj (z)| ≤ expp+1

{
β logq r

}
(j = 1, · · · , k − 1)

for z ∈ H. Then, every solution f 6≡ 0 of equation (1.1) satisfies ρ[p+1,q] (f) = α.
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Theorem 10. ([15]) Let H ⊂ (1,∞) be a set satisfying log dens{|z| : |z| ∈ H} > 0, and
let A0 (z) , · · · , Ak−1 (z) , F 6≡ 0 be meromorphic functions satisfying max{ρ[p,q] (Aj) :
j = 1, 2, · · · , k − 1} < α, where α is a constant. Suppose that there exists a constant β
satisfying β < α such that for any given ε (0 < ε < α− β), we have

|A0 (z)| ≥ expp+1
{

(α− ε) logq r
}

and
|Aj (z)| ≤ expp+1

{
β logq r

}
(j = 1, · · · , k − 1)

as |z| ∈ H. Then the following statements hold:
(i) If ρ[p+1,q] (F ) ≥ α, then all meromorphic solutions f whose poles are of uniformly
bounded multiplicities of equation (1.2) satisfy ρ[p+1,q] (f) = ρ[p+1,q] (F ).
(ii) If ρ[p+1,q] (F ) < α, then all meromorphic solutions f whose poles are of uniformly
bounded multiplicities of equation (1.2) satisfy λ[p+1,q] (f) = λ[p+1,q] (f) = ρ[p+1,q] (f) =
α with at most one exceptional solution f0 satisfying ρ[p+1,q] (f0) < α.

The main purpose of this paper is to consider the growth of meromorphic solutions
of equations (1.1) and (1.2) with meromorphic coefficients of finite [p, q]-order in the
complex plane. We obtain the following results which generalize and improve Theorem
9 and Theorem 10.

Theorem 11. Let H be a set of complex numbers satisfying log dens{|z| : z ∈ H} > 0,
and let A0 (z) , · · · , Ak−1 (z) be meromorphic functions satisfying max{ρ[p,q] (Aj) : j =
0, 1, · · · , k − 1} ≤ ρ (0 < ρ <∞) . Suppose that there exist two real numbers satisfying
0 ≤ β < α such that, we have

|A0 (z)| ≥ expp
{
α
[
logq−1 r

]ρ} (1.3)

and
|Aj (z)| ≤ expp

{
β
[
logq−1 r

]ρ} (j = 1, · · · , k − 1) (1.4)

as |z| → +∞ for z ∈ H. Then the following statements hold:
(i) If p ≥ q ≥ 1 or 3 ≤ q = p + 1, then every meromorphic solution f 6≡ 0 whose
poles are of uniformly bounded multiplicities or δ (∞, f) > 0 of equation (1.1) satisfies
ρ[p+1,q] (f) = ρ.
(ii) If p = 1, q = 2, then every meromorphic solution f 6≡ 0 of equation (1.1) satisfies
ρ[2,2] (f) ≥ ρ.

Theorem 12. Let H be a set of complex numbers satisfying log dens{|z| : z ∈ H} > 0,
and let A0 (z) , · · · , Ak−1 (z) be meromorphic functions satisfying max{ρ[p,q] (Aj) : j =
0, 1, · · · , k − 1} ≤ ρ (0 < ρ <∞) . Suppose that there exist two positive constants α, β
such that, we have

m (r,A0) ≥ expp−1
{
α
[
logq−1 r

]ρ} (1.5)

and
m (r,Aj) ≤ expp−1

{
β
[
logq−1 r

]ρ} (j = 1, · · · , k − 1) (1.6)

as |z| → +∞ for z ∈ H. Then the following statements hold:
(i) If p ≥ q ≥ 2 and 0 ≤ β < α, then every meromorphic solution f 6≡ 0 whose poles are of
uniformly bounded multiplicities or δ (∞, f) > 0 of equation (1.1) satisfies ρ[p+1,q] (f) =
ρ.
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(ii) If 3 ≤ q = p+1, 0 ≤ β < α and ρ > 1, then every meromorphic solution f 6≡ 0 whose
poles are of uniformly bounded multiplicities or δ (∞, f) > 0 of equation (1.1) satisfies
ρ[p+1,p+1] (f) = ρ.
(iii) If p = 1, q = 2, 0 ≤ (k − 1)β < α and ρ > 1, then every meromorphic solution
f 6≡ 0 of equation (1.1) satisfies ρ[2,2] (f) ≥ ρ.

Corollary 13. Let F (z) 6≡ 0, Aj(z) (j = 0, 1, · · · , k − 1) be meromorphic functions.
Suppose that H, Aj(z) (j = 0, 1, · · · , k− 1) satisfy the hypotheses in Theorem 11. Then
we have the following statements:
(i) Let p ≥ q ≥ 1. If ρ[p+1,q] (F ) ≤ ρ, then every meromorphic solution f 6≡ 0 whose
poles are of uniformly bounded multiplicities or δ (∞, f) > 0 of equation (1.2) satisfies
λ[p+1,q] (f) = λ[p+1,q] (f) = ρ[p+1,q] (f) = ρ with at most one exceptional solution f0
satisfying ρ[p+1,q] (f0) < ρ; if ρ[p+1,q] (F ) > ρ, then every meromorphic solution f 6≡ 0
whose poles are of uniformly bounded multiplicities or δ (∞, f) > 0 of equation (1.2)
satisfies ρ[p+1,q] (f) = ρ[p+1,q] (F ).
(ii) Let 3 ≤ q = p+ 1 and ρ > 1. If ρ[p+1,p+1] (F ) ≤ ρ, then every meromorphic solution
f 6≡ 0 whose poles are of uniformly bounded multiplicities or δ (∞, f) > 0 of equation (1.2)
satisfies λ[p+1,p+1] (f) = λ[p+1,p+1] (f) = ρ[p+1,p+1] (f) = ρ, with at most one exceptional
solution f0 satisfying ρ[p+1,p+1] (f0) < ρ; if ρ[p+1,p+1] (F ) > ρ, then every meromorphic
solution f 6≡ 0 whose poles are of uniformly bounded multiplicities or δ (∞, f) > 0 of
equation (1.2) satisfies ρ[p+1,p+1] (f) = ρ[p+1,p+1] (F ).

Corollary 14. Let F (z) 6≡ 0, Aj(z) (j = 0, 1, · · · , k − 1) be meromorphic functions.
Suppose that H, Aj(z) (j = 0, 1, · · · , k − 1) satisfy the hypotheses in Theorem 12. Then
we have the following statements:
(i) Let p ≥ q ≥ 2, 0 ≤ β < α. If ρ[p+1,q] (F ) ≤ ρ, then every meromorphic solution f 6≡ 0
whose poles are of uniformly bounded multiplicities or δ (∞, f) > 0 of equation (1.2)
satisfies λ[p+1,q] (f) = λ[p+1,q] (f) = ρ[p+1,q] (f) = ρ with at most one exceptional solution
f0 satisfying ρ[p+1,q] (f0) < ρ; if ρ[p+1,q] (F ) > ρ, then every meromorphic solution f 6≡ 0
whose poles are of uniformly bounded multiplicities or δ (∞, f) > 0 of equation (1.2)
satisfies ρ[p+1,q] (f) = ρ[p+1,q] (F ).
(ii) Let 3 ≤ q = p+ 1, 0 ≤ β < α and ρ > 1. If ρ[p+1,p+1] (F ) ≤ ρ , then every meromor-
phic solution f 6≡ 0 whose poles are of uniformly bounded multiplicities or δ (∞, f) > 0
of equation (1.2) satisfies λ[p+1,p+1] (f) = λ[p+1,p+1] (f) = ρ[p+1,p+1] (f) = ρ with at most
one exceptional solution f0 satisfying ρ[p+1,p+1] (f0) < ρ; if ρ[p+1,p+1] (F ) > ρ, then ev-
ery meromorphic solution f 6≡ 0 whose poles are of uniformly bounded multiplicities or
δ (∞, f) > 0 of equation (1.2) satisfies ρ[p+1,p+1] (f) = ρ[p+1,p+1] (F ).

Recently, the author [2, 3, 4], J. Tu and Z. X. Xuan [17] and J. Tu and H. X.
Huang [18] have investigated the growth of solutions of differential equations (1.1) and
(1.2) with analytic coefficients of [p, q]-order in the unit disc. So, it is also interesting to
consider the growth of meromorphic solutions of differential equations with coefficients
of [p, q]-order in the unit disc?

2 Some preliminary lemmas

Our proofs depend mainly upon the following lemmas.

Lemma 15. ([1]) Let g : (0,∞)→ R, h : (0,∞)→ R be monotone increasing functions
such that g (r) ≤ h (r) outside of an exceptional set E1 of finite linear measure. Then,
for any λ > 1, there exists r1 > 0 such that g (r) ≤ h (λr) for all r > r1.
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Lemma 16. ([8]) Let ϕ : [0,+∞) → R and ψ : [0,+∞) → R be monotone non-
decreasing functions such that ϕ (r) ≤ ψ (r) for all r /∈ E2 ∪ [0, 1], where E2 ⊂ (1,+∞)
is a set of finite logarithmic measure. Let γ > 1 be a given constant. Then there exists
an r2 = r2 (γ) > 0 such that ϕ (r) ≤ ψ (γr) for all r > r2.

Lemma 17. ([9]) Let f be a meromorphic function and let k ∈ N. Then

m

(
r,
f (k)

f

)
= S (r, f) ,

where S (r, f) = O (log T (r, f) + log r) , possibly outside of an exceptional set E3 ⊂
(0,+∞) with finite linear measure, and if f is of finite order of growth, then

m

(
r,
f (k)

f

)
= O (log r) .

Lemma 18. ([7]) Let f(z) be a transcendental meromorphic function, and let α > 1 be
a given constant. Then there exist a set E4 ⊂ (1,∞) with finite logarithmic measure and
a constant B > 0 that depends only on α and i, j (0 ≤ i < j ≤ k), such that for all z
satisfying |z| = r /∈ [0, 1] ∪ E4, we have

∣∣∣∣
f (j)(z)
f (i)(z)

∣∣∣∣ ≤ B
{
T (αr, f)

r
(logα r) log T (αr, f)

}j−i
.

Lemma 19. ([5]) Let f be a meromorphic solution of (1.1), assuming that not all coeffi-

cients Aj are constants. Given a real constant γ > 1, and denoting T (r) =
k−1∑
j=0

T (r,Aj) ,

we have
logm (r, f) < T (r) {(log r) log T (r)}γ , if s = 0,
logm (r, f) < r2s+γ−1T (r) {log T (r)}γ , if s > 0

outside of an exceptional set Es with
∫
Es

ts−1dt < +∞.

Remark 20. We note that in the above lemma, s = 1 corresponds to Euclidean measure
and s = 0 to logarithmic measure.

Lemma 21. Let A0 (z) , · · · , Ak−1 (z) be nonconstant meromorphic functions of [p, q]−order.
Assume the existence of the meromorphic solutions of (1.1). Then the following state-
ments hold:
(i) If p ≥ q ≥ 1, then every meromorphic solution f 6≡ 0 whose poles are of uni-
formly bounded multiplicities or δ (∞, f) > 0 of equation (1.1) satisfies ρ[p+1,q] (f) ≤
max{ρ[p,q] (Aj) : j = 0, 1, · · · , k − 1}.
(ii) If 3 ≤ q = p + 1, then every meromorphic solution f 6≡ 0 whose poles are of uni-
formly bounded multiplicities or δ (∞, f) > 0 of equation (1.1) satisfies ρ[p+1,p+1] (f) ≤
max{ρ[p,p+1] (Aj) (j = 0, 1, · · · , k − 1)}.
Proof. We prove only (ii) . For the proof of (i) see [15, 19]. From (1.1), we know that the
poles of f (z) can only occur at the poles of A0 (z) , · · · , Ak−1 (z). Since the multiplicities
of poles of f are uniformly bounded, we have

N (r, f) ≤M1N (r, f) ≤M1

k−1∑

j=0
N (r,Aj)
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≤M max {N (r,Aj) : j = 0, 1, · · · , k − 1} , (2.1)

where M1 and M are some suitable positive constants. This gives

T (r, f) = m (r, f) +O (max {N (r,Aj) : j = 0, 1, · · · , k − 1}) . (2.2)

Set δ (∞, f) := η > 0, for sufficiently large r, we have

m (r, f) ≥ η

2T (r, f) . (2.3)

From Lemma 19 and (2.2) or (2.3), we obtain

log T (r, f) ≤ logm (r, f) +O (log T (r)) ≤ O (T (r) {(log r) log T (r)}γ) (2.4)

or
log T (r, f) ≤ log

(
2
η
m (r, f)

)
≤ O (T (r) {(log r) log T (r)}γ) (2.5)

outside of an exceptional set E0 with finite logarithmic measure. From (2.4) or (2.5), we
get for p ≥ 2

logp+1 T (r, f) ≤ max
{

logp T (r) , logp+1 r
}

(2.6)

outside of an exceptional set E0 with finite logarithmic measure. If at least one of the
coefficients A0 (z) , · · · , Ak−1 (z) of (1.1) is transcendental, then by using Lemma 16 and
(2.6), we obtain

ρ[p+1,p+1] (f) ≤ max
{
ρ[p,p+1] (Aj) (j = 0, 1, · · · , k − 1) , 1

}

= max
{
ρ[p,p+1] (Aj) (j = 0, 1, · · · , k − 1)

}
.

If all the coefficients A0 (z) , · · · , Ak−1 (z) of (1.1) are rational functions, then by using
Lemma 16 and (2.6), we obtain

ρ[p+1,p+1] (f) ≤ max
{
ρ[p,p+1] (Aj) (j = 0, 1, · · · , k − 1) , 1

}
= 1

= max
{
ρ[p,p+1] (Aj) (j = 0, 1, · · · , k − 1)

}
.

Lemma 22. ([15]) Let 1 ≤ q ≤ p or 2 ≤ q = p + 1 and let f be a meromorphic
function with 0 ≤ ρ[p,q] (f) = ρ ≤ ∞. Then there exists a set E5 ⊂ [1,+∞) with infinite
logarithmic measure such that

lim
r→+∞

r∈E5

logp T (r, f)
logq r

= ρ.

Lemma 23. Let 1 ≤ q ≤ p or 2 ≤ q = p+ 1 and let f1 and f2 be meromorphic functions
of [p, q]−order satisfying ρ[p,q] (f1) > ρ[p,q] (f2) . Then there exists a set E6 ⊂ (1,+∞)
having infinite logarithmic measure such that for all r ∈ E6, we have

lim
r→∞

T (r, f2)
T (r, f1) = 0.
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Proof. Set ρ1 = ρ[p,q] (f1) , ρ2 = ρ[p,q] (f2) . By using Lemma 22, there exists a set
E6 with infinite logarithmic measure such that for any given 0 < ε < ρ1−ρ2

2 and all
sufficiently large r ∈ E6

T (r, f1) > expp
{

(ρ1 − ε) logq r
}

and for all sufficiently large r, we have

T (r, f2) < expp
{

(ρ2 + ε) logq r
}
.

From this we can get
T (r, f2)
T (r, f1) <

expp
{

(ρ2 + ε) logq r
}

expp
{

(ρ1 − ε) logq r
}

= exp
{

expp−1
{

(ρ2 + ε) logq r
}
− expp−1

{
(ρ1 − ε) logq r

}}
, r ∈ E6.

Since 0 < ε < ρ1−ρ2
2 , then we have

lim
r→∞

T (r, f2)
T (r, f1) = 0, r ∈ E6.

Lemma 24. Let Aj (j = 0, · · · , k − 1) , F 6≡ 0 be meromorphic functions. Then the
following statements hold:
(i) If p ≥ q ≥ 1, then every meromorphic solution f of equation (1.2) such that max{ρ[p,q] (Aj)
(j = 0, 1, · · · , k − 1) , ρ[p,q] (F )} < ρ[p,q] (f) satisfies λ[p,q] (f) = λ[p,q] (f) = ρ[p,q] (f).
(ii) If 2 ≤ q = p + 1, then every meromorphic solution f of equation (1.2) such that
max{ρ[p,p+1] (Aj) (j = 0, 1, · · · , k−1), ρ[p,p+1] (F ) , 1} < ρ[p,p+1] (f) satisfies λ[p,p+1] (f) =
λ[p,p+1] (f) = ρ[p,p+1] (f).

Proof. We prove only (ii) . For the proof of (i) see [15]. By (1.2), if f has a zero at z0
of order α (> k) and if A0, A1, · · · , Ak−1 are all analytic at z0, then F must have a zero
at z0 of order α− k. Hence,

n

(
r,

1
f

)
≤ k n

(
r,

1
f

)
+ n

(
r,

1
F

)
+

k∑

j=1
n (r,Ak−j)

and

N

(
r,

1
f

)
≤ k N

(
r,

1
f

)
+N

(
r,

1
F

)
+

k∑

j=1
N (r,Ak−j) . (2.7)

Now (1.2) can be rewritten as

1
f

= 1
F

(
f (k)

f
+Ak−1

f (k−1)

f
+ · · ·+A1

f ′

f
+A0

)
. (2.8)

By Lemma 17 and (2.8), we have

m

(
r,

1
f

)
≤

k∑

j=1
m

(
r,
f (j)

f

)
+

k∑

j=1
m (r,Ak−j) +m

(
r,

1
F

)
+O (1)
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=
k∑

j=1
m (r,Ak−j) +m

(
r,

1
F

)
+O (log T (r, f) + log r) (2.9)

holds for all r outside a set E3 ⊂ (0,+∞) with a finite linear measure m (E3) = δ < +∞.
By (2.7) and (2.9), we get

T (r, f) = T

(
r,

1
f

)
+O (1)

≤ kN
(
r,

1
f

)
+

k∑

j=1
T (r,Ak−j)+T (r, F )+O (log T (r, f) + log r) (|z| = r /∈ E3) . (2.10)

Since max{ρ[p,p+1] (Aj) (j = 0, 1, · · · , k− 1), ρ[p,p+1] (F )} < ρ[p,p+1] (f) , then by Lemma
23, there exists a set E6 ⊂ [1,+∞) with infinite logarithmic measure such that

max
{
T (r,Aj)
T (r, f) (j = 0, · · · , k − 1) , T (r, F )

T (r, f)

}
→ 0, r → +∞, r ∈ E6. (2.11)

Thus, by (2.10) and (2.11), we have for all r ∈ E6\E3

(1− o (1))T (r, f) ≤ k N
(
r,

1
f

)
+O (log T (r, f) + log r) .

Then, we obtain ρ[p,p+1] (f) ≤ λ[p,p+1] (f) ≤ λ[p,p+1] (f). Therefore, by

λ[p,p+1] (f) ≤ λ[p,p+1] (f) ≤ ρ[p,p+1] (f)

we have λ[p,p+1] (f) = λ[p,p+1] (f) = ρ[p,p+1] (f) .

Lemma 25. Let f be a meromorphic function of [p, q]−order. Then the following state-
ments hold:
(i) If p ≥ q ≥ 1, then ρ[p,q] (f) = ρ[p,q] (f ′).
(ii) If 3 ≤ q = p + 1, then ρ[p,p+1] (f ′) ≤ max

{
ρ[p,p+1] (f) , 1

}
and ρ[p,p+1] (f) ≤

max
{
ρ[p,p+1] (f ′) , 1

}
.

(iii) If p = 1, q = 2, then ρ[1,2] (f ′) ≤ max
{
ρ[1,2] (f) , 1

}
and ρ[1,2] (f) ≤ 1 + ρ[1,2] (f ′).

Proof. (i)− (ii) By Lemma 17, we have

T (r, f ′) = m (r, f ′) +N (r, f ′) ≤ m (r, f) +m

(
r,
f ′

f

)
+ 2N (r, f)

≤ 2T (r, f) +m

(
r,
f ′

f

)
≤ 2T (r, f) +O (log T (r, f) + log r) (2.12)

holds outside of an exceptional set E3 ⊂ (0,+∞) with finite linear measure. By (2.12)
and Lemma 15, it is easy to see ρ[p,q] (f ′) ≤ ρ[p,q] (f) (p ≥ q ≥ 1) and ρ[p,p+1] (f ′) ≤
max

{
ρ[p,p+1] (f) , 1

}
if 3 ≤ q = p+ 1. On the other hand, [6], ( [20], p. 35), we have for

r → +∞
T (r, f) < O (T (2r, f ′) + log r) . (2.13)

Hence, by using (2.13) we obtain ρ[p,q] (f ′) = ρ[p,q] (f) if p ≥ q ≥ 1 and ρ[p,p+1] (f) ≤
max

{
ρ[p,p+1] (f ′) , 1

}
if 3 ≤ q = p+ 1. We can easily obtain the conclusion (iii) by using

(2.12) and (2.13).
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3 Proof of Theorem 11

Proof. (i) Suppose that f 6≡ 0 is a meromorphic solution whose poles are of uniformly
bounded multiplicities or δ (∞, f) > 0 of equation (1.1). From the conditions of Theorem
11, there is a set H of complex numbers satisfying log dens{|z| : z ∈ H} > 0 such that
for z ∈ H, we have (1.3) and (1.4) as |z| → +∞. Set H1 = {r = |z| : z ∈ H}, since
log dens{|z| : z ∈ H} > 0, then H1 is a set with

∫
H1

dr
r = ∞. By Lemma 18, we know

that there exists a set E4 ⊂ (1,+∞) with finite logarithmic measure and a constant
B > 0, such that for all z satisfying |z| = r /∈ [0, 1] ∪ E4, we get

∣∣∣∣
f (j)(z)
f(z)

∣∣∣∣ ≤ B [T (2r, f)]j+1 (j = 1, · · · , k) . (3.1)

By (1.1), we can write

|A0 (z)| ≤
∣∣∣∣
f (k)

f

∣∣∣∣+ |Ak−1 (z)|
∣∣∣∣
f (k−1)

f

∣∣∣∣+ · · ·+ |A0 (z)|
∣∣∣∣
f ′

f

∣∣∣∣ . (3.2)

It follows by (1.3), (1.4), (3.1) and (3.2) that

expp
{
α
[
logq−1 r

]ρ} ≤ |A0 (z)| ≤ kB expp
{
β
[
logq−1 r

]ρ} [T (2r, f)]k+1 (3.3)

holds for all z satisfying |z| = r ∈ H1\([0, 1] ∪ E4) as |z| → +∞. If p ≥ q ≥ 1 or
3 ≤ q = p + 1, then by (3.3) and Lemma 16, we obtain ρ ≤ ρ[p+1,q] (f) . On the other
hand, by Lemma 21 (i)− (ii), we have

ρ[p+1,q] (f) ≤ max
{
ρ[p,q] (Aj) : j = 0, 1, · · · , k − 1

}
≤ ρ,

if p ≥ q ≥ 1 or 3 ≤ q = p + 1. Hence every meromorphic solution whose poles are of
uniformly bounded multiplicities or δ (∞, f) > 0 of equation (1.1) satisfies ρ[p+1,q] (f) = ρ
if p ≥ q ≥ 1 or 3 ≤ q = p+ 1.
(ii) If p = 1, q = 2, then from (3.3), we have

exp {α [log r]ρ} ≤ |A0 (z)| ≤ kB exp {β [log r]ρ} [T (2r, f)]k+1 (3.4)

holds for all z satisfying |z| = r ∈ H1\([0, 1] ∪ E4) as |z| → +∞. By (3.4) and Lemma
16, every meromorphic solution f 6≡ 0 of equation (1.1) satisfies ρ[2,2] (f) ≥ ρ.

4 Proof of Theorem 12

Proof. (i) Suppose that f 6≡ 0 is a meromorphic solution whose poles are of uniformly
bounded multiplicities or δ (∞, f) > 0 of equation (1.1). By (1.1), we can write

A0 (z) = −
(
f (k)

f
+Ak−1 (z) f

(k−1)

f
+ · · ·+A1 (z) f

′

f

)
. (4.1)

From the conditions of Theorem 12, there is a set H of complex numbers satisfying
log dens {|z| : z ∈ H} > 0 such that for z ∈ H, we have (1.5) and(1.6) as |z| → +∞.
Set H1 = {r = |z| : z ∈ H} , since log dens{|z| : z ∈ H} > 0, then H1 is a set of r with∫
H1

dr
r =∞. It follows by (1.5), (1.6), (4.1) and Lemma 17 that

expp−1
{
α
[
logq−1 r

]ρ} ≤ m (r,A0)
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≤
k−1∑

j=1
m (r,Aj) +

k∑

j=1
m

(
r,
f (j)

f

)
+O (1)

≤ (k − 1) expp−1
{
β
[
logq−1 r

]ρ}+O (log T (r, f) + log r) (4.2)

holds for all z satisfying |z| = r ∈ H1\E3 as |z| → +∞, where E3 ⊂ (0,+∞) is a
set with a finite linear measure. If p ≥ q ≥ 2 and 0 ≤ β < α, then by (4.2) and
Lemma 15, we obtain ρ ≤ ρ[p+1,q] (f) . On the other hand, by Lemma 21 (i), we
have ρ[p+1,q] (f) ≤ max

{
ρ[p,q] (Aj) : j = 0, 1, · · · , k − 1

}
≤ ρ. Hence every meromorphic

solution whose poles are of uniformly bounded multiplicities or δ (∞, f) > 0 of equation
(1.1) satisfies ρ[p+1,q] (f) = ρ.
(ii) If 3 ≤ q = p + 1, 0 ≤ β < α and ρ > 1, by the similar proof in case (i) and Lemma
21 (ii), we can obtain the conclusion.
(iii) If p = 1, q = 2, 0 ≤ (k − 1)β < α and ρ > 1, then from (4.2), we have

α [log r]ρ ≤ m (r,A0) ≤ (k − 1)β [log r]ρ +O (log T (r, f) + log r) (4.3)

holds for all z satisfying |z| = r ∈ H1\E3 as |z| → +∞. By (4.3) and Lemma 16, every
meromorphic solution f 6≡ 0 of equation (1.1) satisfies ρ[2,2] (f) ≥ ρ.

5 Proof of Corollary 13

Proof. (i) Suppose that f 6≡ 0 is a meromorphic solution whose poles are of uniformly
bounded multiplicities or δ (∞, f) > 0 of equation (1.1).
(a) Suppose that 1 ≤ q ≤ p and ρ[p+1,q] (F ) ≤ ρ. We assume that f is a solution of (1.2)
and {f1, f2, · · · , fk} is a solution base of the corresponding homogeneous equation (1.1)
of (1.2). By Theorem 11, we know that ρ[p+1,q] (fj) = ρ (j = 1, 2, · · · , k) . Then f can
be expressed in the form

f (z) = B1 (z) f1 (z) +B2 (z) f2 (z) + · · ·+Bk (z) fk (z) , (5.1)

where B1 (z) , · · · , Bk (z) are suitable meromorphic functions determined by

B′1 (z) f1 (z) +B′2 (z) f2 (z) + · · ·+B′k (z) fk (z) = 0,
B′1 (z) f ′1 (z) +B′2 (z) f ′2 (z) + · · ·+B′k (z) f ′k (z) = 0,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
B′1 (z) f (k−1)

1 (z) +B′2 (z) f (k−1)
2 (z) + · · ·+B′k (z) f (k−1)

k (z) = F (z) .

(5.2)

Since the Wronskian W (f1, f2, · · · , fk) is a differential polynomial in f1, f2, · · · , fk
with constant coefficients, it is easy by using Theorem 11 to deduce that

ρ[p+1,q] (W ) ≤ max
{
ρ[p+1,q] (fj) : j = 1, 2, · · · , k

}
= ρ. (5.3)

From (5.2), we get

B′j = F.Gj (f1, f2, · · · , fk) . (W (f1, f2, · · · , fk))−1 (j = 1, 2, · · · , k) , (5.4)

where Gj (f1, f2, · · · , fk) are differential polynomials in f1, f2, · · · , fk with constant co-
efficients. Thus

ρ[p+1,q] (Gj) ≤ max
{
ρ[p+1,q] (fj) : j = 1, 2, · · · , k

}
= ρ (j = 1, 2, · · · , k) . (5.5)
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Since ρ[p+1,q] (F ) ≤ ρ, then by using Lemma 25 (i), (5.3) and (5.5), we have from (5.4)
for j = 1, 2, · · · , k

ρ[p+1,q] (Bj) = ρ[p+1,q]
(
B′j
)
≤ max

{
ρ[p+1,q] (F ) , ρ

}
= ρ. (5.6)

Then, by (5.6), we get from (5.1)

ρ[p+1,q] (f) ≤ max
{
ρ[p+1,q] (fj) , ρ[p+1,q] (Bj) : j = 1, 2, · · · , k

}
= ρ. (5.7)

Now, we assert that every meromorphic solution f whose poles are of uniformly bounded
multiplicities or δ (∞, f)> 0 of (1.2) satisfies ρ[p+1,q] (f) = ρ with at most one exceptional
solution f0 satisfying ρ[p+1,q] (f0) < ρ. In fact, if f∗ is another meromorphic solution
with ρ[p+1,q] (f∗) < ρ of equation (1.2), then ρ[p+1,q] (f0 − f∗) < ρ. But f0 − f∗ is a
meromorphic solution of the corresponding homogeneous equation (1.1) of (1.2). This
contradicts Theorem 11. Then ρ[p+1,q] (f) = ρ holds for all meromorphic solutions of
(1.2) with at most one exceptional solution f0 satisfying ρ[p+1,q] (f0) < ρ. By Lemma 24
(i), we know that every meromorphic solution f whose poles are of uniformly bounded
multiplicities or δ (∞, f) > 0 with ρ[p+1,q] (f) = ρ satisfies λ[p+1,q] (f) = λ[p+1,q] (f) =
ρ[p+1,q] (f) = ρ.
(b) If ρ < ρ[p+1,q] (F ), then by using Lemma 25 (i), (5.3) and (5.5), we have from (5.4)
for j = 1, 2, · · · , k

ρ[p+1,q] (Bj) = ρ[p+1,q]
(
B′j
)

≤ max
{
ρ[p+1,q] (F ) , ρ[p+1,q] (fj) : j = 1, 2, · · · , k

}
= ρ[p+1,q] (F ) . (5.8)

Then from (5.8) and (5.1), we get

ρ[p+1,q] (f) ≤ max
{
ρ[p+1,q] (fj) , ρ[p+1,q] (Bj) : j = 1, 2, · · · , k

}
≤ ρ[p+1,q] (F ) . (5.9)

On the other hand, if ρ < ρ[p+1,q] (F ), it follows from equation (1.2) that a simple
consideration of [p, q]−order implies ρ[p+1,q] (f) ≥ ρ[p+1,q] (F ). By this inequality and
(5.9) we obtain ρ[p+1,q] (f) = ρ[p+1,q] (F ) .
(ii) For 3 ≤ q = p+ 1, ρ > 1, by the similar proof in case (i), we can also obtain that the
conclusions of case (ii) hold.

6 Proof of Corollary 14

Proof. By using the same reasoning of Corollary 13 we can obtain Corollary 14.
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1 Introduction

We start with the following result that generalizes Ostrowski’s inequality for real valued
differentiable functions whose derivative are bounded.

Theorem 1 (Dragomir, 2003 [20]). Let f : [a, b] → R be an absolutely continuous
function on [a, b] and x ∈ [a, b]. Suppose that there exist the functions mi, Mi : [a, b]→ R(
i = 1, 2

)
with the properties:

m1 (x) ≤ f ′ (t) ≤M1 (x) for a.e. t ∈ [a, x] (1.1)

and
m2 (x) ≤ f ′ (t) ≤M2 (x) for a.e. t ∈ (x, b] . (1.2)

Then we have the inequalities:

1
2 (b− a)

[
m1 (x) (x− a)2 −M2 (x) (b− x)2

]
(1.3)

≤ f (x)− 1
b− a

∫ b

a

f (t) dt

≤ 1
2 (b− a)

[
M1 (x) (x− a)2 −m2 (x) (b− x)2

]
.

The constant 1
2 is sharp on both sides.

In the case that the derivative is globally bounded on [a, b] by two constants, then we
have:

Copyright c© 2015 Matej Bel University
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Corollary 2. If f : [a, b] → R is absolutely continuous on [a, b] and the derivative
f ′ : [a, b] → R is bounded above and below, that is, there exists the constants M > m
such that

−∞ < m ≤ f ′ (t) ≤M <∞ for a.e. t ∈ [a, b] , (1.4)

then we have the inequality

1
2 (b− a)

[
m (x− a)2 −M (b− x)2

]
(1.5)

≤ f (x)− 1
b− a

∫ b

a

f (t) dt

≤ 1
2 (b− a)

[
M (x− a)2 −m (b− x)2

]

for all x ∈ [a, b]. The constant 1
2 is the best in both inequalities.

We may rewrite Corollary 2 in the following equivalent manner:

Corollary 3. With the assumptions on Corollary 2, we have:
∣∣∣∣∣f (x)−

(
x− a+ b

2

)(
M +m

2

)
− 1
b− a

∫ b

a

f (t) dt
∣∣∣∣∣ (1.6)

≤ 1
2 (M −m) (b− a)


1

4 +
(
x− a+b

2
b− a

)2



for all x ∈ [a, b].

Remark 4. If we assume that ‖f ′‖∞ := ess sup
t∈[a,b]

|f ′ (t)| < ∞, then obviously we may

choose in (1.5) m = ‖f ′‖∞ and M = ‖f ′‖∞, obtaining Ostrowski’s inequality for abso-
lutely continuous functions whose derivatives are essentially bounded:

∣∣∣∣∣f (x)− 1
b− a

∫ b

a

f (t) dt
∣∣∣∣∣ ≤

‖f ′‖∞
2 (b− a)

[
(x− a)2 + (b− x)2

]

=


1

4 +
(
x− a+b

2
b− a

)2

 (b− a) ‖f ′‖∞ ,

for all x ∈ [a, b]. The constant 1
4 here is best.

Remark 5. Ostrowski’s inequality for absolutely continuous mappings in terms of ‖f ′‖∞
basically states that

− ‖f
′‖∞

2 (b− a)

[
(x− a)2 + (b− x)2

]
≤ f (x)− 1

b− a

∫ b

a

f (t) dt (1.7)

≤ ‖f ′‖∞
2 (b− a)

[
(x− a)2 + (b− x)2

]

for all x ∈ [a, b].
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Now, if we assume that (1.1) and (1.2) hold, then −‖f ′‖∞ ≤ m1 (x), m2 (x) and
M1 (x), M2 (x) ≤ ‖f ′‖∞, which implies:

− ‖f ′‖∞
2 (b− a)

[
(x− a)2 + (b− x)2

]
(1.8)

≤ 1
2 (b− a)

[
m1 (x) (x− a)2 −M2 (x) (b− x)2

]
≤ f (x)− 1

b− a

∫ b

a

f (t) dt

≤ 1
2 (b− a)

[
M1 (x) (x− a)2 −m2 (x) (b− x)2

]

≤ ‖f ′‖∞
2 (b− a)

[
(x− a)2 + (b− x)2

]
.

Thus, the inequality (1.3) may also be regarded as a refinement of the classical Ostrowski
result.

An important particular case is x = a+b
2 providing the following corollary.

Corollary 6. Assume that the derivative f ′ : [a, b]→ R satisfy the conditions:

−∞ < m1 ≤ f ′ (t) ≤M1 <∞ for a.e. t ∈
[
a,
a+ b

2

]
(1.9)

and
−∞ < m2 ≤ f ′ (t) ≤M2 <∞ for a.e. t ∈

(
a+ b

2 , b

]
. (1.10)

Then we have the inequalities

1
8 (m1 −M2) (b− a) ≤ f

(
a+ b

2

)
− 1
b− a

∫ b

a

f (t) dt (1.11)

≤ 1
8 (M1 −m2) (b− a) .

The constant 1
8 is the best in both inequalities.

Finally, if we know some global bounds for the derivative f ′ on [a, b], then we may
state the following corollary.

Corollary 7. Under the assumptions of Corollary 2, we have the midpoint inequality:
∣∣∣∣∣f
(
a+ b

2

)
− 1
b− a

∫ b

a

f (t) dt
∣∣∣∣∣ ≤

1
8 (M −m) (b− a) . (1.12)

The constant 1
8 is best.

For other Ostrowski type inequalities see [1]-[19] and [21]-[42].
Motivated by the above results, we establish in this paper some perturbed Ostrowski

type inequalities for complex valued differentiable functions whose derivatives are either
bounded or of bounded variation. Applications for midpoint inequalities are provided as
well.
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2 Some Identities

We start with the following identity that will play an important role in the following:

Lemma 8. Let f : [a, b] → C be an absolutely continuous on [a, b] and x ∈ [a, b] . Then
for any λ1 (x) and λ2 (x) complex numbers, we have

f (x) + 1
2 (b− a)

[
(b− x)2

λ2 (x)− (x− a)2
λ1 (x)

]
− 1
b− a

∫ b

a

f (t) dt (2.1)

= 1
b− a

∫ x

a

(t− a) [f ′ (t)− λ1 (x)] dt+ 1
b− a

∫ b

x

(t− b) [f ′ (t)− λ2 (x)] dt,

where the integrals in the right hand side are taken in the Lebesgue sense.

Proof. Utilising the integration by parts formula in the Lebesgue integral, we have
∫ x

a

(t− a) [f ′ (t)− λ1 (x)] dt (2.2)

= (t− a) [f (t)− λ1 (x) t]|xa −
∫ x

a

[f (t)− λ1 (x) t] dt

= (x− a) [f (x)− λ1 (x)x]−
∫ x

a

f (t) dt+ 1
2λ1 (x)

(
x2 − a2)

= (x− a) f (x)− λ1 (x)x (x− a)−
∫ x

a

f (t) dt+ 1
2λ1 (x)

(
x2 − a2)

= (x− a) f (x)−
∫ x

a

f (t) dt− 1
2 (x− a)2

λ1 (x)

and
∫ b

x

(t− b) [f ′ (t)− λ2 (x)] dt (2.3)

= (t− b) [f (t)− λ2 (x) t]|bx −
∫ b

x

[f (t)− λ2 (x) t] dt

= (b− x) [f (x)− λ2 (x)x]−
∫ b

x

f (t) dt+ 1
2λ2 (x)

(
b2 − x2)

= (b− x) f (x)−
∫ b

x

f (t) dt− (b− x)λ2 (x)x+ 1
2λ2 (x)

(
b2 − x2)

= (b− x) f (x)−
∫ b

x

f (t) dt+ 1
2 (b− x)2

λ2 (x) .

If we add the identities (2.2) and (2.3) and divide by b−a we deduce the desired identity
(2.1).

Corollary 9. With the assumption in Lemma 8, we have for any λ (x) ∈ C that

f (x) +
(
a+ b

2 − x
)
λ (x)− 1

b− a

∫ b

a

f (t) dt (2.4)

= 1
b− a

∫ x

a

(t− a) [f ′ (t)− λ (x)] dt+ 1
b− a

∫ b

x

(t− b) [f ′ (t)− λ (x)] dt.
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Remark 10. If we take λ (x) = 0 in (2.4), then we get Montgomery’s identity for
absolutely continuous functions, i.e.

f (x)− 1
b− a

∫ b

a

f (t) dt (2.5)

= 1
b− a

∫ x

a

(t− a) f ′ (t) dt+ 1
b− a

∫ b

x

(t− b) f ′ (t) dt,

for x ∈ [a, b] .

We have the following midpoint representation:

Corollary 11. With the assumption in Lemma 8, we have for any λ1, λ2 ∈ C that

f

(
a+ b

2

)
+ 1

8 (b− a) (λ2 − λ1)− 1
b− a

∫ b

a

f (t) dt (2.6)

= 1
b− a

∫ a+b
2

a

(t− a) [f ′ (t)− λ1] dt+ 1
b− a

∫ b

a+b
2

(t− b) [f ′ (t)− λ2] dt.

In particular, if λ1 = λ2 = λ, then we have the equality

f

(
a+ b

2

)
− 1
b− a

∫ b

a

f (t) dt (2.7)

= 1
b− a

∫ a+b
2

a

(t− a) [f ′ (t)− λ] dt+ 1
b− a

∫ b

a+b
2

(t− b) [f ′ (t)− λ] dt.

Remark 12. The identity (2.1) has many particular cases of interest.
If x ∈ (a, b) is a point of differentiability for the absolutely continuous function f :

[a, b]→ C, then we have the equality:

f (x) +
(
a+ b

2 − x
)
f ′ (x)− 1

b− a

∫ b

a

f (t) dt (2.8)

= 1
b− a

∫ x

a

(t− a) [f ′ (t)− f ′ (x)] dt+ 1
b− a

∫ b

x

(t− b) [f ′ (t)− f ′ (x)] dt.

In particular we have

f

(
a+ b

2

)
− 1
b− a

∫ b

a

f (t) dt (2.9)

= 1
b− a

∫ a+b
2

a

(t− a)
[
f ′ (t)− f ′

(
a+ b

2

)]
dt

+ 1
b− a

∫ b

a+b
2

(t− b)
[
f ′ (t)− f ′

(
a+ b

2

)]
dt

provided f ′
(
a+b

2
)
exists and is finite.

For x ∈ (a, b) , if we take in (2.1)

λ1 (x) = f (x)− f (a)
x− a and λ2 (x) = f (b)− f (x)

b− x ,
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then we get, after some elementary calculations,

1
2

[
f (x) + (b− x) f (b) + (x− a) f (a)

b− a

]
− 1
b− a

∫ b

a

f (t) dt (2.10)

= 1
b− a

∫ x

a

(t− a)
[
f ′ (t)− f (x)− f (a)

x− a

]
dt

+ 1
b− a

∫ b

x

(t− b)
[
f ′ (t)− f (b)− f (x)

b− x

]
dt.

In particular, we have

1
2

[
f

(
a+ b

2

)
+ f (b) + f (a)

2

]
− 1
b− a

∫ b

a

f (t) dt (2.11)

= 1
b− a

∫ a+b
2

a

(t− a)
[
f ′ (t)− f

(
a+b

2
)
− f (a)

b−a
2

]
dt

+ 1
b− a

∫ b

a+b
2

(t− b)
[
f ′ (t)− f (b)− f

(
a+b

2
)

b−a
2

]
dt.

If we assume that the lateral derivatives f ′+ (a) and f ′− (b) exist and are finite, then we
have from (2.1) for λ1 (x) = f ′+ (a) and λ2 (x) = f ′− (b)

f (x) + 1
2 (b− a)

[
(b− x)2

f ′− (b)− (x− a)2
f ′+ (a)

]
− 1
b− a

∫ b

a

f (t) dt (2.12)

= 1
b− a

∫ x

a

(t− a)
[
f ′ (t)− f ′+ (a)

]
dt

+ 1
b− a

∫ b

x

(t− b)
[
f ′ (t)− f ′− (b)

]
dt,

for all x ∈ [a, b] .
In particular, we have

f

(
a+ b

2

)
+ 1

8 (b− a)
[
f ′− (b)− f ′+ (a)

]
− 1
b− a

∫ b

a

f (t) dt (2.13)

= 1
b− a

∫ a+b
2

a

(t− a)
[
f ′ (t)− f ′+ (a)

]
dt

+ 1
b− a

∫ b

a+b
2

(t− b)
[
f ′ (t)− f ′− (b)

]
dt.

If we take in (2.1) λ2 (x) = λ2 (x) = f ′
(
a+b

2
)
, provided this derivative exists and is

finite, then we get

f (x) +
(
a+ b

2 − x
)
f ′
(
a+ b

2

)
− 1
b− a

∫ b

a

f (t) dt (2.14)

= 1
b− a

∫ x

a

(t− a)
[
f ′ (t)− f ′

(
a+ b

2

)]
dt

+ 1
b− a

∫ b

x

(t− b)
[
f ′ (t)− f ′

(
a+ b

2

)]
dt,
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for all x ∈ [a, b] .
If we assume that the derivatives f ′+ (a), f ′− (b) and f ′ (x) exist and are finite, then

by taking

λ1 (x) =
f ′+ (a) + f ′ (x)

2 and λ2 (x) =
f ′ (x) + f ′− (b)

2
in (2.1) we get

f (x) + 1
2

(
a+ b

2 − x
)
f ′ (x)− 1

b− a

∫ b

a

f (t) dt (2.15)

+ 1
4 (b− a)

[
(b− x)2

f ′− (b)− (x− a)2
f ′+ (a)

]

= 1
b− a

∫ x

a

(t− a)
[
f ′ (t)− f ′+ (a) + f ′ (x)

2

]
dt

+ 1
b− a

∫ b

x

(t− b)
[
f ′ (t)− f ′ (x) + f ′− (b)

2

]
dt.

In particular, we have

f

(
a+ b

2

)
+ 1

16 (b− a)
[
f ′− (b)− f ′+ (a)

]
− 1
b− a

∫ b

a

f (t) dt (2.16)

= 1
b− a

∫ a+b
2

a

(t− a)
[
f ′ (t)− f ′+ (a) + f ′

(
a+b

2
)

2

]
dt

+ 1
b− a

∫ b

a+b
2

(t− b)
[
f ′ (t)− f ′

(
a+b

2
)

+ f ′− (b)
2

]
dt.

3 Inequalities for Bounded Derivatives

Now, for γ,Γ ∈ C and [a, b] an interval of real numbers, define the sets of complex-valued
functions

Ū[a,b] (γ,Γ)

:=
{
f : [a, b]→ C|Re

[
(Γ− f (t))

(
f (t)− γ

)]
≥ 0 for almost every t ∈ [a, b]

}

and

∆̄[a,b] (γ,Γ) :=
{
f : [a, b]→ C|

∣∣∣∣f (t)− γ + Γ
2

∣∣∣∣ ≤
1
2 |Γ− γ| for a.e. t ∈ [a, b]

}
.

The following representation result may be stated.

Proposition 13. For any γ,Γ ∈ C, γ 6= Γ, we have that Ū[a,b] (γ,Γ) and ∆̄[a,b] (γ,Γ)
are nonempty, convex and closed sets and

Ū[a,b] (γ,Γ) = ∆̄[a,b] (γ,Γ) . (3.1)

Proof. We observe that for any z ∈ C we have the equivalence
∣∣∣∣z −

γ + Γ
2

∣∣∣∣ ≤
1
2 |Γ− γ|
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if and only if
Re [(Γ− z) (z̄ − γ̄)] ≥ 0.

This follows by the equality

1
4 |Γ− γ|

2 −
∣∣∣∣z −

γ + Γ
2

∣∣∣∣
2

= Re [(Γ− z) (z̄ − γ̄)]

that holds for any z ∈ C.
The equality (3.1) is thus a simple consequence of this fact.

On making use of the complex numbers field properties we can also state that:

Corollary 14. For any γ,Γ ∈ C, γ 6= Γ,we have that

Ū[a,b] (γ,Γ) = {f : [a, b]→ C | (Re Γ− Re f (t)) (Re f (t)− Re γ) (3.2)
+ (Im Γ− Im f (t)) (Im f (t)− Im γ) ≥ 0 for a.e. t ∈ [a, b]} .

Now, if we assume that Re (Γ) ≥ Re (γ) and Im (Γ) ≥ Im (γ) , then we can define the
following set of functions as well:

S̄[a,b] (γ,Γ) := {f : [a, b]→ C | Re (Γ) ≥ Re f (t) ≥ Re (γ) (3.3)
and Im (Γ) ≥ Im f (t) ≥ Im (γ) for a.e. t ∈ [a, b]} .

One can easily observe that S̄[a,b] (γ,Γ) is closed, convex and

∅ 6= S̄[a,b] (γ,Γ) ⊆ Ū[a,b] (γ,Γ) . (3.4)

Theorem 15. Let f : [a, b] → C be an absolutely continuous on [a, b] and x ∈ (a, b) .
Suppose that γi,Γi ∈ C with γi 6= Γi, i = 1, 2 and f ′ ∈ Ū[a,x] (γ1,Γ1) ∩ Ū[x,b] (γ2,Γ2),
then we have

∣∣∣∣∣f (x)− 1
b− a

∫ b

a

f (t) dt (3.5)

+ 1
2 (b− a)

[
(b− x)2 Γ2 + γ2

2 − (x− a)2 Γ1 + γ1
2

]∣∣∣∣

≤ 1
4

[
|Γ1 − γ1|

(
x− a
b− a

)2
+ |Γ2 − γ2|

(
b− x
b− a

)2
]

(b− a)

≤ 1
4 (b− a)

×





[
1
4 +

(
x− a+b

2
b−a

)2]
max {|Γ1 − γ1| , |Γ2 − γ2|} .

[(
x−a
b−a

)2p
+
(
b−x
b−a

)2p
]1/p

[|Γ1 − γ1|q + |Γ2 − γ2|q]
1/q

p > 1, 1
p + 1

q = 1,

[
1
2 +

∣∣∣x−
a+b

2
b−a

∣∣∣
]

[|Γ1 − γ1|+ |Γ2 − γ2|] .
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Proof. Since f ′ ∈ Ū[a,x] (γ1,Γ1) ∩ Ū[x,b] (γ2,Γ2) , then by taking the modulus in (2.1) for
λ1 (x) = Γ1+γ1

2 and λ2 (x) = Γ2+γ2
2 we get

∣∣∣∣∣f (x)− 1
b− a

∫ b

a

f (t) dt

+ 1
2 (b− a)

[
(b− x)2 Γ2 + γ2

2 − (x− a)2 Γ1 + γ1
2

]∣∣∣∣

≤ 1
b− a

∣∣∣∣
∫ x

a

(t− a)
[
f ′ (t)− Γ1 + γ1

2

]
dt

∣∣∣∣

+ 1
b− a

∣∣∣∣∣

∫ b

x

(t− b)
[
f ′ (t)− Γ2 + γ2

2

]
dt

∣∣∣∣∣

≤ 1
b− a

∫ x

a

(t− a)
∣∣∣∣f ′ (t)−

Γ1 + γ1
2

∣∣∣∣ dt

+ 1
b− a

∫ b

x

(t− b)
∣∣∣∣f ′ (t)−

Γ2 + γ2
2

∣∣∣∣ dt

≤ 1
b− a

|Γ1 − γ1|
2

∫ x

a

(t− a) dt+ 1
b− a

|Γ2 − γ2|
2

∫ b

x

(b− t) dt

= 1
4

[
|Γ1 − γ1|

(
x− a
b− a

)2
+ |Γ2 − γ2|

(
b− x
b− a

)2
]

(b− a)

and the first inequality in (3.5) is proved.
The last part follows by Hölder’s inequality

mn+ pq ≤ (mα + pα)1/α (
nβ + qβ

)1/β
,

where m,n, p, q ≥ 0 and α > 1 with 1
α + 1

β = 1.

Corollary 16. Let f : [a, b] → C be an absolutely continuous on [a, b] and x ∈ (a, b) .
Suppose that γ,Γ ∈ C with γ 6= Γ, and f ′ ∈ Ū[a,b] (γ,Γ), then we have

∣∣∣∣∣f (x) +
(
a+ b

2 − x
)

Γ + γ

2 − 1
b− a

∫ b

a

f (t) dt
∣∣∣∣∣ (3.6)

≤ 1
2 |Γ− γ|


1

4 +
(
x− a+b

2
b− a

)2

 (b− a) .

In particular, we have
∣∣∣∣∣f
(
a+ b

2

)
− 1
b− a

∫ b

a

f (t) dt
∣∣∣∣∣ ≤

1
8 |Γ− γ| (b− a) . (3.7)

Remark 17. If the derivative f ′ : [a, b]→ R is bounded above and below, that is, there
exists the constants M > m such that

−∞ < m ≤ f ′ (t) ≤M <∞ for a.e. t ∈ [a, b] ,

then we recapture from (3.6) the inequality (1.6).
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Remark 18. Let f : [a, b] → C be an absolutely continuous on [a, b] . Suppose that
γi,Γi ∈ C with γi 6= Γi, i = 1, 2 and f ′ ∈ Ū[a, a+b

2 ] (γ1,Γ1) ∩ Ū[ a+b
2 ,b] (γ2,Γ2), then we

have from (3.5) that
∣∣∣∣∣f
(
a+ b

2

)
− 1
b− a

∫ b

a

f (t) dt+ 1
8 (b− a)

(
Γ2 + γ2

2 − Γ1 + γ1
2

)∣∣∣∣∣ (3.8)

≤ 1
16 [|Γ1 − γ1|+ |Γ2 − γ2|] (b− a) .

4 Inequalities for Derivatives of Bounded Variation

Assume that the function f : I → C is differentiable on the interior of I, denoted I̊ , and
[a, b] ⊂ I̊ . Then, as in (2.15), we have the equality

f (x) + 1
2

(
a+ b

2 − x
)
f ′ (x)− 1

b− a

∫ b

a

f (t) dt (4.1)

+ 1
4 (b− a)

[
(b− x)2

f ′ (b)− (x− a)2
f ′ (a)

]

= 1
b− a

∫ x

a

(t− a)
[
f ′ (t)− f ′ (a) + f ′ (x)

2

]
dt

+ 1
b− a

∫ b

x

(t− b)
[
f ′ (t)− f ′ (x) + f ′ (b)

2

]
dt,

for any x ∈ [a, b] .
Theorem 19. Let f : I → C be a differentiable function on I̊ and [a, b] ⊂ I̊ . If the
derivative f ′ : I̊ → C is of bounded variation on [a, b] , then

∣∣∣∣∣f (x)− 1
b− a

∫ b

a

f (t) dt+ 1
2

(
a+ b

2 − x
)
f ′ (x) (4.2)

+ 1
4 (b− a)

[
(b− x)2

f ′ (b)− (x− a)2
f ′ (a)

]∣∣∣∣

≤ 1
4

[(
x− a
b− a

)2 x∨

a

(f ′) +
(
b− x
b− a

)2 b∨

x

(f ′)
]

(b− a)

≤ 1
4 (b− a)

×





[
1
4 +

(
x− a+b

2
b−a

)2][
1
2

b∨

a

(f ′) + 1
2

∣∣∣∣∣
x∨

a

(f ′)−
b∨

x

(f ′)
∣∣∣∣∣

]
,

[(
x−a
b−a

)2p
+
(
b−x
b−a

)2p
]1/p

[[
x∨

a

(f ′)
]q

+
[
b∨

x

(f ′)
]q]1/q

p > 1, 1
p + 1

q = 1,

[
1
2 +

∣∣∣x−
a+b

2
b−a

∣∣∣
] b∨

a

(f ′) ,

for any x ∈ [a, b] .
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Proof. Taking the modulus in (4.1) we have
∣∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt+ 1
2

(
a+ b

2 − x
)
f ′ (x) (4.3)

+ 1
4 (b− a)

[
(b− x)2

f ′ (b)− (x− a)2
f ′ (a)

]∣∣∣∣

≤ 1
b− a

∣∣∣∣
∫ x

a

(t− a)
[
f ′ (t)− f ′ (a) + f ′ (x)

2

]
dt

∣∣∣∣

+ 1
b− a

∣∣∣∣∣

∫ b

x

(t− b)
[
f ′ (t)− f ′ (x) + f ′ (b)

2

]
dt

∣∣∣∣∣

≤ 1
b− a

∫ x

a

(t− a)
∣∣∣∣f ′ (t)−

f ′ (a) + f ′ (x)
2

∣∣∣∣ dt

+ 1
b− a

∫ b

x

(b− t)
∣∣∣∣f ′ (t)−

f ′ (x) + f ′ (b)
2

∣∣∣∣ dt.

Since f ′ : I̊ → C is of bounded variation on [a, x] and [x, b] , then
∣∣∣∣f ′ (t)−

f ′ (a) + f ′ (x)
2

∣∣∣∣ = |f ′ (t)− f ′ (a) + f ′ (t)− f ′ (x)|
2

≤ 1
2 [|f ′ (t)− f ′ (a)|+ |f ′ (x)− f ′ (t)|]

≤ 1
2

x∨

a

(f ′)

for any t ∈ [a, x] and, similarly,
∣∣∣∣f ′ (t)−

f ′ (x) + f ′ (b)
2

∣∣∣∣ ≤
1
2

b∨

x

(f ′)

for any t ∈ [x, b] .
Then

∫ x

a

(t− a)
∣∣∣∣f ′ (t)−

f ′ (a) + f ′ (x)
2

∣∣∣∣ dt ≤
1
2

x∨

a

(f ′)
∫ x

a

(t− a) dt

= 1
4 (x− a)2

x∨

a

(f ′)

and
∫ b

x

(b− t)
∣∣∣∣f ′ (t)−

f ′ (x) + f ′ (b)
2

∣∣∣∣ dt ≤
1
2

b∨

x

(f ′)
∫ b

x

(b− t) dt

= 1
4 (b− x)2

b∨

x

(f ′)

and by (4.3) we get the desired inequality (4.2).
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The last part follows by Hölder’s inequality

mn+ pq ≤ (mα + pα)1/α (
nβ + qβ

)1/β
,

where m,n, p, q ≥ 0 and α > 1 with 1
α + 1

β = 1.

Corollary 20. Let f : I → C be a differentiable function on I̊ and [a, b] ⊂ I̊ . If the
derivative f ′ : I̊ → C is of bounded variation on [a, b] , then

∣∣∣∣∣f
(
a+ b

2

)
− 1
b− a

∫ b

a

f (t) dt+ 1
16 (b− a) [f ′ (b)− f ′ (a)]

∣∣∣∣∣ (4.4)

≤ 1
16 (b− a)

b∨

a

(f ′) .

Remark 21. If p ∈ (a, b) is a median point in bounded variation for the derivative, i.e.
p∨

a

(f ′) =
b∨

p

(f ′) , then under the assumptions of Theorem 19, we have

∣∣∣∣∣f (p)− 1
b− a

∫ b

a

f (t) dt+ 1
2

(
a+ b

2 − p
)
f ′ (p) (4.5)

+ 1
4 (b− a)

[
(b− p)2

f ′ (b)− (p− a)2
f ′ (a)

]∣∣∣∣

≤ 1
8 (b− a)


1

4 +
(
p− a+b

2
b− a

)2



b∨

a

(f ′) .

5 Inequalities for Lipschitzian Derivatives

We say that v : [a, b] → C is Lipschitzian with the constant L > 0, if it satisfies the
condition

|v (t)− v (s)| ≤ L |t− s| for any t, s ∈ [a, b] .

Theorem 22. Let f : I → C be a differentiable function on I̊ and [a, b] ⊂ I̊ . Let
x ∈ (a, b) . If the derivative f ′ : I̊ → C is Lipschitzian with the constant K1 (x) on [a, x]
and constant K2 (x) on [x, b] , then

∣∣∣∣∣f (x)− 1
b− a

∫ b

a

f (t) dt+ 1
2

(
a+ b

2 − x
)
f ′ (x) (5.1)

+ 1
4 (b− a)

[
(b− x)2

f ′ (b)− (x− a)2
f ′ (a)

]∣∣∣∣
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≤ 1
8

[(
x− a
b− a

)3
K1 (x) +

(
b− x
b− a

)3
K2 (x)

]
(b− a)2

≤ 1
8 (b− a)2

×





[(
x−a
b−a

)3
+
(
b−x
b−a

)3
]

max {K1 (x) ,K2 (x)} ,

[(
x−a
b−a

)2p
+
(
b−x
b−a

)2p
]1/p

[Kq
1 (x) +Kq

2 (x)]1/q

p > 1, 1
p + 1

q = 1,

[
1
2 +

∣∣∣x−
a+b

2
b−a

∣∣∣
]3

[K1 (x) +K2 (x)] .

Proof. Since f ′ : I̊ → C is Lipschitzian with the constant K1 (x) on [a, x] and constant
K2 (x) on [x, b] , then

∣∣∣∣f ′ (t)−
f ′ (a) + f ′ (x)

2

∣∣∣∣ = |f ′ (t)− f ′ (a) + f ′ (t)− f ′ (x)|
2

≤ 1
2 [|f ′ (t)− f ′ (a)|+ |f ′ (x)− f ′ (t)|]

≤ 1
2K1 (x) [|t− a|+ |x− t|]

= 1
2K1 (x) (x− a)

for any t ∈ [a, x] and, similarly,
∣∣∣∣f ′ (t)−

f ′ (x) + f ′ (b)
2

∣∣∣∣ ≤
1
2K2 (x) [|t− x|+ |b− t|]

= 1
2K2 (x) (b− x)

for any t ∈ [x, b] .
Then

∫ x

a

(t− a)
∣∣∣∣f ′ (t)−

f ′ (a) + f ′ (x)
2

∣∣∣∣ dt ≤
1
2K1 (x) (x− a)

∫ x

a

(t− a) dt

= 1
8 (x− a)3

K1 (x)

and
∫ b

x

(b− t)
∣∣∣∣f ′ (t)−

f ′ (x) + f ′ (b)
2

∣∣∣∣ dt ≤
1
2K2 (x) (b− x)

∫ b

x

(b− t) dt

= 1
8 (b− x)3

K2 (x) .

Making use of the inequality (4.3) we deduce the first bound in (5.1).
The second part is obvious.
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Corollary 23. Let f : I → C be a differentiable function on I̊ and [a, b] ⊂ I̊ . If the
derivative f ′ : I̊ → C is Lipschitzian with the constant K on [a, b] then

∣∣∣∣∣f (x)− 1
b− a

∫ b

a

f (t) dt+ 1
2

(
a+ b

2 − x
)
f ′ (x) (5.2)

+ 1
4 (b− a)

[
(b− x)2

f ′ (b)− (x− a)2
f ′ (a)

]∣∣∣∣

≤ 1
8

[(
x− a
b− a

)3
+
(
b− x
b− a

)3
]
K (b− a)2

for any x ∈ [a, b] .
In particular, we have

∣∣∣∣∣f
(
a+ b

2

)
+ 1

16 (b− a) [f ′ (b)− f ′ (a)]− 1
b− a

∫ b

a

f (t) dt
∣∣∣∣∣ (5.3)

≤ 1
32K (b− a)2

.
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1 Introduction

Let H be an infinite dimensional complex Hilbert space and let B(H) and C(H) be the
set of all bounded linear operators and set of all closed linear operators from domain
D(T) ⊆ H to H, respectively. By N (T) and R(T) we denote the null space and range
of T, respectively. We call an operator T ∈ C(H) upper semi-Fredholm (respectively,
lower semi-Fredholm ) if R(T) is closed and nullity of T, α(T) = dim N (T) < ∞
(respectively, defect of T, β(T) = codim R(T) < ∞). A semi-Fredholm operator is
either an upper or lower semi-Fredholm operator. If T is both upper and lower semi-
Fredholm, that is, if α(T) and β(T) both are finite, then T is called a Fredholm operator.
By SF+(H) (respectively, SF−(H)) we denote the class of all upper (respectively, lower)
semi-Fredholm operators. For T ∈ SF+(H) ∪ SF−(H), index of T is defined as ind(T)
= α(T) - β(T). An operator T ∈ C(H) is called Weyl if it is Fredholm of index 0 and
the Weyl spectrum of T is defined as σw(T) = {λ ∈ C: T - λI is not Weyl}. We have the
following notations :

SF−+ (H) = {T ∈ C(H) : T ∈ SF+(H) and ind(T ) 6 0}

SF+
− (H) = {T ∈ C(H) : T ∈ SF−(H) and ind(T ) > 0}

∗corresponding author

Copyright c© 2015 Matej Bel University



88 Anuradha Gupta, Karuna Mamtani

and these operators generate the following spectrum

σSF−+
(T ) = {λ ∈ C : T − λI /∈ SF−+ (H)}

σSF+
−

(T ) = {λ ∈ C : T − λI /∈ SF+
− (H)}.

The ascent p(T) and descent q(T) of an operator T ∈ C(H) are defined as follows:

p(T) = inf{n : N (Tn) = N (Tn+1)}

q(T ) = inf{n : R(Tn) = R(Tn+1)}.
Let σ(T), σa(T), σs(T) and ρ(T) denote the spectrum, approximate spectrum, surjec-

tive spectrum and the resolvent set of T ∈ C(H), respectively, and let σdes(T) = {λ ∈ C
: q(T - λI) ≮∞} denote the descent spectrum of T. Evidently, σdes(T) ⊆ σ(T).

By isoσ(T) and isoσa(T) we denote the isolated points of σ(T) and σa(T), respec-
tively. It is well known that the resolvent operator Rλ(T) = (T - λI)−1 is an analytic
operator-valued function for all λ ∈ ρ(T) and the points of isoσ(T) are either poles or
essential singularities of Rλ(T). For T ∈ C(H), λ ∈ isoσ(T) is said to be a pole of order
p if p = p(T - λI) <∞ and q(T - λI) <∞ ([6]). Also λ ∈ σa(T) is said to be a left-pole
if p = p(T - λI) <∞ and R(T - λI)p+1 is closed. Let πo(T) and πao (T) denote the set of
all poles of finite multiplicity and left poles of finite multiplicity, respectively.

An important property of closed linear operators in Fredholm theory is the single
valued extension property (SVEP). This property was first introduced by Dunford [3].
We mainly concern with the SVEP at a point, localized version of SVEP, introduced by
Finch [4], and relate it to the finiteness of the ascent of a closed linear operator. Let
T : D(T ) ⊂ H → H be a closed linear mapping and let λo be a complex number. The
operator T has the single valued extension property (SVEP) at λo, if f = 0 is the only
solution to (T − λI)f(λ) = 0 that is analytic in every neighborhood of λo. Also T has
SVEP, if it has this property at every point λo in the complex plane.

Evidently, T ∈ C(H) has SVEP at every λ ∈ ρ(T). Moreover, by identity theorem
for analytic functions, it is easily seen that T has SVEP at every boundary point (in
particular, every isolated point) of σ(T). Also, from the definition of localized SVEP,

λ ∈ isoσa(T ) =⇒ T has SVEP at λ, and by duality,
λ ∈ isoσs(T ) =⇒ T∗ has SVEP at λ.

The above implications become equivalences whenever T is a bounded semi-Fredholm
operator [1, Chapter 3]. For the case T ∈ C(H), we prove this equivalence in the
following theorem. We first give a definition and lemma needed for the proof of the
theorem:

Definition 1. [5, Ch IV, §1] Let T ∈ C(H). Let A be an operator such that D(T)
⊂ D(A) and ‖Au‖ 6 a‖u‖ + b‖Tu‖, u ∈ D(T) where a,b are non-negative constants.
Then we say that A is relatively bounded with respect to T or T-bounded and the T-bound
of A is inf b.

Lemma 2. [5, Ch. IV, Theorem 5.31] Let T ∈ C(H) be semi-Fredholm and let A be a
T-bounded operator in H. Then S = T + λA ∈ C(H), S is semi-Fredholm and α(S) as
well as β(S) are constant for sufficiently small |λ| > 0.
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The reduced minimum modulus of T ∈ C(H) is defined by

γ(T) = inf {‖Tx‖ : x ∈ D(T ) ∩N (T )⊥, ‖x‖ = 1}.

Then, it is known that R(T) is closed iff γ(T) > 0 for every T ∈ C(H).

Theorem 3. Let T ∈ C(H) be a semi-Fredholm operator and λo ∈ C. Then the following
are equivalent:

(i) T has SVEP at λo

(ii) σa(T) does not cluster at λo

(iii) p(T - λoI) <∞.

Proof. We shall assume that λo = 0.
(i) ⇔ (iii) follows from [4, Theorem 15]
(i) ⇒ (ii) Suppose T has SVEP at zero. Since T is semi-Fredholm operator, so is Tn

for all n ∈ N. Then R(Tn) is closed for all n, so that T∞(H) =
∞∩
n=1
R(Tn) is closed.

Since T is semi-Fredholm, so that R(T) is closed, there exists an ε > 0 such that γ(T)
> ε. Consider λ in 0 < |λ| < ε. Then ‖λx‖ = |λ|‖x‖ < ε‖x‖ < γ(T)‖x‖, for all x ∈ H.
By lemma 2, T - λI is a closed semi-Fredholm operator, so that R(T - λI) is closed for
all 0 < |λ| < ε. Thus we have that if 0 < |λ| < ε, then λ ∈ σa(T) iff λ ∈ σp(T).

If 0 6= x ∈ N (T - λI) then x = 1
λTx = T (xλ ) ∈ R(T). Also, T2x = T(λx) = λTx =

λ2x. This implies x = 1
λ2 T2x ∈ R(T2). Continuing like this, we get x ∈ T∞(H). Thus,

N (T - λI) ⊆ T∞(H) for all λ 6= 0. This implies that every non-zero eigenvalue of T
belongs to σ(T|T∞(H)).

Suppose that 0 is a cluster point of σa(T). There exists a sequence (λn) of non-
zero eigenvalues of T such that λn → 0 as n → ∞. Then λn ∈ σ(T|T∞(H)) so that 0
∈ σ(T|T∞(H)), as the spectrum of an operator is closed. Since T has SVEP at 0, so does
T|T∞(H). From [1, Lemma 1.9], T|T∞(H) is onto. By [4, Theorem 2], T|T∞(H) is injective
so that 0 /∈ σ(T|T∞(H)), which is a contradiction. Therefore, σa(T) does not cluster at
0.

(ii) ⇒ (i) holds for all closed linear operators.

Remark 4. By duality, we have that if T ∈ C(H) is semi-Fredholm, then the following
statements are equivalent:

(i) T∗ has SVEP at λo

(ii) σs(T) does not cluster at λo

(iii) q(T - λoI) <∞.

Let Eo(T) and Eao(T) denote the set of all eigenvalues of finite multiplicities in isoσ(T)
and isoσa(T), respectively. If T ∈ C(H), then T satisfies:

(i) Weyl’s theorem if σ(T) \ σw(T) = Eo(T).

(ii) Browder’s theorem if σ(T) \ σw(T) = πo(T).

(iii) a-Browder’s theorem if σa(T) \ σSF−+ (T) = πao (T).

(iv) a-Weyl’s theorem if σa(T) \ σSF−+ (T) = Eao(T).
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(v) property (w) if σa(T) \ σSF−+ (T) = Eo(T).

(vi) property (b) if σa(T) \ σSF−+ (T) = πo(T).

(vii) property (ab) if σ(T) \ σw(T) = πao (T).

(viii) property (aw) if σ(T) \ σw(T) = Eao(T).

Weyl’s theorem and a-Weyl’s theorem for restriction of bounded linear operators
have been recently studied in [2]. In this paper, it is shown that with certain sufficient
conditions on T ∈ C(H), several Weyl-type theorems and properties hold for T, if and
only if there exists an n such that R(Tn) is closed and Weyl type theorems and properties
holds for Tn = T|D(T )∩R(Tn).

In the second section, we consider Weyl’s theorem and Browder’s theorem and cer-
tain conditions have been given for which the study of Weyl’s (respectively, Browder’s)
theorem for T ∈ C(H), can be reduced to the study of Weyl’s (respectively, Browder’s)
theorem for some restriction of T. Also, sufficiency theorems are given for the case of
a-Weyl’s theorem and a-Browder’s theorem. In the third section, properties (w), (b),
(aw) and (ab) are considered. An example is given at the end of the third section to
illustrate all the theorems proved.

Following lemma will be used throughout the paper:

Lemma 5. [2, Lemma 2.1] Let T ∈ C(H) and Tn be the restriction of T to the subspace
R(Tn). Then, for all λ 6= 0, we have:

(i) N ((Tn - λI)m) = N ((T - λI)m), for all m;

(ii) R((Tn - λI)m) = R((T - λI)m) ∩ R(Tn), for all m;

(iii) α(Tn - λI) = α(T - λI);

(iv) p(Tn - λI) = p(T - λI);

(v) β(Tn - λI) = β(T - λI).

2 Weyl-type theorems and Restriction of operators

In this section, we give conditions under which Weyl’s theorem (respectively, Browder’s
theorem) for an operator T ∈ C(H) is equivalent to Weyl’s theorem (respectively, Brow-
der’s theorem) for certain restriction Tn of T. Also, we give certain sufficient conditions
in the case of a-Browder’s theorem and a-Weyl’s theorem. Let N denote the set of all
non-negative integers.

Theorem 6. Let T ∈ C(H) and suppose that 0 /∈ isoσ(T) ∩ σdes(T). Then

(i) T satisfies Weyl’s theorem iff there exists n ∈ N such that R(Tn) is closed and Tn
satisfies Weyl’s theorem.

(ii) T satisfies Browder’s theorem iff there exists n ∈ N such that R(Tn) is closed and
Tn satisfies Browder’s theorem.

Proof. (i) Suppose that there exists n ∈ N such that R(Tn) is closed and Tn satisfies
Weyl’s theorem.
Let λ ∈ Eo(T). Then λ ∈ isoσ(T) so that λ 6= 0 and and there exists an open disk
Dλ ⊆ C centered at λ such that σ(T) ∩ Dλ = {λ}. Since, by Lemma 5, σ(T) \ {0}
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= σ(Tn) \ {0} and σ(Tn) ⊆ σ(T), we have that σ(Tn) ∩ Dλ = {λ} so that λ ∈
isoσ(Tn). Now, 0 6= λ ∈ Eo(Tn) = σ(Tn) \ σw(Tn) and thus, λ ∈ σ(T) \σw(T).
Now, suppose λ ∈ σ(T) \σw(T). If λ = 0, then since 0 /∈ σdes(T), [1, Theorem
3.4(iv)] implies 0 ∈ isoσ(T) which is a contradiction to the hypothesis. Therefore,
λ 6= 0 and α(Tn - λI) = α(T - λI) = β(T - λI) = β(Tn - λI) <∞ so that λ ∈ σ(Tn)
\ σw(Tn) = Eo(Tn) and thus λ ∈ isoσ(Tn). Then Tn and T∗n have SVEP at λ and
by Theorem 3, p(Tn - λI) = q(Tn - λI) < ∞. Hence, q(T - λI) = p(T - λI) < ∞
and λ ∈ Eo(T).
Conversely, assume T satisfies Weyl’s theorem, then for n = 0, R(T0) = H is closed
and To = T|D(T )∩R(T 0) = T satisfies Weyl’s theorem.

(ii) Suppose that there exists n ∈ N such that R(Tn) is closed and Tn satisfies Brow-
der’s theorem.
Let λ ∈ σ(T) \σw(T). As proved above, 0 6= λ ∈ σ(Tn) \ σw(Tn) = σ(Tn) \ σb(Tn),
and thus p(Tn - λI) = q(Tn - λI) <∞. Then, q(T - λI) = p(T - λI) <∞. Therefore,
λ ∈ σ(T) \σb(T). Hence, σb(T) ⊆ σw(T) and since the reverse inclusion holds for
every operator in C(H), T satisfies Browder’s theorem.
Now, suppose T satisfies Browder’s theorem, then for n = 0, R(T0) = H is closed
and To = T|D(T )∩R(T 0) = T satisfies Browder’s theorem.

Recently, in [7], property (w1) for bounded linear operators, as a variant of Weyl’s
theorem, was introduced and studied. Further in [8], property (aw1) was introduced as
a variant of a-Weyl’s theorem, where we say that an operator T satisfies property (aw1)
if σa(T) \σSF−+ (T) ⊂ Eao(T).

Similarly, we introduce a variant of a-Browder’s theorem, viz. property (aB1), where
an operator T ∈ C(H) satisfies property (aB1) if σa(T) \σSF−+ (T) ⊂ πao (T).

For the case of a-Browder’s theorem and a-Weyl’s theorem, we do not have necessary
and sufficient conditions similar to Theorem 6. However, we give the following sufficiency
theorems:

Theorem 7. Let T ∈ C(H) and suppose that 0 /∈ isoσ(T) ∩ σdes(T). Then T sat-
isfies property (aB1) if there exists n ∈ N such that R(Tn) is closed and Tn satisfies
a-Browder’s theorem.

Proof. Suppose that there exists n ∈ N such that R(Tn) is closed and Tn satisfies a-
Browder’s theorem.

If λ ∈ σa(T) \σSF−+ (T), then 0 < α(T - λI) <∞, R(T - λI) is closed and ind(T - λI)
6 0. Suppose λ = 0, then ind(T) 6 0 and by hypothesis, 0 /∈ σdes(T) implies q(T) <∞
so that ind(T) > 0. Now ind(T) = 0 together with [1, Theorem 3.4(iv)] implies p(T) =
q(T) <∞ which is a contradiction since 0 /∈ isoσ(T). Therefore, λ 6= 0 and by Lemma 5,
λ ∈ σa(Tn) \σSF−+ (Tn) = πao (Tn). Thus, p = p(T - λI) = p(Tn - λI) < ∞. Also, since
T - λI is semi-fredholm, so is (T - λI)p+1. Thus, R(T - λI)p+1 is closed and λ ∈ πao (T).
Hence, T satisfies property (aB1).

Theorem 8. Let T ∈ C(H) and suppose that 0 /∈ isoσa(T) ∩ σdes(T). Then T satisfies
property (aw1) if there exists n ∈ N such that R(Tn) is closed and Tn satisfies a-Weyl’s
theorem.
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Proof. Assume that there exists n ∈ N such thatR(Tn) is closed and Tn satisfies a-Weyl’s
theorem.

Suppose λ ∈ σa(T) \σSF−+ (T). If λ = 0, then ind(T) 6 0 and 0 /∈ σdes(T) implies
q(T) < ∞ and thus, ind(T) = 0. Now, p(T) = q(T) < ∞ and 0 ∈ isoσ(T) which is a
contradiction to the hypothesis. Therefore, 0 6= λ ∈ σa(Tn) \σSF−+ (Tn) = Eao(Tn). Since
λ ∈ isoσa(Tn), by Theorem 3, p(T - λI) = p(Tn - λI) <∞ and now λ ∈ isoσa(T). Thus,
λ ∈ Eao(T) so that T satisfies property (aw1).

3 Extended Weyl-type theorems and Restriction of operators

In this section, we give conditions under which property (w) (respectively, property (b),
property (aw) and property (ab)) for an operator T ∈ C(H) is equivalent to property
(w) (respectively, property (b), property (aw) and property (ab)) for certain restriction
Tn of T.

Theorem 9. Let T ∈ C(H) and suppose that 0 /∈ isoσ(T) ∩ σdes(T). Then

(i) T satisfies property (w) iff there exists n ∈ N such that R(Tn) is closed and Tn
satisfies property (w).

(ii) T satisfies property (b) iff there exists n ∈ N such that R(Tn) is closed and Tn
satisfies property (b).

(iii) T satisfies property (ab) iff there exists n ∈ N such that R(Tn) is closed and Tn
satisfies property (ab).

Proof. (i) Assume that there exists an n ∈ N such thatR(Tn) is closed and Tn satisfies
property (w).
Let λ ∈ Eo(T). Then proceeding as in Theorem 6(i), 0 6= λ ∈ Eo(Tn) = σa(Tn)
\ σSF−+ (Tn). By Theorem 3, since λ ∈ isoσ(Tn), p(Tn - λI) = q(Tn - λI) < ∞.
Then, [1, Theorem 3.4(iii)] implies β(Tn - λI) = α(Tn - λI) <∞ so that 0 < β(T
- λI) = α(T - λI) <∞ and hence λ ∈ σa(T) \ σSF−+ (T).

Now, suppose λ ∈ σa(T) \ σSF−+ (T). Then, 0 6= λ ∈ σa(Tn) \ σSF−+ (Tn) = Eo(Tn).
Using SVEP for Tn and T∗n at λ, p(Tn - λI) = q(Tn - λI) < ∞ and thus, β(Tn -
λI) = α(Tn - λI) <∞. Now, β(T - λI) = α(T - λI) <∞ together with p(T - λI)
= p(Tn - λI) < ∞ imply q(T - λI) < ∞ and thus λ ∈ Eo(T). Hence, T satisfies
property (w).
Conversely, if T satisfies property (w), then for n = 0, R(T0) = H is closed and To
= T|D(T )∩R(T 0) = T satisfies property (w).

(ii) Assume that there exists an n ∈ N such that R(Tn) is closed and Tn satisfies
property (b).
Let λ ∈ πo(T). Then p(T - λI) = q(T - λI) < ∞ together with α(T - λI) < ∞
imply 0 < β(T - λI) = α(T - λI) <∞ and thus, λ ∈ σa(T) \ σSF−+ (T).

Now, suppose λ ∈ σa(T) \σSF−+ (T). As in the proof of Theorem 7, we get that 0
6= λ ∈ σa(Tn) \ σSF−+ (Tn) = πo(Tn). Then, p(Tn - λI) = q(Tn - λI) <∞ so that
β(Tn - λI) = α(Tn - λI) < ∞. Now, β(T - λI) = α(T - λI) < ∞ together with
p(T - λI) = p(Tn - λI) < ∞ imply q(T - λI) < ∞ and thus λ ∈ πo(T). Hence, T
satisfies property (b).
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Conversely, if T satisfies property (b), then for n = 0, R(T0) = H is closed and To
= T|D(T )∩R(T 0) = T satisfies property (b).

(iii) Suppose that there exists n ∈ N such that R(Tn) is closed and Tn satisfies property
(ab).
Let λ ∈ πao (T). Then, proceeding as in Theorem 6, 0 6= λ ∈ πao (Tn) = σ(Tn)
\σw(Tn). and thus λ ∈ σ(T) \σw(T).
Now, suppose λ ∈ σ(T) \σw(T). If λ = 0, then by [1, Theorem 3.4(iv)], 0 < α(T) =
β(T) <∞ and 0 /∈ σdes(T) together imply that 0 ∈ isoσ(T), which is a contradiction
to the hypothesis. Therefore, 0 6= λ ∈ σ(Tn) \σw(Tn) = πao (Tn) so that λ ∈ σa(Tn),
p = p(Tn - λI) <∞, α(Tn - λI) <∞ and R(Tn - λI)p+1 closed. Now, λ ∈ σa(T),
p = p(T - λI) < ∞ and α(T - λI) < ∞. Also, λ ∈ σ(T) \σw(T) so that T - λI
and hence (T - λI)p+1 is a Fredholm operator. Then, R(T - λI)p+1 is closed and
so λ ∈ πao (T). Hence, T satisfies property (ab).
Conversely, suppose T satisfies property (ab), then for n = 0, R(T0) = H is closed
and To = T|D(T )∩R(T 0) = T satisfies property (ab).

Theorem 10. Let T ∈ C(H) and suppose 0 /∈ isoσa(T) ∩ σdes(T). Then T satisfies
property (aw) iff there exists an n ∈ N such that R(Tn) is closed and Tn satisfies property
(aw).

Proof. Assume that there exists n ∈ N such thatR(Tn) is closed and Tn satisfies property
(aw).

Suppose λ ∈ Eao(T). Then λ 6= 0, λ ∈ isoσa(T) and 0 < α(T - λI) < ∞ so that 0
< α(Tn - λI) <∞ and thus λ ∈ σa(Tn). Since λ ∈ isoσa(T), there exists a disk Dλ ⊆ C
such that Dλ ∩ σa(T) = {λ}. Then Dλ ∩ σa(Tn) ⊆ {λ}. If Dλ ∩ σa(Tn) = φ, then
λ /∈ σa(Tn) which is a contradiction. Thus Dλ ∩ σa(Tn) = {λ} and so λ ∈ isoσa(Tn).
Now, λ ∈ Eao(Tn) = σ(Tn) \σw(Tn). Since λ 6= 0, we get that λ ∈ σ(T) \σw(T).

Now, let λ ∈ σ(T) \σw(T). Then, 0 6= λ ∈ σ(Tn) \σw(Tn) = Eao(Tn). Since λ ∈
isoσa(Tn), by Theorem 3, p(T - λI) = p(Tn - λI) <∞ and λ ∈ isoσa(T). Therefore, λ ∈
Eao(T) and hence, T satisfies property (aw).

Conversely, suppose T satisfies property (aw), then for n = 0, R(T0) = H is closed
and To = T|D(T )∩R(T 0) = T satisfies property (aw).

The following example illustrates all the theorems of this paper:

Example 11. Let H = l2 and let T be defined as follows:

T (x1, x2, x3, . . . ) = (x1, 2x2, 3x3, 4x4, 5x5, . . . )

where D(T ) =
{

(x1, x2, x3, . . . ) ∈ l2 :
∞∑

j=1
|jxj |2 <∞

}
.

Then coo = {(xn) : xn 6= 0 for only finitely many n} ⊆ D(T). Since coo is dense in l2,
so is D(T). Also T = T∗, so that T is a closed linear operator.

Now, σ(T) = σa(T) = σp(T) = {j : j ∈ N } and 0 /∈ isoσ(T) ∩ σdes(T).
For λ = j, j ∈ N,

N (T − λI) = span{ej} =⇒ α(T − λI) = 1 <∞ and
R(T − λI) = span{ej}⊥ =⇒ R(T − λI) is closed and β(T − λI) = 1 <∞.
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Therefore, T - λI is Fredholm operator of index 0 and thus σw(T) = σSF−+
(T) = φ.

Since λ = j, for j ∈ N is isolated in σ(T) = σa(T) and α(T - λI) = 1 < ∞, thus
Eo(T) = Eao(T) = { j : j ∈ N }. Also p(T - λI) = q(T - λI) = 1, πo(T) = πao (T) =
{j : j ∈ N}.

Hence:

σ(T ) \ σw(T ) =σa(T ) \ σSF−+ (T ) = {j : j ∈ N} = Eo(T ),

i.e., Weyl’s theorem and property (w) hold for T .
σ(T ) \ σw(T ) =σa(T ) \ σSF−+ (T ) = {j : j ∈ N} = πo(T ),

i.e., Browder’s theorem and property (b) hold for T .
σa(T ) \ σSF−+ (T ) = σ(T ) \ σw(T ) = {j : j ∈ N} = Eao (T ),

i.e., property (aw1) and property (aw) hold for T .
σa(T ) \ σSF−+ (T ) = σ(T ) \ σw(T ) = {j : j ∈ N} = πao (T ),

i.e., property (aB1) and property (ab) hold for T .

Infact, R(Tn) is closed and Tn = T|D(T )∩R(Tn) satisfies the corresponding Weyl-type
theorems and properties for all n ∈ N.
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1 Introduction

Consider a Dirichlet series of the form

f(z) =
∞∑

k=1
ak e

<λk,z>, z ∈ Cn (1.1)

where {λk}; λk = (λk1 , λk2 , . . . , λkn), k = 1, 2, . . . be a sequence of complex vectors in Cn.
Then < λk, z >= λk1z1 + λk2z2 + . . .+ λknzn. If ak′s ∈ C and {λk}′s satisfy the condition
|λk| → ∞ as k →∞ and

lim sup
k→∞

log |ak|
|λk| = −∞ (1.2)

lim sup
k→∞

log k
|λk| = D <∞ (1.3)

then from [1] the Dirichlet series (1.1) represents an entire function. In this paper let
F be the set of series (1.1) for which (k!)c1 ec2k|λk| |ak| is bounded where c1, c2 ≥ 0 and

Copyright c© 2015 Matej Bel University
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c1, c2 are simultaneously not zero. Then every element of F represents an entire function.
If

f(z) =
∞∑

k=1
ak e

<λk,z> and g(z) =
∞∑

k=1
bk e

<λk,z>

define binary operations that is addition and scalar multiplication in F as

f(z) + g(z) =
∞∑

k=1
(ak + bk) e<λ

k,z>,

α.f(z) =
∞∑

k=1
(α.ak) e<λ

k,z>,

f(z).g(z) =
∞∑

k=1
{(k!)c1 ec2k|λk| ak bk} e<λ

k,z>.

The norm in F is defined as follows

‖f‖ = sup
k≥1

(k!)c1 ec2k|λk| |ak|. (1.4)

If c1 = c2 = 1 we get the norm as defined in [3] for a class of entire functions represented
by Dirichlet series

f(s) =
∞∑

n=1
ane

λns, s = σ + it, (σ, t ∈ R) (1.5)

whose coefficients belonged to a commutative Banach algebra with identity and λn′s ∈ R
satisfied the condition 0 < λ1 < λ2 < λ3 . . . < λn . . . ;λn → ∞ as n → ∞. Further in
the same paper authors proved the above class to be a complex FK-space and a Fréchet
space. Several other results for a different class of entire Dirichlet series (1.5) may be
found in [2].
In the present paper the weighted norm is generalized and various results based on
the notions of Banach algebra, Quasi-inverse, Algebra with continuous quasi-inverse,
Spectrum of a set have been established.
In the sequel following definitions are required to prove the main results.

Definition 1. A function g(z) ∈ F is said to be a quasi-inverse of f(z) ∈ F if f(z)∗g(z) =
0 where

f(z) ∗ g(z) = f(z) + g(z) + f(z).g(z).

Definition 2. A topological algebra F is said to be an algebra with continuous quasi-
inverse if there exists a neighbourhood of the zero element, every point f of which has a
quasi-inverse f ′ and the mapping f → f ′ is continuous.

Definition 3. The set σ(A) defined as

σ(A) = {k ∈ K : A− kI is not invertible}

is called the spectrum of A.
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2 Main Results

In this section main results are proved. For the definitions of terms used refer [4] and [5].

Theorem 4. An element f(z) =
∞∑

k=1
ak e

<λk,z> ∈ F is quasi-invertible if and only if

inf
k≥1
{|1 + (k!)c1 ec2k|λk| ak|} > 0. (2.1)

The quasi-inverse of f(z) is the function g(z) =
∞∑

k=1
bk e

<λk,z> where

bk = −ak
1 + (k!)c1 ec2k|λk| ak

. (2.2)

Proof. Let f(z) ∈ F be quasi-invertible. By Definition 1, there exists g(z) ∈ F such that
f(z) ∗ g(z) = 0. This implies

ak + bk + (k!)c1 ec2k|λk| ak bk = 0

for all k ≥ 1. Let (2.1) does not hold that is

inf
k≥1
{|1 + (k!)c1 ec2k|λk| ak|} = 0. (2.3)

There exists a subsequence {kt} of a sequence of indices {k} such that ‖ft‖ = 1 that is

(kt!)c1 ec2kt|λkt | |akt
| = 1 as t→∞. (2.4)

Thus

(kt!)c1 ec2kt|λkt | |bkt
| = (kt!)c1 ec2kt|λkt | |akt

|
|1 + (kt!)c1 ec2kt|λkt | akt

|
Using (2.3) and (2.4),

‖gt‖ → ∞ as t→∞
which is a contradiction.
Conversely let (2.1) be fulfilled. The function g(z) defined by (2.2) obviously belongs to
F . Thus

f(z) ∗ g(z) =
∞∑

k=1
{ak + bk + (k!)c1 ec2k|λk| ak bk} e<λ

k,z>

= 0.

Thus f(z) is quasi-invertible which completes the proof of the theorem.

Theorem 5. F is an algebra with continuous quasi-inverse.

Proof. Let Nε(0) be an ε-neighbourhood of 0 where 0 < ε < 1. Let p(z) ∈ Nε(0) where

p(z) =
∞∑

k=1
pk e

<λk,z>. This implies ‖p‖ < ε. Then

(k!)c1 ec2k|λk| |pk| < ε for all k ≥ 1
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which further implies

inf
k≥1
{|1 + (k!)c1 ec2k|λk| pk|} ≥ 1− ε > 0.

Hence by Theorem 4, p(z) possesses a quasi-inverse say q(z) =
∞∑

k=1
qk e

<λk,z> where

qk = −pk
1 + (k!)c1 ec2k|λk| pk

.

Now

‖q‖ = sup
k≥1

(k!)c1 ec2k|λk| |qk|

= sup
k≥1

(k!)c1 ec2k|λk| |pk|
|1 + (k!)c1 ec2k|λk| pk|

<
ε

1− ε .

Hence the mapping p(z) → q(z) is continuous. Thus by Definition 2, F is an algebra
with continuous quasi-inverse. Thus the theorem is proved.

Theorem 6. F is a commutative Banach algebra with identity.
Proof. To prove the theorem we first show that F is complete under the norm defined
by (1.4). Let {fm1} be a cauchy sequence in F . For given ε > 0 we find m such that

‖fm1 − fm2‖ < ε where m1,m2 ≥ m.
This implies that

sup
k≥1

(k!)c1 ec2k|λk| |am1k
− am2k

| < ε where m1,m2 ≥ m.

Clearly {am1k
} forms a cauchy sequence in the set of complex numbers for all k ≥ 1 and

thus converges to ak. Therefore fm1 → f . Also

sup
k≥1

(k!)c1 ec2k|λk| |ak| ≤ sup
k≥1

(k!)c1 ec2k|λk| |am1k
− ak|

+ sup
k≥1

(k!)c1 ec2k|λk| |am1k
|

Hence f(z) ∈ F . Thus F is complete. Now if f(z), g(z) ∈ F then

‖f.g‖ = sup
k≥1

(k!)c1 ec2k|λk| | (k!)c1 ec2k|λk| ak bk|

≤ sup
k≥1

(k!)c1 ec2k|λk| |ak| . sup
k≥1

(k!)c1 ec2k|λk| |bk|

= ‖f‖.‖g‖
The identity element in F is

e(z) =
∞∑

k=1
(k!)−c1 e−c2k|λk| e<λ

k,z>.

Hence the theorem.
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Theorem 7. The function f(z) =
∞∑

k=1
ak e

<λk,z> is invertible in F if and only if

{| (k!)−c1 e−c2k|λk| a−1
k |}

is a bounded sequence.

Proof. Let f(z) be invertible and g(z) =
∞∑

k=1
bk e

<λk,z> be its inverse. Then

(k!)c1 ec2k|λk| ak bk = (k!)−c1 e−c2k|λk|

Equivalently
(k!)c1 ec2k|λk| |bk| = | (k!)−c1 e−c2k|λk| a−1

k |
Clearly since g(z) ∈ F hence

{| (k!)−c1 e−c2k|λk| a−1
k |}

is a bounded sequence.
Conversely suppose {| (k!)−c1 e−c2k|λk| a−1

k |} be a bounded sequence. Define g(z) such
that

g(z) =
∞∑

k=1
(k!)−2c1 e−2c2k|λk| a−1

k e<λ
k,z>.

Obviously g(z) ∈ F. Moreover

f(z).g(z) =
∞∑

k=1
(k!)c1 ec2k|λk| {ak (k!)−2c1 e−2c2k|λk| a−1

k } e<λ
k,z>

= e(z).

Hence the proof of the theorem is completed.

Theorem 8. The spectrum σ(f) where f(z) ∈ F is precisely of the form

σ(f) = cl{(k!)c1 ec2k|λk| ak : k ≥ 1}.

Proof. In Theorem 7, f(z) =
∞∑

k=1
ak e

<λk,z> ∈ F is invertible if and only if

{| (k!)−c1 e−c2k|λk| a−1
k |}

is a bounded sequence. Thus {f(z)− λ.e(z)} is not invertible if and only if

{(k!)c1 ec2k|λk| | ak − λ (k!)−c1 e−c2k|λk| |}−1

is not bounded. Therefore by Definition 3, this is possible if and only if there exists a
subsequence {kn} of a sequence of indices {k} such that

|(kn!)c1 ec2kn|λkn | akn
− λ |

tends to zero as n→∞. Equivalently

λ ∈ cl{(k!)c1 ec2k|λk| ak : k ≥ 1}
which proves the theorem.
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The results proved in this section would further be useful in the study of the spaces
like FK-space, Fréchet space, Montel space, C∗-algebra etc. and in the study of functions
preserving the asymptotic equivalence of functions and sequences that is Pseudo-regularly
varying (PRV) functions. Also these results have significant applications in the fields of
topology, functional analysis, modern analysis etc.
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1 Introduction

In applied science, some practical problems are associated with higher-order nonlinear
differential equations, such as , electronic theory [22], biological model and other mod-
els [8] and [18] . Many results concerning the stability and boundedness of solutions of
fourth order differential equations without delay have been obtained in view of various
methods, especially, Lyapunov’s method, see, the book of Reissig et al. [26] as a survey
and the papers of Abou-El-Ela and Sadek [1], Adesina and Ogundare [3], Cartwright
[9], Chukwu [10], Ezeilo [12], [14] Ezeilo and Tejumola [15], Harrow [16], Hu [17], Teju-
mola [30], Tunc [36], [37], [38], [39], Wu and Xiong [44] and the references cited therein.
Besides, it should be noted that there are only a few results on the same problem for
nonlinear differential equations of fourth order with delay, it have been discussed by a
few authors, see, Bereketoglu [4], Abou-El-Ela et al. [2], Kang and Si [20], Sadek [27],
Sinha [28], Tejumola [31], and Tunc [40], [41], [42]. The most efficient tool for the study
of the stability and boundedness of solutions of a given nonlinear differential equation is
provided by Lyapunov theory. But the construction of such functions which are positive
definite with negative definite derivatives for higher-order differential equations with de-
lay, is is in general a difficult task.
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In [7], Chin has tried to use a new technique (the intrinsic method) to construct new
Lyapunov functions for the following fourth-order differential equations

x′′′′ + a1x
′′′ + a2x

′′ + a3x
′ + f(x) = 0, (1.1)

x′′′′ + a1x
′′′ + ψ(x′)x′′ + a3x

′ + a4x = 0, (1.2)
x′′′′ + a1x

′′′ + f(x, x′)x′′ + a3x
′ + a4x = 0, (1.3)

in which a1, a2, a3 and a4 are constants. In [44], Wu and Xiong also investigated the
asymptotic stability of the zero solution of the differential equations (1.1) and (1.3).
Later, in 2004, Sadek [27] considered the fourth-order nonlinear delay differential equa-
tions of the form

x′′′′ + a1x
′′′ + a2x

′′ + a3x
′ + f(x(t− r)) = 0,

and he derived sufficient conditions for the asymptotic stability of the zero-solution of
these equations by constructing new Lyapunov functional.
In [33], Tunc investigated the asymptotic stability of zero solution of the fourth order
non-linear differential equations with delay as follows

x′′′′ + ϕ(x′′)x′′′ + a2x
′′ + a3x

′ + f(x(t− r)) = 0.

In this article, we establish the uniform asymptotic stability of the differential equation
of the form
(
g
(
x(t)

)
x′′(t)

)′′
+ a (t)

(
p
(
x(t)

)
x′′(t)

)′
+b (t)

(
q
(
x(t)

)
x′(t)

)′
+ c (t) f

(
x(t)

)
x′(t)

(1.4)
+ d (t)h

(
x(t− r)

)
= 0,

where g(x) > 0 and r is a positive constant to be determined later; the primes in
(1.4) denote differentiation with respect to t; the functions a, b, c, d, are continuously
differentiable functions. The functions f, g, h, p, q, are continuous. It is also supposed
that the derivatives, g′(x), p′(x), q′(x), f ′(x) and h′(x) exist and are continuous.
Equation (1.4) is equivalent to the system




x′ = y,

y′ = 1
g (x)z,

z′ = w,

w′ = −a(t)p (x)
g (x)w +

(
a (t) p(x)θ1(t)− b(t) q (x)

g (x) − a(t)g(x)θ2(t)
)
z

−
(
b(t)g2(x)θ3(t) + c (t) f (x)

)
y − d (t)h (x) + d (t)

∫ t

t−r
y (s)h′ (x (s)) ds,

(1.5)
where
θ1 (t) = g′ (x (t))

g2 (x (t))x
′ (t) , θ2 (t) = p′ (x (t))

g2 (x (t))x
′ (t) , and θ3 (t) = q′ (x (t))

g2 (x (t))x
′ (t) .

The continuity of the functions a, b, c, d, f, g, g′, h, p, p′, q, and q′ guarantees the exis-
tence of the solutions of (1.4) ( see [11], pp.15). It is assumed that the right hand side
of the system (1.5) satisfies a Lipschitz condition in x(t), y(t), z(t), w(t) and x(t − r).
This assumption guarantees the uniqueness of solutions of (1.4) ([11], pp.15). The moti-
vation for the present paper comes from the results mentioned above. Our purpose is to
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extend and improve the result established by Tunc [33], and Sadek [27] to the equation
(1.4). Clearly the equation discussed in [27] and is a special case of equation (1.1) when
g(x) = p(x) = q(x) = 1, and a(t) = a, b(t) = b, c(t) = c. Our approach is based on
Lyapunov’s second (direct) method. We shall use appropriate Lyapunov function and
impose suitable conditions on the functions g(x), p(x), and q(x).

2 Preliminaries

In this section, we shall state and prove certain results useful in the proof of our main
result. Consider the functional differential equation

x′ = f(t, xt), xt(θ) = x(t+ θ) , −r ≤ θ ≤ 0, t ≥ 0, (2.1)

where f : I×CH → Rn is a continuous mapping, f(t, 0) = 0, CH := {φ ∈ (C[−r, 0], Rn) :
‖φ‖ ≤ H}, and for H1 < H, there exists L(H1) > 0, with |f(t, φ)| < L(H1) when
‖φ‖ < H1.

Definition 1. [6] An element ψ ∈ C is in the ω− limit set of φ, say Ω(φ), if x(t, 0, φ) is
defined on [0,+∞) and there is a sequence {tn}, tn →∞, as n→∞, with ‖xtn(φ)−ψ‖ →
0 as n→∞ where xtn(φ) = x(tn + θ, 0, φ) for −r ≤ θ ≤ 0.

Definition 2. [6] A set Q ⊂ CH is an invariant set if for any φ ∈ Q, the solution of
(2.1), x(t, 0, φ), is defined on [0,∞) and xt(φ) ∈ Q for t ∈ [0,∞).

Lemma 3. [5] If φ ∈ CH is such that the solution xt(φ) of (2,1) with x0(φ) = φ is defined
on [0,∞) and ‖xt(φ)‖ ≤ H1 < H for t ∈ [0,∞), then Ω(φ) is a non-empty, compact,
invariant set and

dist(xt(φ),Ω(φ))→ 0 as t→∞.

Lemma 4. [5] Let V (t, φ) : I × CH → R be a continuous functional satisfying a local
Lipschitz condition, V (t, 0) = 0, and wedges Wi such that:
(i) W1(‖φ‖) ≤ V (t, φ) ≤W2(‖φ‖).
(ii) V ′(2,1)(t, φ) ≤ −W3(‖φ‖).
Then, the zero solution of (2.1) is uniformly asymptotically stable.

3 Assumptions and main results

First, we state some assumptions on the functions that appeared in (1.4), and suppose
that there are positive constants a0, b0, c0, d0, f0, g0, p0, q0, a1, b1, c1, d1, f1, g1, p1, q1, h0,m,
M, δ, δ0, η1 and η2 such that the following conditions are satisfied

i) 0 < a0 ≤ a (t) ≤ a1; 0 < b0 ≤ b (t) ≤ b1; 0 < c0 ≤ c (t) ≤ c1;
0 < d0 ≤ d (t) ≤ d1 for t ≥ 0.

ii) 0 < f0 ≤ f (x) ≤ f1; g0 ≤ g (x) ≤ g1; 0 < p0 ≤ p (x) ≤ p1; 0 < q0 ≤ q (x) ≤ q1
for x ∈ R and 0 < m < min

{
f0, p0, g0, 1

}
, M > max

{
f1, , g1, p1, 1

}
.

iii) h(x)
x
≥ δ > 0 ( for x 6= 0) ; h (0) = 0.

iv) h0
m
− a0mδ0

d1
≤ h′ (x) ≤ h0

2M for x ∈ R,
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v) b0q0 > max (κ1, κ2) where




κ1 = a1h0d1M
2

c0m3 + M3(c1 + δ0)
a0m2 + a0a1m (M − 1) ,

κ2 = 2d1h0a0
c0 (M − 1)

(
1
m
− 1
M

)2
+ 2c0M

a0
+ 2a1

d1h0M

c0m3 + c0c1(M2 + 2)mM
d1h0

.

vi)
∫ +∞

0
(|a′ (t)|+ |b′ (t)|+ |c′ (t)|+ |d′ (t)|) dt < η1 < +∞.

vii)
∫ +∞

−∞
(|g′ (s)|+ |p′ (s)|+ |q′ (s)|+ |f ′ (s)|) ds < η2 <∞.

Now we dispose of the following lemma which will be required in the proof of next
theorem.

Lemma 5. [19] Let h(0) = 0, xh(x) > 0 (x 6= 0) and δ(t) − h′(x) ≥ 0 (δ(t) > 0),
then

2δ(t)H(x) ≥ h2(x) where H(x) =
∫ x

0
h(s)ds.

The main result of this paper is the following theorem.

Theorem 6. Suppose that assumptions i) ∼ vii) hold. Then, every solution x(t) of (1.4)
and their derivatives x′(t), x′′(t) and x′′′(t) are uniformly asymptotically stable, provided
that

r <
1
λ

min
{
εc0m, ε

a0m

M
,
m2(b0q0 − κ1)− εM2(a1 + c1mM)

Mm2

}
, (3.1)

where

λ = d1λ0(α+ β + 1), λ0 = max
{ h0

2M ,

∣∣∣∣
h0
m
− a0mδ0

d1

∣∣∣∣
}
, and

(3.2)

ε < min
{
M

a0m
,
d1h0
c0m

,
m2(b0q0 − κ1)
M2(a1 +mMc1)

}
. (3.3)

Proof. The proof depend on some fundamental properties of a continuously differentiable
Lyapunov functional W = W (t, xt, yt, zt, wt) defined by

W = e
−1
η

∫ t

0
γ (s) ds

V, (3.4)

where

γ (t) = |a′ (t)|+|b′ (t)|+|c′ (t)|+|d′ (t)|+|θ1(t)|+|θ2(t)|+|θ3(t)|+|θ4(t)|,

and

V = V0(t, xt, yt, zt, wt)+λ
∫ 0

−r

∫ t

t+s
y2 (θ) dθds,



Acta Univ. M. Belii, ser. Math. 23 (2015), 101–114 105

such that

θ4 (t) = f ′ (x (t))
g2 (x (t))x

′ (t) ,

2V0 = 2βd (t)H (x) + c (t) g (x) f (x) y2 + αb (t) q(x)
g (x)z

2 + a (t) p(x)
g (x)z

2

+2βa (t) p(x)
g (x)yz + [βb(t)q(x)− αh0d (t)] y2 − β 1

g (x)z
2 + αw2

+2d (t) g (x)h(x)y + 2αd(t)h (x) z + 2αc (t) f (x) yz + 2βyw + 2zw,

with H(x) =
∫ x

0 h(s)ds, α = M

a0m
+ ε , β = d1h0

c0m
+ ε and η is positive constant to be

determined later in the proof. 2V0 can be rearranged as the following

2V0 = a (t) p(x)
(

w

a (t) p(x) + z + β
1

g (x)y
)2

+ c (t) f (x)
(
d (t)h (x)
c (t) f (x) + y + αz

)2

+c (t) f (x)
[(
g (x)− 1

)
y + d (t)h (x)

c (t) f (x)

]2
+ 2εd (t)H (x) + V1 + V2 + V3,

where

V1 = 2d (t)
∫ x

0
h (s)

(
d1h0
c0m

− 2 d (t)
c (t) f (x)h

′ (s)
)
ds,

V2 =
(
αb (t) q(x)

g (x) − β
1

g (x) − α
2c (t) f (x) + a (t) p(x)

(
1

g (x) − 1
))

z2,

and

V3 =
(
βb (t) q(x)− αh0d (t)− β2a (t) p (x)

g2 (x) − c (t) f(x)
(
g2 (x)− 3g (x) + 2

))
y2

+
(
α− 1

a (t) p(x)

)
w2 + 2β

(
1− 1

g (x)

)
yw.

To prove that V is positive definite it suffice to show that V1, V2 and V3 are positive.
Using conditions i) ∼ v), and inequality (3.3) we obtain the following

V1 ≥ 2d (t)
∫ x

0
2h (s) d1

c0m

(
h0
2 − h

′ (s)
)
ds

≥ 4d0
d1
c0m

∫ x

0
h (s)

(
h0
2M − h′ (s)

)
ds ≥ 0.

Since (3.3) we get

M

a0m
< α < 2 M

a0m
,

d1h0
c0m

< β < 2d1h0
c0m

. (3.5)
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From (3.5) and rearrange V2 we obtain

V2 = α

(
b (t) q(x)

g (x) − β
a (t)
g (x) − αc (t) f (x)− a (t) p(x)

α

(
1− 1

g (x)

))
z2

+ β

(
α
a (t)
g (x) −

1
g (x)

)
z2

≥ α
(
b0q0
M
−
(d1h0
c0m

+ ε
)a1
m
−
( M
a0m

+ ε
)
c1M − a1

a0m

M

(
M − 1

))
z2

+ β

(
α
a0
M
− 1
m

)
z2

≥ α
(
b0q0
M
− d1h0a1

c0m2 −
c1M

2

a0m
− a1

a0m

M

(
M − 1

)
− ε

m

(
a1 + c1mM

))
z2

≥ α

Mm

(
m(b0q0 − κ1)− εM (a1 + c1mM)

)
z2 ≥ 0,

and

V3 ≥ β

(
b0q0 −

α

β
h0d1 − a1β

M

g2 (x) −
c1M(M2 + 2)

β

)
y2 +

(
M − 1
a0m

)
w2

+2β
(

1− 1
g (x)

)
yw

≥ β

(
b0q0 − 2M

a0
c0 − 2a1

d1h0M

c0m3 −
c0c1(M2 + 2)mM

d1h0

)
y2 +

(
M − 1
a0m

)
w2

+2β
(

1− 1
g (x)

)
yw

≥ ψ(y, ω),

such that

ψ(y, ω) = β
2d1h0a0
c0 (M − 1)

(
1
m
− 1
M

)2
y2 +

(
M − 1
a0m

)
w2 + 2β

(
1− 1

g (x)

)
yw.

Observe that ψ(y, ω) is positive definite. Indeed by calculating the discriminant

4 = β2
(

1− 1
g (x)

)2
− β 2d1h0

c0m

(
1
m
− 1
M

)2
,

since
1
M

<
1

g(x) <
1
m
, and

1
M

< 1 < 1
m
,

we get ∣∣∣∣1−
1

g (x)

∣∣∣∣ <
1
m
− 1
M
.

Using (3.5) we obtain

4 ≤ β
[

2d1h0
c0m

(
1
M
− 1
m

)2
− 2d1h0

c0m

(
1
M
− 1
m

)2
]

= 0.
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Using the fact that the integral
∫ 0
−r
∫ t
t+s y

2(θ)dθds is positive, we deduce that there exists
positive number D0 such that

2V ≥ D0
(
y2 + z2 + w2 +H(x)

)
. (3.6)

By lemma 5 and conditions iii) and iv) we conclude that there exists a positive number
D1 such that

2V ≥ D1
(
x2 + y2 + z2 + w2) , (3.7)

thus V is positive definite which implies that W is also positive definite.
Then, we can find positive definite functions U1(‖X‖) and U2(‖X‖) such that
U1(‖X‖) ≤ V ≤ U2(‖X‖). By (ii) and (vii), we get
∫ t

0

( 4∑

i=1
|θi(s)|

)
ds =

∫ α2(t)

α1(t)

|g′(u)|+ |p′(u)|+ |q′(u)|+ |f ′(u)|
g2(u) du

≤ 1
m2

∫ +∞

−∞

(
|g′(u)|+ |p′(u)|+ |q′(u)|+ |f ′(u)|

)
du <∞, (3.8)

where α1(t) = min{x(0), x(t)}, and α2(t) = max{x(0), x(t)}. By inequalities (3.4), (3.7),
and (3.8), we have

W ≥ D2(x2 + y2 + z2 + w2), where D2 = D1
2 e−

1
η (η1+ η2

m2 ). (3.9)

Therefore we can find positive definite functions W1(‖X‖) and W2(‖X‖) such that

W1(‖X‖) ≤W ≤W2(‖X‖).
Now we prove that Ẇ is negative definite functional.
The derivative of V along any solution (x(t), y(t), z(t), w(t)) of system (1.5), we have

2
.

V (1.5) = −2εc (t) f(x)y2 + V4 + V5 + V6 + V7 + 2∂V0
∂t

+ λry2(t)− λ
∫ t

t−r
y2 (u) du

+2αwd (t)
∫ t

t−r
y (s)h′ (x (s)) ds+ 2βyd (t)

∫ t

t−r
y (s)h′ (x (s)) ds

+2zd (t)
∫ t

t−r
y (s)h′ (x (s)) ds,

where

V4 = −2
(
d1h0
c0m

c (t) f(x)− d (t) g (x)h′ (x)
)
y2 − 2αd (t)

(
h0
g (x) − h

′ (x)
)
yz,

V5 = −2
(
b (t) q(x)
g (x) − αc (t) f(x)

g (x) − βa (t) p(x)
g2 (x)

)
z2,

V6 = −2
(
α
a (t) p(x)
g (x) − 1

)
w2

and

V7 = θ1

(
a (t) p(x)z2 − αb (t) q(x)z2 + c (t) f (x) g2 (x) y2 + βz2 + 2d (t) g2 (x)h (x) y

+2αa (t) p(x)zw
)
− b(t)θ3g(x)

(
αz2 + 2αg(x)zw + βg(x)y2 + 2g(x)yz

)

−a(t)θ2g(x)
(
z2 + 2αzw

)
+ θ4

(
c (t) g3 (x) y2 + 2αc (t) g2 (x) yz

)
.
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By conditions i), ii), iv), v) and inequalities ( 3.2), ( 3.3) and ( 3.5) we get

V4 ≤ −2
(
d (t)h0 − d (t) g (x)h′ (x)

)
y2 − 2αd (t)

(
h0
g (x) − h

′ (x)
)
yz

≤ −2d (t) g (x)
(

h0
g (x) − h

′ (x)
)
y2 − 2αd (t)

(
h0
g (x) − h

′ (x)
)
yz

≤ −2d (t)m
(

h0
g (x) − h

′ (x)
)[(

y + α

2mz
)2
−
( α

2mz
)2
]

≤ −2d (t)m
(
h0
M
− h′ (x)

)(
y + α

2mz
)2

+ 2d(t)m
(
h0
m
− h′ (x)

)( α

2mz
)2

≤ α2

2md (t)
(
h0
m
− h′ (x)

)
z2.

Hence,

V4 + V5 ≤ −2
[
b (t) q(x)

g (x) − αc (t) f(x)
g (x) − βa (t) p(x)

g2 (x) −
α2

4md (t)
(
h0
m
− h′ (x)

)]
z2

≤ −2
[
b0q0
M
−
( M
a0m

+ ε
)c1M

m
−
(d1h0
c0m

+ ε
)a1M

m2 −
α2

4m
(
a0δ0

)]
z2

≤ −2
[
b0q0
M
− M2

a0m2 c1 −
d1h0a1M

c0m3 − M2δ0
a0m2 − ε

M

m

(a1
m

+ c1

)]
z2

≤ − 2
Mm2

(
m2(b0q0 − κ1)− εM2 (a1 + c1m)

)
z2 ≤ 0.

We have also,
V6 ≤ −2

(
α
a0m

M
− 1
)
w2 = −2εa0m

M
w2 ≤ 0.

Putting λ1 = min
{
εc0m, ε

a0m

M
,

1
Mm2

(
m2(b0q0 − κ1) − εM2 (a1 + c1mM)

)}
and

using Cauchy Schwartz inequality we have

− 2εc (t) f(x)y2 + V4 + V5 + V6 + 2αwd (t)
∫ t

t−r
y (s)h′ (x (s)) ds− λ

∫ t

t−r
y2 (s) ds

+ 2βyd (t)
∫ t

t−r
y (s)h′ (x (s)) ds+ 2zd (t)

∫ t

t−r
y (s)h′ (x (s)) ds+ λry2(t)

≤ −2λ1
(
y2 + z2 + w2)+ αd1λ0

(
w2r +

∫ t

t−r
y2 (s) ds

)
+ βd1λ0

(
y2r +

∫ t

t−r
y2 (s) ds

)

+ d1λ0

(
z2r +

∫ t

t−r
y2 (s) ds

)
+ λry2(t)− λ

∫ t

t−r
y2 (s) ds

≤ −2λ1
(
y2 + z2 + w2)+ d1λ0r

(
βy2 + z2 + αw2)+ (d1λ0(α+ β + 1)− λ)

∫ t

t−r
y2 (s) ds

≤ −2λ1
(
y2 + z2 + w2)+ d1λ0(α+ β + 1)r

(
y2 + z2 + w2)

≤ −2D3
(
y2 + z2 + w2) . (3.10)

Where D3 = λ1 − λr. It can be seen that if r < λ1
λ
, then D2 > 0.

Now by the inequalities (3.6), (3.10), the lemma 5 and the Cauchy Schwartz inequality
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we get the following.

V7 ≤ |θ1|
(
a (t) p(x)z2 + αb (t) q(x)z2 + c (t) f (x) g2 (x) y2 + βz2 + d (t) g2 (x) (h2 (x) + y2)

+ αa (t) p(x)(z2 + w2)
)

+ |θ4|
(
c (t) g3 (x) y2 + αc (t) g2 (x) (y2 + z2)

)

+ b(t)|θ3|g(x)
(
αz2 + αg(x)(z2 + w2) + βg(x)y2 + g(x)(y2 + z2)

)

+ a(t)|θ2|g(x)
(
z2 + α(z2 + w2)

)

≤ λ2
(
|θ1|+ |θ2|+ |θ3|+ |θ4|

)(
y2 + z2 + w2 +H(x)

)

≤ 2λ2
D0

(
|θ1|+ |θ2|+ |θ3|+ |θ4|

)
V.

such that,

λ2 = max
{
d1h0M,αM(a1 +Mb1), c1M

3 + (d1 + αc1 + βb1 + b1)M2,

β + a1M(α+ 1) + b1M(2α+ 1) + αc1M
2}.

Similarly we have

2∂V0
∂t

= d′ (t)
[
2βH (x)− αh0y

2 + 2g (x)h (x) y + 2αh (x) z
]

+c′ (t)
[
g (x) f(x)y2 + 2αf(x)yz

]
+ b′ (t)

[
α
q(x)
g (x)z

2 + βq(x)y2
]

+a′ (t)
[
p(x)
g (x)z

2 + 2β p(x)
g (x)yz

]
.

There exist positive constant λ3 such that

2
∣∣∣∣
∂V0
∂t

∣∣∣∣ ≤ |d′ (t) |
(

2βH (x) + αh0y
2 + g (x)

(
h2 (x) + y2)+ α

(
h2 (x) + z2)

)

+ |c′ (t) |f(x)
(
g (x) y2 + α

(
y2 + z2)

)
+ |b′ (t) |q(x)

(
α

1
g (x)z

2 + βy2
)

+ |a′ (t) | p(x)
g (x)

(
z2 + β

(
y2 + z2)

)

≤ λ3

(
|a′ (t)|+ |b′ (t)|+ |c′ (t)|+ |d′ (t)|

)(
y2 + z2 + w2 +H(x)

)

≤ 2 λ3
D0

(
|a′ (t)|+ |b′ (t)|+ |c′ (t)|+ |d′ (t)|

)
V,

where

λ3 = max
{

2β + h0(α+ 1),M2 + β
M

m
+ α(h0 +M), M

m
(α+ β + 1)

}
.

Thus for 1
η

= 1
D0

max
{
λ2, λ3

}
we have

.

V (1.5) ≤ −D3(y2 + z2 + w2) + 1
η

(
|a′ (t)|+ |b′ (t)|+ |c′ (t)|+ |d′ (t)|

+|θ1|+ |θ2|+ |θ3|+ |θ4|
)
V. (3.11)
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By conditions vi), vii) and inequalities ( 3.8 ), ( 3.11 ) we have

.

W (1.5) =
(
.

V (1.5) −
1
η
γ (t)V

)
e
−1
η

∫ t

0
γ (s) ds

≤ −D3
(
y2 + z2 + w2) e

−1
η

∫ t

0
γ (s) ds

≤ −D4
(
y2 + z2 + w2) ,

where D4 = D3e
− η1+η2

η . From (1.5,W3(‖X‖) = D4(y2+z2+w2) is positive definite func-
tion. Thus, we conclude that the solutions of system (1.5) are uniformly asymptotically
stable. Now, it is evident from (1.5) that





|x′(t)| = |y(t)|,
|x′′(t)| = | z(t)

g(x) | ≤
|z(t)|
m

,

|x′′′(t)| = |w(t)
g(x) −

g′(x)x′(t)
g2(x) | ≤ |w(t)|

m
+ |g

′(x)||x′(t)|
m2 .

Clearly, from the above discussion

lim
t→∞

x(t) = 0, lim
t→∞

x′(t) = 0, lim
t→∞

x′′(t) = 0, and lim
t→∞

x′′′(t) = 0.

This fact completes the proof of the Theorem.

4 Example

We consider the following fourth order non-autonomous delay differential equation
((

x2(t) sin x(t) + 5x4(t) + 5
5 (1 + x4(t))

)
x′′(t)

)′′

+
(
e−t sin t+ 2

)
((

x(t) + 4ex(t) + 4e−x(t)

4
(
ex(t) + e−x(t)

)
)
x′′(t)

)′

+
(

cos t+ 7t2 + 7
1 + t2

)((
sin x(t) + 6ex(t) + 6e−x(t)

ex(t) + e−x(t)

)
x′(t)

)′

+
(
e−2t sin3 t+ 2

)(x(t) cosx(t) + 5x4(t) + 5
5 (1 + x4(t))

)
x′(t)

+
(

cos2 t+ t2 + 1
10 (1 + t2)

)(
x(t− r)

x2(t− r) + 1

)
= 0. (4.1)

By taking g (x) = x2 sin x+ 5x4 + 5
5 (1 + x4) , p (x) = x+ 4ex + 4e−x

4 (ex + e−x) , q (x) = sin x+ 6ex + 6e−x
ex + e−x

,

f (x) = x cosx+ 5x4 + 5
5 (1 + x4) , h (x) = x

x2 + 1 , a (t) = e−t sin t+2 , b (t) = cos t+ 7t2 + 7
1 + t2

,

c (t) = e−2t sin3 t+ 2 and d (t) = cos2 t+ t2 + 1
10 (1 + t2) .

We have
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m = 9
10 , M = 11

10 , q0 = 11
2 , q1 = 13

2 , h0 = 5
2 , δ0 = 5

3 , a0 = 1 , a1 = 3 ,

b0 = 6 , b1 = 8 , c0 = 1 , c1 = 3 , d0 = 1
10 , d1 = 1

5 , and

h0
m
− a0mδ0

d1
≤ −4. 55 ≤ h′ (x) ≤ 1.1 ≤ h0

2M ,

κ1 = a1h0d1M
2

c0m3 + M3(c1 + δ0)
a0m2 + a0a1m (M − 1) ≤ 11,

κ2 = 2d1h0a0
c0 (M − 1)

(
1
m
− 1
M

)2
+ 2c0M

a0
+ 2a1

d1h0M

c0m3 + c0c1(M2 + 2)mM
d1h0

≤ 27,

ε < min
{
M

a0m
,
d1h0
c0m

,
m2(b0q0 − κ1)
M2(a1 +mMc1)

}
= 5

9 .

By choosing ε = 1
4 we get α = M

a0m
+ ε = 53

36 , β = d1h0
c0m

+ ε = 29
36 ,

λ0 = max
{
h0
2M ,

∣∣∣∣
h0
m
− a0mδ0

d1

∣∣∣∣
}

= 85
18 ,

λ = d1λ0(α+ β + 1) = 1003
324 ,

r <
1
λ

min
{
εc0m, ε

a0m

M
,
m2(b0q0 − κ1)− εM2(a1 + c1mM)

Mm2

}
= 729

11033 .

On the other hand,

∫ +∞

−∞
|g′ (x)| dx = 1

5

∫ +∞

−∞

∣∣∣∣∣
−4x5 sin x+

(
2x sin x+ x2 cosx

) (
x4 + 1

)

(x4 + 1)2

∣∣∣∣∣ dx ≤
3
5
√

2π,

∫ +∞

−∞
|p′ (x)| dx = 1

4

∫ +∞

−∞

∣∣∣∣∣
1

ex + e−x
+ x

e−x − ex
(ex + e−x)2

∣∣∣∣∣ dx ≤
π

4 ,

∫ +∞

−∞
|q′ (x)| dx = 1

5

∫ +∞

−∞

∣∣∣∣∣
(ex + e−x) cosx− (ex − e−x) sin x

(ex + e−x)2

∣∣∣∣∣ dx ≤
π

5 ,

∫ +∞

−∞
|f ′ (x)| dx = 1

5

∫ +∞

−∞

∣∣∣∣∣
(cosx− x sin x)

(
x4 + 1

)
− 4x4 cosx

(x4 + 1)2

∣∣∣∣∣ dx

≤ 1
5

∫ +∞

−∞

5 + x2

x4 + 1dx = 9
10
√

2π,

then,
∫ +∞

−∞
(|g′ (s)|+ |p′ (s)|+ |q′ (s)|+ |f ′ (s)|) ds <∞.
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We have also
∫ +∞

0
|a′ (t)| dt =

∫ +∞

0

∣∣ (cos t) e−t − (sin t) e−t
∣∣ dt ≤

∫ +∞

0
2e−tdt = 2,

∫ +∞

0
|b′ (t)| dt =

∫ +∞

0

∣∣∣∣∣ −
sin t
t2 + 1 − 2t cos t

(t2 + 1)2

∣∣∣∣∣ dt ≤
∫ +∞

0

(
1

t2 + 1 + 2t
(t2 + 1)2

)
dt

≤
∫ +∞

0

2
t2 + 1dt = π,

∫ +∞

0
|c′ (t)| dt =

∫ +∞

0

∣∣ 3
(
cos t sin2 t

)
e−2t − 2

(
sin3 t

)
e−2t∣∣ dt ≤

∫ +∞

0
5e−2tdt = 5

2 ,
∫ +∞

0
|d′ (t)| dt =

∫ +∞

0

∣∣∣∣∣ −2 (cos t) sin t
t2 + 1 − 2t cos2 t

(t2 + 1)2

∣∣∣∣∣ dt ≤
∫ +∞

0

3
t2 + 1dt = 3π

2 .

Hence ∫ +∞

0
(|a′ (t)|+ |b′ (t)|+ |c′ (t)|+ |d′ (t)|) dt < +∞.

Thus all the assumptions of Theorem (6) hold, this shows that every solution x(t) of
(4.1) and their derivatives x′(t), x′′(t) and x′′′(t) are uniformly asymptotically stable.
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G. Monozsová and A. Haviar
Professor L’ubomı́r Snoha, 60 years old. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

A. Rosa
Maximal designs and configurations - a survey . . . . . . . . . . . . . . . . . . . . . . . . . 9
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On the [p, q]-Order of Meromorphic Solutions
of Linear Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

S.S. Dragomir
Some Perturbed Ostrowski Type Inequalities
for Absolutely Continuous Functions (I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A. Gupta and K. Mamtani
Weyl-Type Theorems For Restrictions Of Closed Linear
Unbounded Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

N. Kumar and G. Manocha
Certain results on a class of Entire functions represented
by Dirichlet series having complex frequencies . . . . . . . . . . . . . . . . . . . . . . . . 95

M. Rahmane and M. Remili
On Stability and Boundedness of Solutions of Certain
Non Autonomous Fourth-Order Delay Differential Equations . . . . . . 101


