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Abstract
After surveying some known properties of compact convex sets in the plane, we give two rigorous proofs
of the general feeling that supporting lines can be slide-turned slowly and continuously. Targeting a
wide readership, our treatment is elementary on purpose.
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1 Motivation

Nowadays, there is a growing interest in the combinatorial properties of convex sets,
usually, in compact convex sets. A large part of the papers belonging to this field go
back to Erdős and Szekeres [15]; see, for example, Dobbins, Holmsen, and Hubard [12] and
[13], Pach and Tóth [24] and [25], and their references. Recently, besides combinatorists
and geometers, algebraists are also interested in compact convex sets; see, for example,
Adaricheva [1], Adaricheva and Bolat [2], Adaricheva and Nation [4], Czédli [8], [9], and
[10], Czédli and Kincses [11], and Richter and Rogers [26]. The interest of algebraists
is explained by the fact that antimatroids, introduced by Korte and Lovász [17] and
[18], and the dual concept of abstract convex geometries, introduced by Edelman and
Jamison [14], have close connections to lattice theory. These connections are surveyed
in Adaricheva and Czédli [3], Adaricheva and Nation [4], Czédli [7], and Monjardet [21].
Finally, there are other types of combinatorial investigations of convex sets; the most
recent is, perhaps, Novick [23].

One of the most important concepts related to planar convex sets is that of supporting
lines. Most of the papers mentioned above rely, explicitly or implicitly, on the properties
of these lines. We guess that not only the experts of advanced analysis of convex sets and
functions are interested in the above papers; at least, this is surely true in case of the first
author of the present paper. However, it is quite difficult to explain to or understand
by all the interested readers in a short, easy-to-follow, but rigorous way that why one of
the most useful property of compact convex sets holds. This property, which seems to
∗This research was supported by NFSR of Hungary (OTKA), grant number K 115518
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be absent in the literature, will be formulated in Theorem 1. This theorem is the “note”
occurring in the title.

This motivates the aim of this short paper: even if Theorem 1 could be proved in a
shorter way by using advanced tools of Analysis and even if it states what is expected
by geometric intuition, we are going to give a rigorous proof for it. Actually, we give
two different proofs. We believe that if other statements for planar compact convex sets
like (2.6) deserve proofs that are easy to reference, then so does this theorem. Note
that Czédli [10] exemplifies why the present paper is expected to be useful in further
research: while the first version, arXiv:1611.09331v1, of [10] spends a dozen of pages
on properties of supporting lines, its second version needs only few lines and a reference
to the present paper. Also, we exemplify the use of Theorem 1 by an easy corollary,
which is a well known but we have not found a rigorous proof for it.

2 A short survey

A compact subset of the plane R2 is a topologically closed bounded subset. The boundary
of H will be denoted by ∂H. A subset H of R2 is convex, if for any two points X,Y ∈ R2,
the closed line segment [X,Y ] is a subset of H. In this section, H will stand for a compact
convex set. Even if this is not always repeated, we always assume that a convex set is
nonempty. Each line ` gives rise to two closed halfplanes; their intersection is `. Usually,
unless otherwise is stated explicitly, we assume that ` is a directed line; then we can
speak of the left and right halfplanes determined by `. Points or sets in the left halfplane
are on the left of `; being on the right is defined analogously. If H is on the left of ` such
that H∩` = ∅, then H is strictly on the left of `. The direction of a directed line ` will be
denoted by dir(`) ∈ [−π, π). It is understood modulo 2π, whence we could also consider
dir(`) an element of [0, 2π). Furthermore, denoting the unit circle {〈x, y〉 : x2 + y2 = 1}
by Cunit, we will often say that dir(`) ∈ Cunit. Following the convention of Yaglom and
Boltyanskǐı [31], if H is on the left of ` and ` ∩H 6= ∅, then ` is a supporting line of H.
Clearly, for a supporting line ` of H, ` ∩H = ` ∩ ∂H 6= ∅. We know from Yaglom and
Boltyanskǐı [31, page 8] that parallel to each line `, a compact convex set with nonempty
interior has exactly two supporting lines. Hence, without any stipulation on the interior,

for every α ∈ Cunit, a compact convex set has
exactly one supporting line of direction α. (2.1)

Note at this point that, by definition, a curve is the range Range(g) of a continuous
function g from an interval I of positive length to Rn for some n ∈ {2, 3, 4, . . . }. If
x1 6= x2 ⇒ g(x1) 6= g(x2) except possibly for the endpoints of I, then Range(g) is a
simple curve. A Jordan curve is a homeomorphic planar image of a circle of nonzero
radius, that is, a Jordan curve is a simple closed curve in the plane. A curve is rectifiable if
the lengths of its inscribed polygons form a bounded subset of R. The following statement
is known, say, from Latecki, Rosenfeld, and Silverman [19, Thm. 32] and Topogonov [30,
page 15]; see also [32].

For a compact convex H ⊆ R2 with nonempty
interior, ∂H is a rectifiable Jordan curve. (2.2)

For P ∈ ∂H, there are two possibilities; see, for example, Yaglom and Boltyanskǐı
[31, page 12]. First, if there is exactly one supporting line through P ,

then P is a regular point of ∂H and the curve ∂H is smooth at P . (2.3)

Second, if there are at least two distinct supporting lines `1 and `2 through P , then P is
a corner of ∂H (or of H). In both cases, a supporting line ` containing P is called the
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last semitangent of H through P if for every small positive ε, there is an ε′ ∈ (0, ε) such
that the line obtained from ` by rotating it around P forward (that is, counterclockwise)
by ε′ degree is not a supporting line. The first semitangent is defined similarly. The first
and the last semitangents coincide iff P ∈ ∂H is a regular point. For P ∈ ∂H,

`−P and `+
P will denote the first semitangent and the last

semitangent through P , respectively. When they coincide,
`P := `−P = `+

P will stand for the tangent line through P .
(2.4)

Let us emphasize that no matter if P ∈ ∂H is a regular point or a vertex,

there exists a supporting line through P ; in particular, both
`−P and `+

P exist and they are uniquely determined. (2.5)

Besides Yaglom and Boltyanskǐı [31], this folkloric fact is also included, say, in Boyd and
Vanderberghe [6, page 51]. We note but will not use the fact that every line separating
P and the interior of H is a supporting line through P . As an illustration for (2.5), some
supporting lines of H are given in Figure 1. If `i is the supporting line denoted by i
in the figure, then `1 = `P1 is a tangent line, `−P2

= `2 is the first semitangent through
P2, and `+

P2
= `4 is the last semitangent through the same point. We know from, say,

Borwein and Vanderwerff [5, 2.2.15 in page 42], Yaglom and Boltyanskǐı [31, page 110],
or even from [32], that the boundary ∂H of a compact convex set H ⊆ R2 can have ℵ0
many corners. This possibility, which is not so easy to imagine, also justifies that we are
going to give a rigorous proof for our theorem. Next, restricting ourselves to the compact
case and to the plane, we recall the strict separation theorem as follows.

If H1, H2 ⊆ R2 are disjoint compact convex set, then
there exists a directed line ` such that H1 is strictly
on the left and H2 is strictly on the right of `.

(2.6)

This result follows, for example, from Subsection 2.5.1 in Boyd and Vandenberghe [6]
plus the fact that the distance dist(H1, H2) of H1 and H2 is positive in this case.

Figure 1. Supporting lines

3 A note and its corollary

Given a compact convex set H, visual intuition tells us that any supporting line can be
continuously transformed to any other supporting line. We think of this transformation
as a slow, continuous progression in time. For example, in Figure 1, `i+1 comes, after
some time, later than `i, for i ∈ 1, . . . , 11. While continuity makes a well-known math-
ematical sense, a comment on slowness is appropriate here. By slowness we shall mean
rectifiability, because this is what guarantees that running the process with a constant



6 Gábor Czédli, László L. Stachó

speed, it will terminate. Therefore, since rectifiability is an adjective of curves, we are
going to associate a simple closed rectifiable curve with H such that the progression is
described by moving along this curve forward. The only problem with this initial idea is
that, say, `11 cannot follow `10, because they are the same supporting lines. Therefore,
we consider pointed supporting lines. A pointed supporting line of H is a pair 〈P, `〉 such
that P ∈ ∂H and ` is a supporting line of H through P . The transition from `i to `i+1
will be called slide-turning. Of course, the 〈Pi, `i〉, for i ∈ {1, . . . , 12}, represent only
twelve snapshots of a continuous progression. In order to capture the progression math-
ematically, note that each pointed supporting line 〈P, `〉 of H is determined uniquely by
the point 〈P,dir(`)〉 ∈ R4. To be more precise, define the following cylinder

Cyl := R2 × Cunit = {〈x, y, z, t〉 ∈ R4 : z2 + t2 = 1} ⊆ R4. (3.1)

As the crucial concept of this section, the slide curve of H is

Sli(H) := {〈P,dir(`)〉 : 〈P, `〉 is a pointed supporting line of H}; (3.2)

it is a subset of Cyl. Although Sli(H) looks only a set at present, it will soon turn out
that it is a curve. Actually, the main result of the paper says the following.

Theorem 1. For every nonempty compact convex set H ⊆ R2, Sli(H) is a rectifiable
simple closed curve.

In order to exemplify the usefulness of this theorem, we state a corollary. Although
it is well known, we have not found a rigorous proof for it.

Corollary 2. If H1, H2 ⊆ R2 are disjoint compact convex sets with nonempty interiors,
then they have exactly four non-directed supporting lines in common.

The stipulation on the interior above can be relaxed but then we have to speak of
directed supporting lines.

Figure 2. Reducing the problem to functions

4 Proofs

First proof of Theorem 1. We can assume that the interior of H is nonempty, because
otherwise H is a line segment, possibly a singleton segment, and the statement trivially
holds. In order to reduce the task to functions rather than convex sets, let P0 be an
arbitrary point of ∂H. Pick a point O in the interior of H, and choose a coordinate
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system such that both P0 and O are on the y-axis and O is above P0; see on the left of
Figure 2. For a positive u, let C1 and C2 be the circles of radii u and 2u around O; we
can assume that u is so small that C2 is in the interior of H. Let A be the intersection
of ∂H and the closed strip S between the two vertical tangent lines of C1. In the figure,
A is the thick arc of ∂H between P1 and P2. Let

SliA(H) := {〈P,dir(`)〉 : P ∈ A, 〈P,dir(`)〉 ∈ Sli(H)},
and similarly for future other arcs of ∂H. (4.1)

Since the distance of O and the complement set of H is positive, we can assume that
u is so small that the grey-filled rectangle containing A in the figure is strictly below
C2. (We have some freedom to choose the upper and lower edges of this rectangle.)
Let α1, α2 ∈ Cunit be the directions of the external common supporting lines of C2 and
this rectangle, see the figure. Note that if we consider Cunit the interval [−π, π), then
α1 = −α2. The presence of C2 within H guarantees the second half of the following
observation:

0 < α2 < π and for every supporting line ` of H
that contains a point of A, −α2 ≤ dir(`) ≤ α2.

(4.2)

We claim that

A is the graph of a convex function f : [−u, u]→ R. (4.3)

By the convexity of H and (2.2), every vertical line in the strip S intersects A. Suppose,
for a contradiction, that U is not the graph of a function. Then a vertical line in S
intersects A in at least two distinct points, X1 and X2. Let, say, X2 be above X1; see
on the right of the figure. Then X2 is in the interior of the convex hull of {X1} ∪ C2,
whereby it is in the interior rather than on the boundary of H. This contradiction shows
that f is a function. It is convex, since so is H. This proves (4.3). Clearly, the same
consideration shows that

each ray starting from O intersects ∂H exactly once. (4.4)

For a real-valued function f : R → R and x0 in the interior of its domain, the left
derivative limx→x0−(f(x)−f(x0))/(x−x0) and the right derivative of f at x0 are denoted
by f ′−(x0) and f ′+(x0), respectively. By a theorem of Stolz [29], see also Niculescu and
Persson [22, Theorem 1.3.3], if f is convex in the open interval (−u, u), then

for all x, x1, x2 ∈ (−u, u), both f ′−(x) and f ′+(x) exist,
f ′−(x) ≤ f ′+(x), and x1 < x2 implies that f ′+(x1) ≤ f ′−(x2). (4.5)

Recall that a function g from a subset of Rk to Rn is Lipschitz (or f is a Lipschitz function
or f is Lipschitzian) if there exists a positive constant L such that dist(g(x), g(x′)) ≤
L · dist(x, x′) holds for all x and x′ in the domain of g. Since f is convex, we know from
Rockafellar [27, Theorems 10.1, 10.4, and 24.1] that

in (−u, u), f is Lipschitz, f ′− is continuous from
the left, and f ′+ is continuous from the right. (4.6)

Note that if a function is Lipschitz in an interval, then it is uniformly continuous there.
From now on, we consider f only in the open interval (−u, u) and we fix a positive
v ∈ (0, u), For x0 ∈ (−u, u), the subdifferential is defined as the interval

f (sub)(x0) = {d ∈ R : ∀x ∈ (−u, u), f(x) ≥ f(x0) + d(x− x0)}
= [f ′−(x0), f ′+(x0)];

(4.7)



8 Gábor Czédli, László L. Stachó

see Niculescu and Persson [22, Section 1.5]. As a consequence of (4.5), the subdifferential
is a dissipative set-valued function, that is,

for x1, x2 ∈ (−u, u), if x1 < x2, d1 ∈ f (sub)(x1),
and d2 ∈ f (sub)(x2), then d1 ≤ d2.

(4.8)

Consider the set

D := {〈x, d〉 : x ∈ [−v, v] and d ∈ f (sub)(x)} ⊆ R2 (4.9)

with the (strict) lexicographic ordering

〈x1, d1〉 <lex 〈x2, d2〉 def⇐⇒ (x1 < x2, or x1 = x2 and d1 < d2). (4.10)

We define a function
t : D → R by t(x, d) = x+ d. (4.11)

Note that t(x, d) is a short form of t(〈x, d〉). Recall that the Manhattan distance of
〈x1, d1〉 and 〈x2, d2〉 in R2 is defined as dM(〈x1, d1〉, 〈x2, d2〉) := |x1 − x2|+ |d1 − d2|. It
has the usual properties of a distance function. It follows from (4.5) that, for 〈x1, d1〉
and 〈x2, d2〉 in D (rather than in R2),

if 〈x1, d1〉 ≤lex 〈x2, d2〉, then dM(〈x1, d1〉, 〈x2, d2〉) = t(x2, d2)− t(x1, d1); (4.12)

that is, for points of D, the Manhattan distance is derived from the function t. Let
dist(〈x1, d1〉, 〈x2, d2〉) stand for the Euclidean distance ((x1 − x2)2 + (d1 − d2)2))1/2; in
R4, it is understood analogously. For the sake of a later reference, we note in advance
that for x(i), d(i) ∈ R2, the Manhattan distance in R4 is understood as

dM(〈x(1), d(1)〉, 〈x(2), d(2)〉) := dist(x(1), x(2)) + dist(d(1), d(2)). (4.13)

It is well known and easy to see that, for all 〈x1, d1〉, 〈x1, d1〉 in R2, and even in R4 if
x1, x2, d1, d2 ∈ R2,

dist(〈x1, d1〉, 〈x2, d2〉) ≤ dM(〈x1, d1〉, 〈x2, d2〉) ≤ 2 · dist(〈x1, d1〉, 〈x2, d2〉). (4.14)

It follows from (4.12) and the second half of (4.14) that t is a Lipschitz function (with
Lipschitz constant 2). Since dM(−,−) is a distance function, (4.12) yields that t is
injective. Actually, it is bijective as a D → Range(t) function. Thus, it has an inverse
function, t−1 : Range(t) → D, which is also bijective. In order to see that the function
t−1 is also a Lipschitz function, let yi = t(xi, di) = xi + di ∈ Range(t), for i ∈ {1, 2}.
Since dist(−,−) is a symmetric function, we can assume that 〈x1, d1〉 ≤lex 〈x2, d2〉. We
can also assume that d1 ≤ d2; either because x1 = x2 and then we can interchange the
subscripts 1 and 2, or because x1 < x2 and (4.8) applies. With these assumptions, let us
compute:

dist(y1, y2) = |y2 − y1| = |x2 + d2 − (x1 + d1)| = |x2 − x1 + d2 − d1|
= x2 − x1 + d2 − d1 = |x1 − x2|+ |d1 − d2| = dM(〈x1, d1〉, 〈x2, d2〉).

Hence, using the second part of (4.14), it follows that the function t−1 is Lipschitz (with
Lipschitz constant 2). So, we can summarize that

t : D → Range(t) and t−1 : Range(t) → D are reciprocal bijections
and both of them are Lipschitz; in short, t is bi-Lipschitzian. (4.15)
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Next, let w1 = t(−v, f ′−(−v)) and w2 = t(v, f ′+(v)). We claim that

Range(t) = [w1, w2]. (4.16)

In order to see the easier inclusion, assume that 〈x, d〉 ∈ D. Using (4.8) and (4.10),
we obtain that 〈−v, f ′−(−v)〉 ≤lex 〈x, d〉 ≤lex 〈v, f ′+(v)〉. Thus, since (4.12) yields that
t is order-preserving, we conclude that w1 ≤ t(x, d) ≤ w2, that is, Range(t) ⊆ [w1, w2].
In order to show the converse inclusion, assume that s ∈ [w1, w2]. We need to find an
〈x0, d0〉 ∈ D such that s = t(x0, d0), that is, s = x0 + d0. Define

x− := sup {x : there is a d such that 〈x, d〉 ∈ D and x+ d ≤ s},
x+ := inf {x : there is a d such that 〈x, d〉 ∈ D and x+ d ≥ s}. (4.17)

Since t(−v, f ′−(−v)) = w1 ≤ s ≤ w2 = t(v, f ′+(v)), the sets occurring in (4.17) are
nonempty. Hence, both x− and x+ exist and we have that x−, x+ ∈ [−v, v]. Suppose,
for a contradiction, that x+ < x−. Then x− = 3ε + x+ for a positive ε. By (4.17),
which defines x− and x+, we can pick 〈x†, d†〉, 〈x‡, d‡〉 ∈ D such that x† ∈ (−ε+x−, x−],
t(x†, d†) = x† + d† ≤ s, x‡ ∈ [x+, ε + x+), and t(x‡, d‡) = x‡ + d‡ ≥ s. In particular,
x†+ d† ≤ x‡+ d‡. However, since x‡ < x†, the dissipative property from (4.8) gives that
d‡ ≤ d†, whereby x†+d† ≥ x†+d‡ > x‡+d‡, contradicting x†+d† ≤ x‡+d‡. This proves
that x− ≤ x+. Next, suppose for a contradiction that x− < x+. Let x∗ := (x− + x+)/2,
and pick a d∗ ∈ f (sub)(x∗). Since x∗ + d∗ ≤ s would contradict the definition of x−,
we have that x∗ + d∗ > s, which contradicts the definition of x+. This excludes the
case x− < x+. So we have that x− = x+, and we let x0 := x− = x+. Clearly, for
all x and the corresponding d in the upper line of (4.17), x + f ′−(x) ≤ x + d ≤ s.
Hence, the left continuity formulated in (4.6) gives that t(x0, f

′
−(x0)) = x0 + f ′−(x0) =

x− + f ′−(x−) ≤ s. Similarly, t(x0, f
′
+(x0)) = x0 + f ′+(x0) = x+ + f ′+(x+) ≥ s. So

x0 + f ′−(x0) ≤ s ≤ x0 + f ′+(x0), whereby (4.7) gives a d0 ∈ [f ′−(x0), f ′+(x0)] such that
s = x0 + d0 = t(x0, d0). This proves (4.16).

It is well known (and evident) that, with self-explanatory domains,

the composition of two bi-Lipschitzian functions is bi-
Lipschitzian. Thus, a bi-Lipschitzian function maps a
rectifiable simple curve to a rectifiable simple curve.

(4.18)

Before utilizing (4.18), we need some preparations. Let Q1 = 〈−v, f(−v)〉 and Q2 =
〈v, f(v)〉; they are points on the arc A before and after P0, respectively. Let B be the
sub-arc of A (and of ∂H) from Q1 to Q2, and note that P0 is in the interior of B.
Let f∗ : [−v, v] → B be the function defined by f∗(x) := 〈x, f(x)〉. Using (4.6) and
the relation between the Euclidean and the Manhattan distance functions, see (4.14), it
follows that f∗ is Lipschitz. This fact implies trivially that f∗ is bi-Lipschitzian. So is
the arctangent function on [−v, v]. Therefore, it follows in a straightforward way from
(4.14) that the Cartesian (or categorical) product function

〈f∗, arctan〉 : D → SliB(H), defined by 〈x, d〉 7→ 〈f∗(x), arctan(d)〉,
where SliB(H) is defined in (4.1), is bi-Lipschitzian. (4.19)

The line segment [w1, w2] is clearly a simple rectifiable curve. So isD by (4.11), (4.15),
(4.16), and (4.18). Hence, (4.18) and (4.19) yield that SliB(H) is a simple rectifiable
curve. Finally, since P0 ∈ ∂H was arbitrary and since the endpoints of B can be omitted
from B, we obtain that ∂H can be covered by a set {Bi : i ∈ I} of open arcs such that the
SliBi

(H) ⊆ Cyl are simple rectifiable curves. Clearly, the SliBi
(H) cover Sli(H). Since
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∂H is compact, we can assume that I is finite. Therefore, Sli(H) is covered by finitely
many open simple rectifiable curves. Furthermore, (4.4) yields that each of these open
curves overlaps with its neighbors. Thus, we conclude the validity of Theorem 1.

In the following proof, the argument leading to (4.20) can be extracted from the more
general approach of Kneser [16] and Stachó [28]. For the planar case and for the reader’s
convenience, it is more convenient to prove (4.20) directly.

Second proof of Theorem 1. Define H+1 := {P ∈ R2 : dist(P,H)) ≤ 1}. First, we prove
that H+1 is a compact convex set. Let Q be a limit point of H+1 and suppose, for a
contradiction, that Q /∈ H+1. This means that dist(Q,H) = 1 + 3ε for a positive ε ∈ R.
Take a sequence (Pn : n ∈ N) of points in H+1 such that limn→∞ Pn = P . For each
n ∈ N , pick a point Qn ∈ H such that dist(Pn, Qn) ≤ 1. Since H is compact, the
sequence (Qn : n ∈ N) has a convergent subsequence. Deleting members if necessary, we
can assume that (Qn : n ∈ N) itself converges to a point Q of H. Take a sufficiently
large n ∈ N such that dist(P, Pn) < ε and dist(Qn, Q) < ε. Then 1 + 3ε = dist(P,Q) ≤
dist(P, Pn) + dist(Pn, Qn) + dist(Qn, Q) ≤ ε + 1 + ε = 1 + 2ε is a contradiction. Hence,
H+1 is closed, whereby it is obviously compact. In order to show that it is convex, let
X,Y ∈ H+1 and let λ ∈ (0, 1); we need to show that Z := (1 − λ)X + λY ∈ H+1.
The containments X ∈ H+1 and Y ∈ H+1 are witnessed by some X0, Y0 ∈ H such that
dist(X,X0) ≤ 1 and dist(Y, Y0) ≤ 1. Since H is convex, Z0 := (1 − λ)X0 + λY0 ∈ H.
The vectors ~a := X −X0 and ~b := Y −Y0 are of length at most 1, and it suffices to show
that so is ~c := Z − Z0. Since (~a,~b) ≤ ||~a|| · ||~b|| ≤ 1, we have that

(~c,~c) = ((1− λ)~a+ λ~b, (1− λ)~a+ λ~b)
= (1− λ)2(~a,~a) + λ2(~b,~b) + 2λ(1− λ)(~a,~b)
≤ (1− λ)2 + λ2 + 2λ(1− λ) = 1.

Hence, dist(Z,Z0) = ||~c|| ≤ 1, and H+1 is convex. Thus, (2.2) gives that

∂H+1 is rectifiable Jordan curve. (4.20)

Figure 3. Illustration for the second proof

Clearly, ∂H+1 = {X : dist(X,H) = 1} = {X : dist(X, ∂H) = 1}. Define the
following relation

ρ := {〈P, P ∗〉 ∈ ∂H+1 × ∂H : dist(P, P ∗) = 1}
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between ∂H+1 and ∂H; see Figure 3. Let 〈P, P ∗〉 ∈ ρ as in the figure. The coordinate
system is chosen so that P and P ∗ determine a vertical line and P is above P ∗. Through
P ∗ and P , let `1 and `2 be the lines of direction π; they are perpendicular to [P ∗, P ].
We claim that

`1 is a supporting line of H. (4.21)

Suppose to the contrary that `1 is not a supporting line and pick a point R ∈ H strictly
on the right of `1; see the figure. Since P ∈ ∂H+1, dist(P,H) = 1, whereby R cannot
be inside the dotted circle of radius 1 around P . However, since this circle touches `1 at
P ∗, the line segment [P ∗, R], which is a subset of H by convexity, has a point inside the
dotted circle. This contradicts dist(P,H) = 1 and proves (4.21). From (4.21), it follows
that if 〈P,Q〉 ∈ ρ, then Q = P ∗. Hence,

f : ∂H+1 → Sli(H), defined by f(P ) = 〈P ∗,dir(`∗)〉 ∈ Sli(H) ⇐⇒
〈P, P ∗〉 ∈ ρ, `∗ is a supporting line, and `∗ is perpendicular to [P, P ∗]

is a mapping. Trivially,

g : Sli(H)→ ∂H+1, defined by g(〈P ∗,dir(`∗)〉) = P ⇐⇒
dir([P ∗, P ]) = dir(`∗)− π/2 and dist(P, P ∗) = 1, (4.22)

is also a mapping. Moreover f and g are reciprocal bijections. Recall from Luuk-
kainen [20, Definition 2.14] that a function τ : X → Y is Lipschitz in the small if there
are δ > 0 and L ≥ 0 such that dist(τ(x1), τ(x2)) ≤ L · dist(x1, x2) for all x1, x2 ∈ X
with dist(x1, x2) ≤ δ. We know from [20, 2.15] that every bounded function with this
property is Lipschitz. We are going to show that f and g are Lipschitz in the small,
witnessed by δ = 1/5 and L = 9, because then g = f−1, (4.18), and (4.20) will imply the
theorem. (Note that δ = 1/5 and L = 9 are convenient but none of them is optimal.)

First, we deal with f . Assume that Q1 ∈ ∂H+1 such that γ := dist(P,Q1) < δ = 1/5;
see Figure 3. The angle ε := ∠(PP ∗Q1), which is the length of the circular arc from P
to Q1, is close to γ in the sense that

both ε/γ and γ/ε are in the interval (99/100, 101/100); (4.23)

this is shown by easy trigonometry since both sin(1/5)/(1/5) and (1/5/) sin(1/5) are
in the open interval on the right of (4.23). Let C and C1 be the circles of radius 1
around P ∗ and Q1, respectively. Since dist(Q1, H) = 1, Q1 is not in the interior of
(the disk determined by) C. Also, since `1 is a supporting line of H, we have that `2
is a supporting line of H+1 and Q1 cannot be strictly on the right (that is, above) `2.
So either Q1 is on the circle C, or it is above C but not above `2 (but then we write
Q2 instead of Q1 in the figure). Denote f(Q1) by 〈Q∗1,dir(`∗1)〉. Clearly, Q∗1 is on the
thick arc of C1 from P ∗ to R1, as indicated in the figure. The length of this arc is
2ε, whence dist(P ∗, Q∗1) ≤ 2ε. Since `∗1 is perpendicular to [Q1, Q

∗
1] and Q∗1 is on the

thick arc of C1, we have that dist(dir(`∗),dir(`∗1)) ≤ ε ≤ 2ε. So the Manhattan distance
dM(〈P ∗,dir(`∗)〉, 〈Q∗1,dir(`∗1)〉), see (4.13), is at most 4ε. Hence, (4.14) and (4.23) yield
that dist(f(P ), f(Q1) ≤ 9 · dist(P,Q1). The other case, represented by Q2, follows
from the fact that dist(P ∗, Q∗2) and dist(dir(`∗),dir(`∗2)) are smaller than the respective
distances in the previous case. This shows that f is Lipschitz in the small.

Next, we deal with g. Assume that 〈P ∗,dir(`∗)〉 and 〈P ∗1 ,dir(`∗1)〉 are in Sli(H)
and their distance, γ, is less than δ. With the auxiliary point 〈P ∗,dir(`∗1)〉 ∈ R4,
which need not be in Sli(H), we have that dist(〈P ∗,dir(`∗)〉, 〈P ∗,dir(`∗1)〉) ≤ γ and
dist(〈P ∗,dir(`∗1)〉, 〈P ∗1 ,dir(`∗1)〉) ≤ γ. Although the auxiliary point is not in the domain
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of g in general, we can extend the domain of g to this point by (4.22). Since the secants of
the unit circles are shorter than the corresponding circular arcs, whose lengths equal the
corresponding central angles, it follows that dist(g(〈P ∗,dir(`∗)〉), g(〈P ∗,dir(`∗1)〉)) ≤ γ.
Since parallel shifts are distance-preserving, dist(g(〈P ∗,dir(`∗1)〉), g(〈P ∗1 ,dir(`∗1)〉)) = γ.
Hence, the triangle inequality yields that dist(g(〈P ∗,dir(`∗)〉), g(〈P ∗1 ,dir(`∗1)〉)) ≤ 2γ ≤
9δ. Thus, g is also Lipschitz in the small, as required. This completes the second proof
of Theorem 1.

Figure 4. Illustration for Corollary 2

Proof of Corollary 2. By (2.6), we have a directed line, the dotted one in Figure 4, such
that H1 is strictly in the left and H2 is strictly on the right of this line. By (2.1), we can
take a 〈P0,dir(`0)〉 ∈ Sli(H1) such that `0 and the dotted line have the same direction.
For 0 < L ∈ R, let

L · Cunit denote the circle {〈x, y〉 : x2 + y2 = (L/(2π))2} of perimeter L.

Since Sli(H1) is a rectifiable simple closed curve by Theorem 1, we can let L be its
perimeter. Let

{h(t) : t ∈ L · Cunit} be a parameterization of Sli(H1) (4.24)

such that 〈P0,dir(`0)〉 = h(t0). We think of the parameter t as the time measured in
seconds. While the time t is slowly passing, 〈P (t),dir(`(t))〉 is slowly and continuously
moving forward along Sli(H1), and the directed supporting line 〈P (t), `(t)〉 is slide-turning
forward, slowly and continuously. Since H2 is compact, the distance dist(`(t), H2) is
always witnessed by a pair of points in `(t) × H2, and this distance is a continuous
function of t. At t = t0, this distance is positive and H2 is on the right of `0 = `(t0).
Slide-turn this pointed supporting line around H1 forward during L seconds; that is,
make a full turn around Sli(H1). By continuity, in the chronological order listed below,
there are

1. a last t = t1 such that H2 is still on the right of `(t) (this t1 exists, because it is
the first value of t where dist(`(t), H2) = 0),

2. a first t = t2 such that H2 is on the left of `(t),

3. a last t = t3 such that H2 is still on the left of `(t),

4. a first t = t4 such that H2 is on the right of `(t).

In Figure 4, h(ti) = 〈P (ti),dir(`(ti))〉 is represented by 〈Pi, `i〉. Clearly, `1, . . . , `4 is the
list of all common supporting lines and these lines are pairwise disjoint.
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1 Introduction and Preliminaries

The notion of rough sets was introduced by Pawlak [20]. The relations between rough
sets and algebraic systems have been already considered by many mathematicians.

Some authors, for example, Iwinski [16], and Pomykala [22] have studied algebraic
properties of rough sets. The lattice theoretical approach has been suggested by Iwinski
[16]. Pomykala [22] showed that the set of rough sets forms a stone algebra. Comer
[4] presented an interesting discussion of rough sets and various algebras related to the
study of algebraic logic, such as Stone algebras and relation algebras. If we substitute
an algebraic system instead of the universe set, then a natural question is what will
happen. Biswas and Nanda [1] introduced the notion of rough subgroups. Kuroki in
[17], introduced the notion of a rough ideal in a semigroup, also see [25]. Davvaz in [5]
introduced the notion of rough subrings with respect to an ideal of a ring, also see [6].
Rough modules have been investigated by Davvaz and Mahdavipour [7]. Also Rasouli
and Davvaz introduced the notion of roughness in MV -algebras [23].

In 1958, Chang defined theMV -algebras and in 1959 he also proved the completeness
theorem which stated the real unit interval [0,1] as a standard model of this logic [2].

In 2003, Di Nola, et.al. introduced the notion of MV -modules over a PMV -algebra
and A-ideals in MV -modules [10]. These are structures that naturally correspond to
lu-modules over lu-ring [24]. We recall that an lu-ring is a pair (R,u) where (R, ⊕, ·,
0, ≤) is an l-ring and u is a strong unit of R (i.e, u is a strong unit of the underlying
l-group), with u · u ≤ u and l-ring is a structure (R, +, ·, 0, ≤) that (R, +, 0, ≤) is
an l-group and for any x, y ∈ R, x ≥ 0 and y ≥ 0 implies x · y ≥ 0. Fixing an lu-ring

Copyright c© 2016 Matej Bel University
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(R,v), they proved equivalence between the category of lu-modules over (R,v) and the
category ofMV -modules over Γ(R, v). They also proved the natural equivalence between
MV -modules and truncated modules [10].

In the present paper, we consider anMV -module over PMV -algebra A as a universal
set and we shall introduce the notion of rough A-ideal with respect to an A-ideal of an
MV -module, which is an extended notion of an A-ideal in anMV -module. We give some
properties of the lower and the upper approximations in an MV -module.

1.1 MV -modules
In this section, we summarize the basic concepts onMV -algebras andMV -modules. For
more details on these concepts, we refer the reader to [2], [3]-[12] and [21].

Definition 1. [2] An MV -algebra is a structure (M , ⊕, *, 0) where ⊕ is a binary
operation, *, is a unary operation and 0 is a constant such that the following conditions
are satisfied for any a, b ∈M :

1. (M , ⊕, 0) is an abelian monoid,

2. (a∗)∗ = a,

3. 0∗ ⊕ a = 0∗,

4. (a∗ ⊕ b)∗ ⊕ b = (b∗ ⊕ a)∗ ⊕ a.

Define the constant 1 = 0∗ and the auxiliary operations �,∨ and ∧ by:

a� b = (a∗ ⊕ b∗)∗, a ∨ b = a⊕ (b� a∗), a ∧ b = a� (b⊕ a∗).

It is shown that (M , �, 1) is an abelian monoid and the structure (M , ∨, ∧, 0, 1) is a
bounded distributive lattice [21].

In an MV -algebra M , the Chang distance function is

d : M ×M −→M, d(a, b) := (a� b∗)⊕ (b� a∗).

Note. An element a ∈ A is called complemented if there is an element b ∈ A such that
a ∨ b = 1 and a ∧ b = 0. We denote the set of complemented of A by B(A).

Lemma 2. [21] Let M be an MV -algebra. If x, y, z, t ∈ M and d is a Chang distance
function, then

1. x ≤ y iff y∗ ≤ x∗,

2. x ≤ y, then x⊕ z ≤ y ⊕ z and x� z ≤ y � z,

3. (x ∨ y)∗ = x∗ ∧ y∗, (x ∧ y)∗ = x∗ ∨ y∗,

4. x⊕ x∗ = 1 and x� x∗ = 0,

5. If x ≤ y and z ≤ t, then x⊕ z ≤ y ⊕ t,

6. If x ∈ B(A), then x� x = x, x⊕ x = x and x ∧ y = x� y,

7. x ≤ y∗ ⊕ z if and only if x� y ≤ z,

8. d(x, 0) = x, d(x, 1) = x,

9. d(x∗, y∗) = d(x, y),
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10. d(x, y) ≤ d(x, z)⊕ d(z, y),

11. d(x⊕ u, y ⊕ v) ≤ d(x, y)⊕ d(u, v).

Lemma 3. [3] Let M be an MV -algebra. For x, y ∈ M , the following conditions are
equivalent

1. x∗ ⊕ y = 1,

2. x� y∗ = 0.

For any two elements x, y ∈ M, x ≤ y iff x and y satisfy the equivalent conditions
(1)-(2) in the above lemma.

Definition 4. [2] An ideal of an MV -algebra M is a nonempty subset I of M satisfying
the following conditions:

1. If x ∈ I , y ∈M and y ≤ x then y ∈ I,

2. If x, y ∈ I, then x⊕ y ∈ I.

We denote by Id(M) the set of all ideals of an MV -algebra M .

Definition 5. [3] Let A and B be two MV -algebras. A function h : A → B is a
morphism of MV -algebras if and only if it satisfies the following conditions, for every
x, y ∈ A:

1. h(0) = 0

2. h(a⊕ b) = h(a)⊕ h(b),

3. h(a∗) = h(a)∗.

Lemma 6. Let M be a linearly ordered MV -algebra and I be an ideal of M . If x ≤ y
and [x]I 6= [y]I , for x, y ∈ A, then for each t ∈ [x]I and s ∈ [y]I , t ≤ s.

Definition 7. [9] A productMV -algebra (or PMV -algebra, for short) is a structure (A,
⊕, *,·, 0), where (A, ⊕, *, 0) is an MV -algebra and · is a binary associative operation
on A such that the following property is satisfied if x+ y is defined, then x · z+ y · z and
z · x+ z · y are defined and

(x+ y) · z = x · z + y · z, z · (x+ y) = z · x+ z · y,

where, + is a partial addition on an MV -algebra A as follows For any x, y ∈ M , x + y
is defined if and only if x ≤ y∗ and in this case,

x+ y := x⊕ y,

the partial addition was defined in [11].

Note. If A is PMV -algebra, then a unit for the product is an element e ∈ A such that
e · x = x · e = x for any x ∈ A. A PMV -algebra that has unity for the product will be
called unital.

Theorem 8. [9] A finite MV -algebra A admits a product · such that a · 1 = a = 1 · a
for any a ∈ A if and only if A is a Boolean algebra, i.e., a⊕ a = a for any a ∈ A. If it
is the case, then a · b = a ∧ b ∈ A.
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Definition 9. [10] Let (A, ⊕, *, ·, 0) be a PMV -algebra and (M , ⊕, *, 0) an MV -
algebra. We say that M is a (left) MV -module over A (or, simply, A-module) if there is
an external operation:

ϕ : A×M −→M, ϕ(α, x) = αx,

such that the following properties hold for any x, y ∈M and α, β ∈ A:

1. If x+ y is defined in M , then αx+ αy is defined and

α(x+ y) = αx+ αy,

2. If α+ β is defined in A then αx+ βx is defined in M and

(α+ β)x = αx+ βx,

3. (α · β)x = α(βx).

We say that M is a unital MV -module if A is a unital PMV -algebra and M is an
MV -module over A such that 1Ax = x for any x ∈M .

We will refer to [9, 19] for the basic properties of PMV -algebras. Obviously, a PMV -
algebra homomorphism will be anMV -algebra homomorphism which also commutes with
the product operation. We shall denote by PMV the category of product MV -algebras
with the corresponding homomorphisms.

In the sequel, an lu-ring will be a pair (R, u) where (R,⊕, ·,≤) is an l-ring and u is a
strong unit of R such that u ·u ≤ u. We imply that the interval [0, u] of an lu-ring (R, u)
is closed under the product of R. Thus, if we consider the restriction of · to [0, u]× [0, u],
then the interval [0, u] has a canonical PMV -algebra structure:

x⊕ y := (x+ y) ∧ u, x∗ := u− x, x · y := x · y,

for any 0 ≤ x, y ≤ u. We shall denote this structure by [0, u]R.
If UR is the category of lu-rings, whose objects are pairs (R, u) as above and whose

morphisms are l-rings homomorphisms which preserve the strong unit, then we get a
functor

Γ : UR → PMV,
Γ(R, u) := [0, u]R, for any lu-ring (R, u),

Γ(h) := h |[0,u] for any lu-rings homomorphism h.

In [9] it is proved that Γ establishes a categorical equivalence between UR and PMV.

Definition 10. [10] Let M and N be two MV -modules over a PMV -algebra A. An
A-module homomorphism is an MV -algebra homomorphism h : M → N such that
h(αx) = αh(x), for any α ∈ A and x ∈M .

Definition 11. [10] Let M be an A-module. Then ideal I ⊆M is called an A-ideal if it
satisfies the following condition: if x ∈ I and α ∈ A, then αx ∈ I.
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Lemma 12. [10] If M is an A-module, then the following properties hold for any
x, y ∈M and α, β ∈ A,

(a) αx∗ ≤ (αx)∗,

(b) (αx)� (αy)∗ ≤ α(x� y∗),

(c) α(x⊕ y) ≤ αx⊕ αy,

(d) If x ≤ y, then αx ≤ αy,

(e) (αx)∗ = α∗x+ (1x)∗,

(f) d(αx, αy) ≤ αd(x, y).

Proposition 13. [13] Let M be an A-module.

1. If N ⊆ M is a nonempty set, then we have (N ] = {x ∈ M : x ≤ x1 ⊕ . . . ⊕ xn ⊕
α1y1 ⊕ . . . ⊕ αmym for some x1, . . . , xn, y1, . . . ym ∈ N,α1, . . . αm ∈ A}, where
by (N ], we mean the ideal generated by N .
In particular, for a ∈M,

(a] = {x ∈M : x ≤ na⊕m(αa) for some integer n,m ≥ 0},

2. If I1, I2 ∈ IdA(M), then
I1 ∨ I2 = (I1 ∪ I2] = {a ∈M : a ≤ x1 ⊕ x2 for some x1 ∈ I1 and x2 ∈ I2},

3. If x, y ∈ A, then (x ∧ y] ⊆ (x] ∩ (y].

1.2 Pawlak approximation spaces
Let θ be an equivalence relation on a set U . The set of the elements of U that are related
to x ∈ U , is called the equivalence class of x, and is denoted by [x]θ. In addition U/θ
denote the family of all equivalence classes induced on U by θ. For any X ⊆ U , we write
Xc to denote the complement of X in U , that is the set U \X.

Definition 14. A pair (U, θ) where U 6= ∅ and θ is an equivalence relation on U , is
called an approximation space. The interpretation of rough set is that our knowledge of
the objects in U extends only up to a membership in the class of θ, and our knowledge
about a subset X of U is limited to the class of θ and their unions.

This leads to the following definition.

Definition 15. For an approximation space (U, θ), by a rough approximation in (U, θ)
we mean a mapping Apr : P (U)→ P (U)× P (U) defined for every X ∈ P (U) by

Apr(X) = (Apr(X), Apr(X)),

where Apr(X) = {x ∈ U |[x]θ ⊆ X}, Apr(X) = {x ∈ U |[x]θ ∩X 6= ∅}. Apr(X) is called
an upper rough approximation of X in (U, θ), while Apr(X) is called a lower rough
approximation of X in U, θ).

Definition 16. Given an approximation space (U, θ), a pair (A,B) ∈ P (U) × P (U) is
called a rough subset in (U, θ) if and only if (A,B) = Apr(X) for some X ∈ P (U). Note
that a rough subset is also called a rough set.
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The reader will find a deep study of rough set theory in [1, 5, 6, 7, 16, 17, 20, 23].

Definition 17. Let Apr(A) = (Apr(A), Apr(A)) and Apr(B) = (Apr(B), Apr(B)) be
any two rough sets in the approximation space (U, θ). Then

1. Apr(A) tApr(B) = (Apr(A) ∪Apr(B), Apr(A) ∪Apr(B)),

2. Apr(A) uApr(B) = (Apr(A) ∩Apr(B), Apr(A) ∩Apr(B)),

3. Apr(A) v Apr(B) ⇐⇒ Apr(A) uApr(B) = Apr(A).

When Apr(A) v Apr(B), we say that Apr(A) is a rough subset of Apr(B).
Thus in the case of rough sets Apr(A) and Apr(B),
Apr(A) v Apr(B) if and only if Apr(A) ⊆ Apr(B) and Apr(A) ⊆ Apr(B).
This property of rough inclusion has all the properties of set inclusion. The rough

complement of Apr(A) denoted by Aprc(A) is defined by

Aprc(A) = (U \Apr(A), U \Apr(A)).

Also, we can define Apr(A) \Apr(B) as follows:

Apr(A) \Apr(B) = Apr(A) uAprc(B) = (Apr(A) \Apr(B), Apr(A) \Apr(B)).

Definition 18. [8] Let (U, θ) be an approximation space and X a non-empty subset of
U .

1. If Apr(X) = Apr(X), then X is called definable.

2. If Apr(X) = ∅, then X is called empty interior.

3. If Apr(X) = U , then X is called empty exterior.

The lower approximation of X in (U, θ) is the greatest definable set in U contained
in X. The upper approximation of X in (U, θ) is the least definable set in U containing
X. Therefore we have:

Apr(X) =
⋃
{S|S ⊆ X, S is definable},

Apr(X) =
⋂
{S|X ⊆ S, S is definable}.

A rough set X is the family of all subsets of U having the same lower and the same upper
approximations of X.

2 Rough A-ideals in MV -modules over PMV -algebras

Throughout this paper M is an MV -module over a PMV -algebra A. We recall that in
an MV -algebra M , the Chang distance function is

d : M ×M −→M, d(a, b) := (a� b∗)⊕ (b� a∗).

Let I be an A-ideal of M . We recall that the relation ρI defined by:

(x, y) ∈ ρI if and only if d(x, y) ∈ I,
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for any x, y ∈M , is a congruence with respect to theMV -algebra operations and (x, y) ∈
ρI implies (αx, αy) ∈ ρI , for any α ∈ A. Thus, the quotient MV -algebra M/I has a
canonical structure of A-module

α[x]I := [αx]I or α(x/I) := (αx)/I,

where [x]I = x/I is the congruence class of x. x/I = y/I or xρIy if and only if d(x, y) ∈ I
and if x, y ∈ M , then x/I ≤ y/I if and only if x � y∗ ∈ I. Also a ∈ x/I if and only if
d(a, x) ∈ I.

Let I be an A-ideal of an A-moduleM . Then the quotient groupM/I is an A-module
with the action of A on M/I given by the well-defined map

α(a/I) = (αa)/I, for all α ∈ A, a ∈M.

Let I be an A-ideal of M and X a non-empty subset of M , then the sets

ρ
I
(X) = Apr

I
(X) = {x ∈M |x/I ⊆ X} and ρI(X) = AprI(X) = {x ∈M |x/I ∩X 6= ∅}

are called lower and upper approximations of the set X with respect to the A-ideal I. In
this case we use the pair (M, I) instead of the approximation space (U, θ).

Now, we give an example of the lower and upper approximations theory applied the
MV -module theory.

Example 19. Let M2(R) be the ring of square matrices of order 2 with real elements
and 0 be the matrix with all element 0. If we define the order relation on compo-
nents A = (aij)i,j=1,2 ≥ 0 iff aij ≥ 0 for any i, j, such that v =

(
1/2 1/2
1/2 1/2

)
,

then A = Γ(M2(R), v) is a PMV -algebra. Let R2 = R × R be the direct product
with the order relation defined on components. If M = Γ(R2, u) is an MV -algebra,
where u = (1, 1), (x, y)∗ = u − (x, y), (x, y) ⊕ (z, t) =min{u, (x + z, y + t)}, and
(x, y) � (z, t) =max{(0, 0), (x, y) + (z, t) − u}, then M is an A-module [10], where the
external operation is the usual matrix multiplication

(A, (x, y)) 7→ A

(
x
y

)
.

Now, let I = {(0, 0)}. Then I is an A-ideal of R×R. We consider the maps

f(x) = 1/2(sinx− 4) and g(x) = 1/2(sinx + 4),

and suppose that
X = {(x, y)|f(x) ≤ y ≤ g(x)}.

Then we have (x, y)/I = {(a, b) ∈ M |d((x, y), (a, b)) = 0} = {(a, b) ∈ M |(x, y) = (a, b)}.
Thus the lower and upper approximations of this set can be calculate in the following
way:

Apr
I
(X) = X = AprI(X)

In general, we can prove that:

Remark 20. Let I = {0} be a trivial A-ideal of M . Then Apr
I
(X) = X = AprI(X),

for every non-empty subset X of M . Hence every non-empty subset of M is definiable.
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Proof. Note that

[x]I = {y ∈M : d(y, x) ∈ I},
= {y ∈M : x� y∗ = 0 and y � x∗ = 0},
= {y ∈M : x ≤ y and y ≤ x},
= {y ∈M : x = y},
= {x}.

Hence Apr
I
(X) = X = AprI(X). Thus this completes proof.

Theorem 21. For every approximation space (M, I) and every subsets X,Y ⊆ M , we
have:

1. Apr
I
(X) ⊆ X ⊆ AprI(X),

2. Apr
I
(∅) = ∅ = AprI(∅),

3. Apr
I
(M) = M = AprI(M),

4. If X ⊆ Y , then Apr
I
(X) ⊆ Apr

I
(Y ) and AprI(X) ⊆ AprI(Y ),

5. Apr
I
(Apr

I
(X)) = Apr

I
(X),

6. AprI(AprI(X)) = AprI(X),

7. AprI(AprI(X)) = Apr
I
(X),

8. Apr
I
(AprI(X)) = AprI(X),

9. Apr
I
(X ∩ Y ) = Apr

I
(X) ∩Apr

I
(Y ),

10. AprI(X ∩ Y ) ⊆ AprI(X)AprI(Y ),

11. Apr
I
(X ∪ Y ) ⊇ Apr

I
(X) ∪Apr

I
(Y ),

12. AprI(X ∪ Y ) = AprI(X) ∪AprI(Y ).

Proof. The proof is similar to the proof of Theorem 2.1 in [17].

The following example shows that the converse of (10) and (11) in the Theorem 21
is not true.

Example 22. Let M = {0, a, b, c, d, 1}, where 0 < a < c < 1, 0 < b < d < 1 and
elements of {a, b} and {c, d} are pairwise incomparable. Define ⊕, � and ∗ as follows:

� 0 a b c d 1
0 0 0 0 0 0 0
a 0 a 0 a 0 a
b 0 0 0 0 b b
c 0 a 0 a b c
d 0 0 b b d d
1 0 a b c d 1

⊕ 0 a b c d 1
0 0 a b c d 1
a a a c c 1 1
b b c d 1 d 1
c c c 1 1 1 1
d d 1 d 1 d 1
1 1 1 1 1 1 1

∗ 0 a b c d 1
1 d c b a 0
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Then (M,⊕,�, ∗, 0, 1) is an MV -algebra [15]. Consider A = Γ(Z, 1) = {0, 1}, then M
is A-module with natural product αx, for any α ∈ A and x ∈ M . It is clear I = {0, a}
is an A-ideal of M . Let X = {0, a, c} and Y = {0, b, 1} are subsets of M . Then the
equivalence classes are [a]I = [0]I = {0, a}, [1]I = {1, d}, [b]I = {b, c}, [c]I = {b, c} and
[d]I = {d, 1}. Thus we have

Apr
I
(X) = {0, a},

Apr
I
(Y ) = ∅,

Apr
I
(X ∪ Y ) = {0, a, b, c},
AprI(X) = {0, a, b, c},
AprI(Y ) = {0, a, b, c, d, 1},

AprI(X ∩ Y ) = {0, a}.

It follows that Apr
I
(X ∪ Y ) 6= Apr

I
(X) ∪ Apr

I
(Y ) and AprI(X) ∩ AprI(Y ) 6=

AprI(X ∩ Y ).

Remark 23. For every approximation space (M, I) and for all x ∈M , we have

Apr
I
(x/I) = AprI(x/I)

Proof. It follows from Theorem 21 (1) that Apr
I
(x/I) ⊆ AprI(x/I). Conversely, let

a ∈ AprI(x/I). Hence [a]I ∩ x/I 6= ∅. So there exists t ∈ [a] and t ∈ x/I.
Now, we only show that [a ⊆ x/I. Let y ∈ [a]. Hence (y, a) ∈ ρI and we have

(t, a) ∈ ρI . We obtain (y, t) ∈ ρI and also we have (t, x) ∈ ρI . It follows that (y, x) ∈ ρI ,
that is y ∈ x/I. Thus [a] ⊆ x/I. This results a ∈ Apr

I
(x/I).

Remark 24. [21] We recall that if X and Y are non-empty subsets of M , then we have

X ∨ Y = {a ∈M |a ≤ x⊕ y, x ∈ X, y ∈ Y }.

Proposition 25. Let I be an A-ideal of an A-module M and X,Y be non-empty subsets
of M . Then

(i) AprI(X∨Y ) ⊆ AprI(X)∨AprI(Y ). In the particularly, if M is linearly ordered,
then AprI(X ∨ Y ) = AprI(X) ∨AprI(Y ).

(ii) Apr
I
(X) ∨Apr

I
(Y ) ⊆ Apr

I
(X ∨ Y ).

Proof. The proof is similar to the proofs of Propositions 3.2.1 and 3.2.4 in [23].

The following example shows that we can not replace the inclusion symbol ⊆ by an
equal sign in Proposition 25 (ii).

Example 26. Let Ω = {1, 2} and A = P(Ω). A is a PMV -algebra with ⊕ = ∪ and
� = · = ∩. If we consider M = A = P(Ω) = {{1}, {2}, {1, 2}, φ}, then M becomes an
MV -module over A with the external operation defined by AX := A∩X for any A ∈ A
and X ∈M. Consider X = {{1}} and Y = {{2}}. Obviously, I = {∅, {1}} is an A-ideal
ofM. We have X ∨Y =M and [{1}]I = {∅, {1}}, [∅]I = {∅, {1}}, [{2}]I = {{2}, {1, 2}}
and [{1, 2}]I = {{2}, {1, 2}}. Hence we obtain Apr

I
(X) = ∅ , Apr

I
(Y ) = ∅. Thus

Apr
I
(X ∨ Y ) =M is not a subset of Apr

I
(X) ∨Apr

I
(Y ) = ∅.
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Lemma 27. Let I, J be two A-ideals of M such that I ⊂ J and let X be a non-empty
subset of M . Then

(i) Apr
J

(X) ⊆ Apr
I
(X),

(ii) AprI(X) ⊆ AprJ(X).

Proof. (i) Let x ∈ Apr
J

(X). Then x/I ⊆ x/J ⊆ X, so x/I ⊆ X. Thus x ∈ Apr
I
(X).

Therefore Apr
J

(X) ⊆ Apr
I
(X).

(ii) Let x ∈ AprI(X). Then x/I ∩ X 6= ∅. We get t ∈ x/I and t ∈ X. Hence
d(t, x) ∈ I ⊆ J and t ∈ X. It follows that d(t, x) ∈ J and t ∈ X. This results
t ∈ x/J ∩X. Thus x/J ∩X 6= ∅. Therefore x ∈ AprJ(X).

We recall that an element a ∈ A is called complemented if there is an element b ∈ A
such that a ∨ b = 1 and a ∧ b = 0. We denote the set of complemented of A by B(A).

Proposition 28. Let I, J be two A-ideals of an MV -module M and X be a non-empty
subset of M .

(i) If X ⊆ B(M) or M is linearly ordered, then AprI∨J(X) ⊆ AprI(X)∨AprJ(X).

(ii) Apr
I∨J(X) ⊆ Apr

I
(X) ∨Apr

J
(X).

Proof. The proof is similar to the proofs of Propositions 3.2.7 and 3.2.9 in [23].

The following examples show that in Proposition 28 (i), (ii), the symbol inclusion can
be proper.

Example 29. (i) ConsiderM as the MV -module in Example 26. Let I = {∅, {1}} and
J = {∅} be two A-ideals ofM and X = {{2}} ⊆ B(M) be a subset ofM. It is easy to
check that [∅]J = {∅}, [{1}]J = {{1}}, [{2}]J = {{2}} and [{1, 2}]J = {{1, 2}}. Hence
AprI(X) = {{2}, {1, 2}} and AprJ(X) = {{2}, {1, 2}}. Thus AprI∨J(X) = {{2}, {1, 2}}
and by Remark 24, we have AprI(X) ∨AprJ(X) =M.

(ii) Consider M as the MV -module in Example 26. Let I = {∅, {1}} and J = {∅}
be two A-ideals ofM and X = {∅, {1}, {2}} be a subset ofM. We have Apr

I∨J(X) =
{∅, {1}}, Apr

I
(X) = {∅, {1}} andApr

J
(X) = {∅, {1}, {2}}. ThusApr

I∨J(X) 6= Apr
I
(X)∨

Apr
J

(X) =M.

Lemma 30. Let I be an A-ideal of an MV -module M and X be a non-empty subset of
M . Then X is definable if and only if Apr

I
(X) = X or AprI(X) = X.

Proof. The proof is similar to the proof of Lemma 3.2.2 in [23].

We recall that X is an MV -subalgebra (for short, subalgebra) of M if and only if X
is closed under the MV -operations defined in M .

Proposition 31. Let M be an A-module and I be an A-ideal of M .

(i) If X is an A-ideal of M , then AprI(X) is a subalgebra too.

(ii) In particular, if M is a linearly ordered A-module and J is an A-ideal of M , then
AprI(J) is an A-ideal of M .
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Proof. (i) By Proposition 3.3.3 (i) in [23], we obtain AprI(X) is a subalgebra of MV -
algebra M . It sufficient to show that if α ∈ A and x ∈ AprI(X), then αx ∈ AprI(X).

Since x ∈ AprI(X), so x1 ∈ [x]I ∩X, hence we have d(x1, x) ∈ I and x1 ∈ X. Also
by Lemma 12 (f) we deduce that d(αx1, αx) ≤ αd(x1, x) ∈ I and since X is A-ideal M ,
αx1 ∈ X and αx1 ∈ [αx]I . Thus αx1 ∈ [αx]I ∩X. Thus αx ∈ AprI(X).

(ii) By Proposition 3.3.3 (ii) in [23] and similar to part (i), we can easily show αx ∈
AprI(J), for α ∈ A and x ∈ AprI(J). It can be concluded that AprI(J) is an A-ideal of
M .

2.1 Rough sets in a quotient MV -module
Let I be an A-ideal of M . It is important to note that the equivalence class X/I
containing x plays dual roles. It is a subset of M if considered in relation to the A-
module M , and an element of M/I if considered in relation to the quotient MV -module.
Therefore the lower and upper approximations can be presented in an equivalent form
as shown below:

Let I be an A-ideal of M , and X a non-empty subset of M . Then

Apr
I
(X) = {x/I ∈M : x/I ⊆ X},

AprI(X) = {x/I ∈M : (x/I) ∩X 6= ∅}.

Now, we discuss these sets as subsets of the quotient MV -module M/I.

Proposition 32. Let I and J be two A-ideals of linearly ordered MV -module M . Then
AprI(J) is an A-ideal of M/I.

Proof. Obviously, AprI(J) is non-empty. Assume that a/I, b/I ∈ AprI(J) and α ∈ A.
Then a/I∩J 6= ∅ and b/I∩J 6= ∅. So there exist x ∈ a/I∩J and y ∈ b/I∩J . Since J is an
A-ideal ofM , we have x⊕y ∈ J and αx ∈ J . Hence d(x, a) ∈ I and d(y, b) ∈ I. It follows
from Lemma 2 (11) that d(x⊕y, a⊕b) ≤ d(x, a)⊕d(y, b) ∈ I. Thus x⊕y ∈ (a⊕b)/I ∩J .
So (a/I ⊕ b/I) ∩ J = (a⊕ b)/I ∩ J 6= ∅. Therefore a/I ⊕ b/I ∈ AprI(J).

Now, if x/I ≤ y/I and y/I ∈ AprI(J), then y/I ∩ J 6= ∅. Hence there exists
t ∈ y/I ∩ J . Since M is linearly ordered MV -algebra, x ≤ y or y ≤ x.

Case 1. If x ≤ y, then by Lemma 6, for each s ∈ [x]I , we have s ≤ t and since J
is an A-ideal, we obtain s ∈ J . Hence s ∈ J ∩ x/I, so x/I ∩ J 6= ∅. Thus
x/I ∈ AprI(J).

Case 2. If y ≤ x, then y � x∗ = 0 ∈ I, hence y/I ≤ x/I. So x/I = y/I. Thus the proof
is complete.

Let α ∈ A and x/I ∈ AprI(J). We show that α(x/I) ∈ AprI(J). Since x/I ∩ J 6= ∅,
x1 ∈ [x]I ∩ J , so we have d(x1, x) ∈ I, x1 ∈ J . It follows from Lemma 12 (f) that
d(αx1, αx) ≤ αd(x1, x) ∈ I and since J is an A-ideal, αx1 ∈ J and αx1 ∈ [αx]I . Thus
(αx)/I ∩ J 6= ∅. Hence α(x/I) ∈ AprI(J).

Theorem 33. Let I, J be two A-ideals of M . Then Apr
I
(J) 6= ∅ is an A-ideal, when

I ⊆ J and J is non-empty interior.
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Proof. Assume that a/I, b/I ∈ Apr
I
(J) and α ∈ A, then a ∈ [a]I = a/I ⊆ J and

b ∈ [b]I = b/I ⊆ J . Let z ∈ (a⊕ b)/I, hence d(z, a⊕ b) ∈ J . Since a⊕ b ∈ J , we obtain
z ∈ (a⊕ b)/J = J , thus (a⊕ b)/I ⊆ J . It proved that a/I ⊕ b/I ∈ Apr

I
(J).

Now, let x/I ∈ Apr
I
(J) and y/I ≤ x/I. We have x ∈ [x]I = x/I ⊆ J and since

y � x∗ ∈ I ⊆ J and x ∈ J , we obtain y ≤ x ∨ y = x ⊕ (x∗ � y) ∈ J , hence y ∈ J . We
must show that y/I ⊆ J . Let z ∈ [y]I , then d(z, y) ∈ I ⊆ J . So z ∈ y/J = J . Hence
z ∈ J . Thus [y]I = y/I ⊆ J . Therefore y/I ∈ Apr

I
(J).

Finally, we show that α(a/I) ∈ Apr
I
(J). Since a/I ⊆ J , we have a ∈ J . Since J is an

A-ideal of M , then αa ∈ J . It is sufficient to show that (αa)/I ⊆ J . Let z ∈ [αa]I . Then
d(z, αa) ∈ I ⊆ J , this result z ∈ [αa]J = J . It follows (αa)/I ⊆ J . So α(a/I) ∈ Apr

I
(J).

Therefore Apr
I
(J) is an A-ideal of M .

3 Lower and Upper Approximations with Respect to Fuzzy Congruences

[14] Let M be an A-module. A function θ from M ×M to the unit interval [0, 1] will be
called a fuzzy congruence relation on M , if it satisfies the following for x, y, z ∈ M and
α ∈ A:

(C1) θ(0, 0) = θ(x, x),

(C2) θ(x, y) = θ(y, x),

(C3) θ(x, z) ≥ θ(x, y) ∧ θ(y, z),

(C4) θ(x⊕ z, y ⊕ z) ≥ θ(x, y),

(C5) θ(x∗, y∗) = θ(x, y),

(C6) θ(αx, αy) ≥ θ(x, y).

Lemma 34. [14] If θ is a fuzzy congruence inM , then θ(0, 0) ≥ θ(x, y), for all x, y ∈M .

Let θ and φ be two fuzzy relations on M . Then the product θ ◦ φ is defined by

(θ ◦ φ)(a, b) = supx∈M [min{θ(a, x), φ(x, b)}]

for all a, b ∈M .
Let θ be a fuzzy congruence relation on M . For each a ∈M , we define a fuzzy subset

θa as follows:
θa(x) = θ(a, x)

for all x ∈M . This fuzzy subset θa is called a fuzzy congruence class containing a ∈M .
We set

M/θ = {θa : a ∈M}
is called a fuzzy quotient set by θ.

Lemma 35. Let θ be a fuzzy congruence relation on an A-module M . Then

θ−1(s) = {(a, b) ∈M ×M : θ(a, b) = θ(0, 0) = s}

is a congruence relation on M .
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Proof. It is clear that θ−1(s) is reflexive and symmetric. To prove that θ−1(s) is transi-
tive, let (a, b), (b, c) ∈ θ−1(s). Then θ(a, b) = θ(b, c) = s. Since θ is a fuzzy congruence
relation on M , we have

θ(a, c) ≥ θ(a, b) ∧ θ(b, c) = s = θ(0, 0),

hence θ(a, c) = θ(0, 0) = s, so (a, c) ∈ θ−1(s), and θ−1(s) is transitive. Thus θ−1(s) is an
equivalence relation on M .

Now, let (a, b) ∈ θ−1(s) and (c, d) ∈ θ−1(s). Hence θ(a, b) = θ(c, d) = s. Since θ is a
fuzzy congruence relation on M , we have

θ(c⊕a, b⊕d) ≥ θ(c⊕a, d⊕a)∧θ(a⊕d, b⊕d) ≥ θ(c, d)∧θ(a, b) = θ(0, 0)∧θ(0, 0) = θ(0, 0) = s.

Hence θ(c⊕ a, b⊕ d) = θ(0, 0), so (a, b)⊕ (c, d) ∈ θ−1(s).
Let (a, b) ∈ θ−1(s). Since θ is a fuzzy congruence relation onM , we have s = θ(a, b) =

θ(a∗, b∗), this results (a∗, b∗) ∈ θ−1(s).
Let (a, b) ∈ θ−1(s), and α ∈ A. Then, since θ is a fuzzy congruence relation on M ,

we have
θ(αa, αb) ≥ θ(a, b) = θ(0, 0) = s,

and so θ(αa, αb) = s. Similarly, we have (aα, bα) ∈ θ−1(s). Therefore we obtain θ−1(s)
is a congruence relation on M .

Theorem 36. Let θ and φ be fuzzy congruence relations on an A-module M . Then θ∩φ
is a fuzzy congruence relation on M , and

(θ ∩ φ)−1(s) = θ−1(s) ∩ φ−1(s), where s = θ(0, 0) = φ(0, 0).

Proof. It can be easily proved that θ ∩ φ is a fuzzy congruence relation on M . Let
(a, b) ∈ (θ ∩ φ)−1(s). Then we have

min{θ(a, b), φ(a, b)} = (θ ∩ φ)(a, b) = s,

and so
θ(a, b) = φ(a, b) = s.

Thus (a, b) ∈ θ−1(s) and (a, b) ∈ φ−1(s), and so

(a, b) ∈ θ−1(s) ∩ φ−1(s).

Therefore we obtain that

(θ ∩ φ)−1(s) ⊆ θ−1(s) ∩ φ−1(s).

Conversely, let (a, b) ∈ θ−1(s) ∩ φ−1(s). Then

(a, b) ∈ θ−1(s) and (a, b) ∈ φ−1(s).

Thus we have
θ(a, b) = φ(a, b) = s.

Then we have

(θ ∩ φ)(a, b) = min{θ(a, b), φ(a, b)} = min{s, s} = s,
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and so
(a, b) ∈ (θ ∩ φ)−1(s).

Therefore we have
θ−1(s) ∩ φ−1(s) ⊆ (θ ∩ φ)−1(s).

Thus we obtain that
(θ ∩ φ)−1(s) = θ−1(s) ∩ φ−1(s).

Theorem 37. Let ρ and λ be congruence relations on an A-module M . If X is a
non-empty subset of M , then

(ρ ∩ λ)I(X) ⊆ ρI(X) ∩ λI(X).

Proof. Note that ρ ∩ λ is also a congruence relation on M . Let c ∈ (ρ ∩ λ)I(X). Then

[c]ρ∩λ ∩X 6= ∅.

Then there exists an element a ∈ [c]ρ∩λ ∩X. Since (a, c) ∈ ρ ∩ λ, we have (a, c) ∈ ρ and
(a, c) ∈ λ. Thus we have a ∈ [c]ρ and a ∈ [c]λ. Since a ∈ X, we have

a ∈ [c]ρ, a ∈ X, and a ∈ [c]λ, a ∈ X.

This implies that
c ∈ ρI(X) and c ∈ λI(X),

and so
c ∈ ρI(X) ∩ λI(X).

Thus we get
(ρ ∩ λ)I(X) ⊆ ρI(X) ∩ λI(X).

Theorem 38. Let ρ and λ be congruence relations on an A-module M . If M is a
non-empty subset of M , then

(ρ ∩ λ)
I
(X) = ρ

I
(X) ∩ λI(X).

Proof.

c ∈ (ρ ∩ λ)
I
(X) ⇔ [c]ρ∩λ ⊆ X,

⇔ [c]ρ ⊆ X and [c]λ ⊆ X,
⇔ c ∈ ρ

I
(X) and c ∈ λI(X),

⇔ c ∈ ρ
I
(X) ∩ λI(X).

Thus we obtain that
(ρ ∩ λ)

I
(X) = ρ

I
(X) ∩ λI(X).

Theorem 39. Let θ and φ be fuzzy congruence relations on an A-module M and X a
non-empty subset of M , where s = θ(0, 0) = φ(0, 0). Then

(1) (θ ∩ φ)−1(s)
I
(X) = (θ−1(s) ∩ φ−1(s))I(X) = θ−1(s)

I
(X) ∩ φ−1(s)

I
(X).

(2) (θ ∩ φ)−1(s)I(X) = (θ−1(s) ∩ φ−1(s))I(X) ⊆ θ−1(s)I(X) ∩ φ−1(s)I(X).

Proof. Those follow from Theorem 36, Theorem 37 and Theorem 38.
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Let α and β be binary relations on an A-module M . Then the product α ·β of α and
β is defined as follows:

α · β = {(a, b) ∈M ×M : (a, c) ∈ α and (c, d) ∈ β for some c ∈M}.

Assume α and β are congruence relations on an A-module M . Then, we can easily prove
that α · β is a congruence if and only if α · β = β · α.
Theorem 40. Let ρ and λ be congruence relations on a linearly ordered A-module M
such that ρ · λ = λ · ρ. If M is an A-module of M and X is an A-ideal of M , then

ρI(X) ∨ λI(X) ⊆ (ρ · λ)I(X).

Proof. Let c be any element of ρI(X) ∨ λI(X). Then c ≤ a ⊕ b with a ∈ ρI(X) and
b ∈ λI(X). Then there exist elements x, y ∈M such that

x ∈ [a]ρ ∩X and y ∈ [b]λ ∩X.

Thus x ∈ [a]ρ, y ∈ [b]λ, and x, y ∈ X. Since X is an A-ideal of M , we have x ⊕ y ∈ X.
Then (x, a) ∈ ρ and (y, b) ∈ λ, and since ρ and λ are congruence relations, we have

(x⊕ y, a⊕ y) ∈ ρ and (a⊕ y, a⊕ b) ∈ λ.

Thus we have (x⊕ y, a⊕ b) ∈ ρ · λ, and so x⊕ y ∈ [a⊕ b]ρ·λ. Therefore we have

x⊕ y ∈ [a⊕ b]ρ·λ ∩X,

which yields
c ≤ a⊕ b ∈ (ρ · λ)I(X).

Since by Proposition 31 (ii), (ρ · λ)I(X) is an A-ideal, we obtain that c ∈ (ρ · λ)I(X).
Hence we have

ρI(X) ∨ λI(X) ⊆ (ρ · λ)I(X).

We note that if θ and φ are fuzzy congruence relations, then θ◦φ is a fuzzy congruence
relation on M if and only if θ ◦ φ = φ ◦ θ (see [14]).

Theorem 41. Let θ and φ be fuzzy congruence relations on an A-module M such that
θ ◦ φ = φ ◦ θ, where θ(0, 0) = φ(0, 0). Then

θ−1(s) · φ−1(s) ⊆ (θ ◦ φ)−1(s).

Proof. Let (a, b) ∈ θ−1(s) · φ−1(s). Then there exists an element c ∈M such that
(a, c) ∈ θ−1(s) and (c, b) ∈ φ−1(s). Then, since

θ(a, c) = φ(c, b) = s,

we have

(θ ◦ φ)(a, b) = supx∈M [min{θ(a, x), φ(x, b)]
≥ min{θ(a, c), φ(c, b)}
= min{s, s}
= s.

and so (θ ◦ φ)(a, b) = s. This implies that (a, b) ∈ (θ ◦ φ)−1(s). Thus we obtain that

θ−1(s) · φ−1(s) ⊆ (θ ◦ φ)−1(s).
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Remark 42. Let ρ and λ be congruence relations on A-module M . If X and Y are
nonempty subsets of M , then the following hold:

(i) ρ ⊆ λ implies ρ
I
(X) ⊇ λI(Y ),

(ii) ρ ⊆ λ implies ρI(X) ⊆ λI(Y ).

Theorem 43. Let θ and φ be fuzzy congruence relations on an A-module M such that
θ ◦ φ = φ ◦ θ. If X is a nonempty subset of M , then

(1) (θ−1(s) · φ−1(s))
I
(X) ⊇ (θ ◦ φ)−1(s)

I
(X).

(2) θ−1(s) · φ−1(s))I(X) ⊆ (θ ◦ φ)−1(s)I(X).

Proof. Those follow from Theorem 41 and Remark 42 (i), (ii).

Theorem 44. Let θ and φ be fuzzy congruence relations on a linearly ordered A-module
M such that θ ◦ φ = φ ◦ θ, where θ(0, 0) = φ(0, 0) = s. If X is an A-ideal of M , then

(θ−1(s)I(X)) ∨ (φ−1(s)I(X)) ⊆ (θ ◦ φ)−1(s)I(X).

Proof. Let c be any element of θ−1(s)I(X) ∨ (φ−1(s)I(X). Then c ≤ a⊕ b with
a ∈ θ−1(s)I(X) and b ∈ (φ−1(s)I(X). Then there exist elements x, y ∈M such that

x ∈ θa ∩X and y ∈ φb ∩X.

This implies that
(a, x) ∈ θ−1(s) and (b, y) ∈ φ−1(s),

and x, y ∈ X. Then we have
θ(a, x) = φ(b, y) = s.

Since θ and φ are fuzzy congruence relations on M , we have and so

(θ ◦ φ)(a⊕ b, x⊕ y) = s.

Note that, since X is an A-ideal of M , thus we have

x⊕ y ∈ (θ ◦ φ)a⊕b ∩X.

This implies that
c ≤ a⊕ b ∈ (θ ◦ φ)−1(s)I(X).

Since by Proposition 31(ii), (θ ◦ φ)−1(s)I(X) is an A-ideal, we obtain that
c ∈ (θ ◦ φ)−1(s)I(X). We get (θ−1(s)I(X)) ∨ (φ−1(s)I(X)) ⊆ (θ ◦ φ)−1(s)I(X).
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Abstract
We consider the partial theta function θ(q, z) :=

∑∞
j=0 q

j(j+1)/2zj , where (q, z) ∈ C2, |q| < 1. We show
that for any 0 < δ0 < δ < 1, there exists n0 ∈ N such that for any q with δ0 ≤ |q| ≤ δ and for any
n ≥ n0 the function θ has exactly n zeros with modulus < |q|−n−1/2 counted with multiplicity.
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1 Introduction

We consider the bivariate series θ(q, z) :=
∑∞
j=0 q

j(j+1)/2zj , where (q, z) ∈ C2, |q| < 1.
This series defines a partial theta function. The terminology is explained by the fact that
the Jacobi theta function is defined by the series

∑∞
j=−∞ qj

2
zj and the following equality

holds true: θ(q2, z/q) =
∑∞
j=0 q

j2
zj . The word “partial” is justified by the summation

in θ ranging from 0 to ∞ and not from −∞ to ∞. In what follows we consider z as a
variable and q as a parameter. For each fixed value of the parameter q the function θ is
an entire function in the variable z.

The function θ finds applications in various domains, such as statistical physics and
combinatorics (see [17]), Ramanujan type q-series (see [18]), the theory of (mock) mod-
ular forms (see [3]), asymptotic analysis (see [2]), and also in problems concerning real
polynomials in one variable with all roots real (such polynomials are called hyperbolic,
see [4], [5], [15], [14], [6], [13] and [7]). Other facts about θ can be found in [1].

The zeros of θ depend on the parameter q. For some values of q (called spectral)
confluence of zeros occurs, so it would be correct to regard the zeros as multivalued
functions of q; about the spectrum of θ see [13], [11] and [12].

We denote by Dρ the open disk in the q-space centered at 0 and of radius ρ, by Cρ
the corresponding circumference, and by Aδ0,δ the closed annulus {q ∈ C | δ0 ≤ |q| ≤ δ}.

In the present paper we prove the following theorem:

Theorem 1. For any couple of numbers (δ0, δ) such that 0 < δ0 < δ < 1, there exists
n0 ∈ N such that for any q ∈ Aδ0,δ and for any n ≥ n0 the function θ has exactly n zeros
in D|q|−n−1/2 counted with multiplicity.

Copyright c© 2016 Matej Bel University
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Remark 2. 1. The proof of the theorem is based on a comparison between θ and the
function

u(q, z) :=
∞∏

ν=1
(1 + qνz) (1.1)

We use the equality

u =
∞∑

j=0
qj(j+1)/2zj/(q; q)j , (1.2)

where (q; q)j := (1− q)(1− q2) · · · (1− qj) is the q-Pochhammer symbol; it follows
directly from Problem I-50 of [16] (see pages 9 and 186 of [16]). The analog of the
above theorem for the deformed exponential function

∑∞
j=0 q

j(j+1)/2zj/j! is proved
in a non-published text by A. E. Eremenko using a different method.

2. For q close to 0 the zeros of θ are of the form −q−`(1 + o(1)), ` ∈ N, see more
details about this in [8], [9] and [10].

2 Proofs

Proof of Theorem 1. It is shown in [8] that for 0 < |q| ≤ 0.108 the zeros of θ can be
expanded in convergent Laurent series. Recall that the function u (defined by (1.1))
satisfies equality (1.2), i.e. the zeros of u are the numbers −q−`, ` ∈ N. We show that
for n ∈ N sufficiently large the functions u and θ have one and the same number of zeros
in the open disk D|q|−n−1/2 . To this end we show that for the restrictions u0 and θ0 of
u and θ to the circumference C|q|−n−1/2 one has |u0 − θ0/(q; q)n| < |u0| after which we
apply the Rouché theorem.

For 0 < |q| ≤ 0.108 one can establish a bijection between the zeros of θ and u, because
their `th zeros are of the form −q−`(1 + o(1)) and the moduli of the zeros increase with
`, see part 2 of Remark 2.

Set Pk(|q|) :=
∏k
`=0(1− |q|`+1/2), k ∈ N ∪∞. For |u0| one obtains the estimation

|u0| ≥ |q|−n2/2Pn−1(|q|)P∞(|q|) > |q|−n2/2(P∞(|q|))2 ≥ |q|−n2/2(P∞(δ))2 . (2.1)

Indeed, for |z| = |q|−n−1/2 one can set z := |q|−n−1/2ω, |ω| = 1. For 1 ≤ ν ≤ n (resp.
for ν > n), the factor (1 + qνz) in (1.1) is of the form (1− |q|−`−1/2ω`), where ` = n− ν
and |ω`| = 1 (resp. of the form (1−|q|`+1/2ω∗` ), where ` = ν−n− 1 and |ω∗` | = 1). Thus

u(q, |q|−n−1/2ω−n−1/2) =
n−1∏

`=0
(1− |q|−`−1/2ω`)

∞∏

`=0
(1− |q|`+1/2ω∗` ) .

The first of the factors in the right-hand side can be represented in the form |q|−n2/2ω̃
∏n−1
`=0 (1−

|q|`+1/2ω∗∗` ) with |ω̃| = |ω∗∗` | = 1. Therefore

u(q, |q|−n−1/2ω−n−1/2) = |q|−n2/2ω̃
n−1∏

`=0
(1− |q|`+1/2ω∗∗` )

∞∏

`=0
(1− |q|`+1/2ω∗` ) .

The modulus of the right-hand side is minimal for ω∗` = ω∗∗` = 1 in which case one
obtains the leftmost inequality in (2.1).

Consider the monomial βj := αjz
j in the series u − θ/(q; q)n. Hence for j = n it

vanishes and for j > n one has
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αj = qj(j+1)/2(1/(q; q)j − 1/(q; q)n) = qj(j+1)/2Uj,n , where

Uj,n := (1−∏j
`=n+1(1− q`))/(q; q)j ,

so for |z| = |q|−n−1/2 one has |βj | = |q|−n2/2+(j−n)2/2|Uj,n|. One can observe that
Uj,n = qn+1 +O(qn+2). Set

Uj,n :=
∑

ν≥n+1
uj,n;νq

ν and U := ((
∞∏

`=1
(1 + q`))− 1)/(q; q)∞ =

∞∑

ν=1
uνq

ν .

The Taylor series of U converges for |q| < 1 because the infinite products defining U
converge. Clearly uj,n;ν ∈ Z, uν ∈ N (because all coefficients of the series 1/(q; q)j and
1/(q; q)∞ are positive integers) and uj,n;n+1 = u1 = 1.

The following lemma explains in what sense the series U majorizes the series Uj,n.

Lemma 3. One has |uj,n;n+ν | ≤ uν , ν ∈ N.

Before proving Lemma 3 (the proof is given at the end of the paper) we continue the
proof of Theorem 1.

Set R(|q|) :=
∑
j>n |q|(j−n)2/2. The following inequality results immediately from the

lemma:

Z1 :=
∑

j>n

|βj | ≤ |q|−n
2/2|q|nU(|q|)R(|q|) ≤ |q|−n2/2δnU(δ)R(δ) . (2.2)

The first condition which we impose on the choice of n is the following inequality to be
fulfilled:

δnU(δ)R(δ) < (P∞(δ))2/4 . (2.3)

For j < n and |z| = |q|−n−1/2 one has |βj | = |q|−n
2/2+(j−n)2/2|Ũj,n|, where

Ũj,n := (
n∏

`=j+1
(1− q`)− 1)/(q; q)n . (2.4)

Hence |Ũj,n| ≤ T (|q|) := (
∏∞
`=1(1 + |q|`) + 1)/(|q|; |q|)∞ and

|βj | ≤ |q|−n
2/2|q|(j−n)2/2T (δ) (2.5)

Choose m ∈ N such that T (δ)
∑∞
s=m δ

s2/2 ≤ (P∞(δ))2/4. Inequality (2.5) implies that

Z2 :=
n−m∑

j=0
|βj | ≤ |q|−n

2/2(P∞(δ))2/4 (2.6)

Notice that for n < m the above sum is empty and the inequality trivially holds true.
The finite sum

Z3 :=
n−1∑

j=n−m+1
|βj | (2.7)
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is of the form |q|−n2/2O(|q|n). Indeed, consider formula (2.4). There exists M > 0
depending only on δ0 and δ such that

0 < |1/(q; q)n| ≤ 1/(|q|; |q|)n < 1/(|q|; |q|)∞ ≤M for δ0 ≤ |q| ≤ δ .

Thus
|Ũj,n| ≤M(

n∏

`=j+1
(1 + |q|`)− 1) .

The index j can take only the values n − m + 1, . . ., n − 1. In the last product each
monomial |q|` can be represented in the form |q|n|q|`−n, where `−n = 2−m, . . ., 0. The
modulus of each factor |q|`−n is not larger than 1/δmax(0,m−2)

0 . Therefore

|Ũj,n| ≤M((1 + |q|n/δmax(0,m−2)
0 )m−1 − 1) = O(|q|n) .

The sum Z3 (see (2.7)) can be made less than |q|−n2/2(P∞(δ))2/4 by choosing n large
enough. Thus inequalities (2.1), (2.2) and (2.6) yield

|u0 − θ0/(q; q)n| ≤ Z1 + Z2 + Z3 ≤ (3/4)|q|−n2/2(P∞(δ))2 < |q|−n2/2(P∞(δ))2 ≤ |u0|

which proves the theorem.

Proof of Lemma 3. We first compare the coefficients of the series
r∏

`=p
(1 + q`)− 1 =

∑

ν≥p
γ1
νq
ν and

r∏

`=p
(1− q`)− 1 =

∑

ν≥p
γ2
νq
ν , p ≤ r .

They are obtained respectively as a sum of the non-negative coefficients of monomials
and as a linear combination of the same coefficients some of which are taken with the +
and the rest with the − sign. Therefore γ1

ν ≥ |γ2
ν |, ν ≥ p. This means that |uj,n;ν | ≤

vj,n;ν ≤ v∞,n;ν , where

Vj,n := (
j∏

`=n+1
(1 + q`)− 1)/(q; q)j =

∑

ν≥n+1
vj,n;νq

ν , V∞,0 = U and v∞,0;ν = uν .

To prove the lemma it suffices to show that

v∞,n;n+ν ≤ v∞,0;ν . (2.8)
Consider the series Sr :=

∏∞
`=r+1(1 + q`) − 1 =

∑
ν≥r+1 sr;νq

ν for r = 0 and r = n.
Compare the coefficients s0;ν and sn;n+ν . The coefficient s0;ν is equal to the number
of ways in which ν can be represented as a sum of distinct natural numbers forming
an increasing sequence whereas sn;n+ν is the number of ways in which n + ν can be
represented as a sum of distinct natural numbers ≥ n+1 forming an increasing sequence.
Clearly sn;n+ν ≤ s0;ν . This implies inequality (2.8) and the lemma, because one has
V∞,r = Sr/(q; q)∞ and the coefficients of the series 1/(q; q)∞ are all positive.
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Abstract
Recently, Ebrahimi et al. [C∗-convexity and C∗-faces in ∗-rings, Turk. J. Math. 36 (2012), 131–145]
identified the optimal points of continuous unital homomorphisms on some C∗-convex sets of a topological
∗-ring. In this short note, we generalize their results for continuous (non-unital) homomorphisms in a
topological ∗-ring. Moreover, for continuous unital homomorphisms, we point out the same conclusion
does not hold everywhere that a Krein-Milman type theorem exists. An important issue is so that we
do not assume that homomorphisms are unital.
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1 Introduction

The term non-commutative convexity refers to any one of the various forms of convexity
in which convex coefficients need not commute among themselves. Formal study of C∗-
convexity as a form of non-commutative convexity, was initiated by Loebl and Paulsen
in [3], where the notion of C∗-extreme point, as a non-commutative analog of extreme
point was also studied.

Recently, Ebrahimi et al. [2] motivated the following general question. Operator
algebras are equipped with rich algebraic, geometric and topological structures such that
one naturally asks: which of these structures have made a particular theorem work. In the
algebraic direction this question has led to evolution of the algebraic theory of operator
algebras. Indeed, they defined the notions of C∗-convexity and C∗-extreme point and
discussed some illustrative examples of C∗-convex subsets of ∗-rings. For example, they
showed that the set {x} is C∗-convex, when x ∈ Z(R), Z(R) is the center of R, and R
is a unital ∗-ring (see Example 2.2 of [2]). In this situation, when x 6∈ Z(R) the set {x}
is not C∗-convex and the C∗-convex hull of {x} is the smallest C∗-convex set containing
{x} and is denoted by C∗-Co({x}). They investigated some properties of C∗-convex sets
and C∗-extreme points and identified some C∗-convex subsets of ∗-rings by applying C∗-
convex maps. Moreover, they identified optimal points of some unital homomorphisms
on some C∗-convex sets.

In this note, we generalize the theorem appearing as Theorem 4.8 in [2] for continuous
(non-unital) homomorphism in a topological ∗-ring. We know that many algebras have
no characters, for instance Mn for n ≥ 1, B(H), etc. (see for example Exercise IV.1 of
[1]) and we also know that the set of real–valued unital homomorphisms on an algebra

Copyright c© 2016 Matej Bel University
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is a subset of the set of its characters. So, we notice that Corollary 4.9 of [2] discusses
on the maximum and minimum of an empty set of functions on Mn .

2 Main results

Throughout this note R is a unital ∗-ring, that is, a ring with an involution which has
an identity element.

Definition 1. A subset K of R is called C∗-convex if
∑n
i=1 a

∗
i xiai ∈ K, whenever

xi ∈ K, ai ∈ R and
∑n
i=1 a

∗
i ai = 1R.

For example, the positive cone in R is C∗-convex and in general the segment [0, a]
for a ∈ R is not C∗-convex, see Example 2.11 of [2].

Definition 2. If K is a C∗-convex subset of R, then x ∈ K is called a C∗-extreme point
for K if the condition

x =
n∑

i=1
a∗i xiai,

n∑

i=1
a∗i ai = 1R, xi ∈ K,n ∈ N,

where ai is invertible in R implies that all xi are unitarily equivalent to x in R, that is,
there exist unitaries ui ∈ R such that xi = u∗i xui for all i. The set of all C∗-extreme
point of K is denoted by C∗-ext(K).

Recall that a homomorphism f : R → R is unital if f(1R) = 1. The following theorem
appears as Theorem 4.8 in [2] for a C∗-convex subset K of R.

Theorem 3. Suppose R is a topological ∗-ring, C∗-ext(K) is closed and S is a compact
subset of C∗-Co(C∗-ext(K)) containing C∗-ext(K). Then every continuous unital ho-
momorphism f : R → R attains its maximum and minimum on S at C∗-extreme points
of K. Moreover, maximum and minimum of f on S is equal with its maximum and
minimum on C∗-ext(K), respectively.

As a consequence of this theorem together with the generalized Krein-Milman theorem
(Theorem 4.5 of [4]) the following corollary presented as Corollary 4.9 in [2].

Corollary 4. If S ⊆ Mn is compact, C∗-convex, and the set of all C∗-extreme points
of S is closed, then every continuous unital homomorphism f : Mn → R, attains its
maximum and minimum on S at C∗-extreme points of S.

Remark 5. In the above mentioned theorem, if R is a simple ∗-ring and f : R → R is
a continuous unital homomorphism, then the null space of f is an ideal of R. On the
other hand, R is simple and so it has no nontrivial ideals. Thus, either f is zero or R
is isomorphic to the real numbers. Recall that f is unital, so f is not zero and then it
remains that R is isomorphic to the real numbers, which is of course a trivial case. Since
in this case all continuous homomorphisms f : R→ R are of the form f(x) = cx, where
c ∈ R is a constant. Moreover, C∗-convex hull and C∗-extreme points of a set in R are
identical with its convex hull and extreme points in the usual sense, respectively. We can
observe that the closed convex hull of a subset of R is a closed interval and the extreme
points of a closed interval are its initial and end points. So, for instance, if c > 0, then
f(x) = cx is increasing and obviously attains its minimum and maximum at the initial
and end points of the interval, respectively.
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Remark 6. Note that the set of all real–valued unital homomorphisms on Mn are a
subset of characters of Mn and note that Mn has no characters (cf. Exercise IV.1 of [1])
and so the above mentioned corollary discusses on the maximum and minimum of an
empty set of characters on Mn .

We would remark that for compact C∗-convex subsets of Mn a Krein–Milman type
theorem was established by Morenz (Theorem 4.5 of [4]). The authors in [2] claim that
the same conclusion (Corollary 4) holds everywhere that a Krein-Milman type theorem
exists. For example in the generalized state space of a C∗-algebra with bounded–weak
topology such a conclusion holds. However, Remark 6 ensures we can not claim that the
same conclusion holds everywhere that a Krein-Milman type theorem exists.

Taking ideas from Remarks 5 and 6, we are going to consider continuous (non-unital)
homomorphism on C∗-convex sets. We now state and prove an extended version of
Theorem 1.1 to non-unital maps and we show the assumption that f is unital would be
dropped. That is, we prove the following theorem.

Theorem 7. Suppose R is a topological ∗-ring, C∗-ext(K) is closed and S is a compact
subset of C∗-Co(C∗-ext(K)) containing C∗-ext(K). Then every continuous homomor-
phism f : R → R attains its maximum and minimum on S at C∗-extreme points of K.
Moreover, maximum and minimum of f on S is equal with its maximum and minimum
on C∗-ext(K), respectively.

Proof. Suppose that f attains its maximum on S at a point x ∈ S. Then, there exists
a net {xλ} in C∗-Co(C∗-ext(K)) such that xλ converges to x. For every λ, xλ is C∗-
convex combination of points of C∗-ext(K), i.e., xλ =

∑n(λ)
i=1 a∗λ,ixλ,iaλ,i, where n(λ)

is a positive integer, xλ,i ∈ C∗-ext(K), and
∑n(λ)
i=1 a∗λ,iaλ,i = 1R. Define f(xλ,iλ) :=

max1≤i≤n(λ) f(xλ,i). Then,

f(xλ) = f(
n(λ)∑

i=1
a∗λ,ixλ,iaλ,i) =

n(λ)∑

i=1
f(a∗λ,ixλ,iaλ,i)

=
n(λ)∑

i=1
f(a∗λ,i)f(xλ,i)f(aλ,i) ≤ max

1≤i≤n(λ)
f(xλ,i)

n(λ)∑

i=1
f(a∗λ,i)f(aλ,i)

= f(xλ,iλ)f(
n(λ)∑

i=1
a∗λ,iaλ,i)

= f(xλ,iλ)f(1R) = f(xλ,iλ .1R)
= f(xλ,iλ). (2.1)

Since f is multiplicative, in the forth line of (2.1) we use the equality f(xλ,iλ)f(1R) =
f(xλ,iλ .1R). This shows the assumption that f is unital can be dropped in Theorem 4.8
of [2]. The rest of the proof is similar to that of Theorem 4.8 of [2].

However, by removing the assumption that f is unital, we can state a correct version
of Corollary 4.9 in [2] as follows:

Corollary 8. If S ⊆Mn is compact, C∗-convex, and the set of all C∗-extreme points of
S is closed, then every continuous homomorphism f : Mn → R attains its maximum and
minimum on S at C∗-extreme points of S.
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We recall that every real–valued homomorphism on Mn is zero and it is clear that
its maximum and minimum value are zero. Indeed, in this case the above corollary is
an obvious corollary. However, unlike Corollary 4, this corollary does not discuss on an
empty set of functions on Mn and the discussed set contains at least the zero function.
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Abstract
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1 Introduction

Nonlinear differential equations of higher order have been extensively studied with high
degree of generality. In particular, boundedness, uniform boundedness, ultimate bound-
edness, uniform ultimate boundedness and asymptotic behavior of solutions have in the
past and also recently been discussed. See for instance Reissig et al. [13], Rouche et al.
[19], Yoshizawa [22] and [23]. It is well known that the ultimate boundedness is a very
important problem in the theory and applications of differential equations. An effective
method for studying the ultimate boundedness of nonlinear differential equations is still
the Lyapunov’s direct method.

Because of their applications, the existence of periodic solutions of third order differ-
ential equations has been also investigated by many researchers in recent years. Besides
it is worth-mentioning that there are a few results on the same topic for third order delay
differential equations, for example, Chukwu [6], Gui[10], Tunç [21] and Zhu[24].

In 1992, Zhu[24], established some sufficient conditions to ensure the stability, bound-
edness, ultimate boundedness of the solutions of the following third order non-linear delay
differential equation

x′′′ + ax′′ + bx′ + f(x(t− r)) = e(t). (1.1)
∗corresponding author
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The existence of periodic solutions was also discussed in the case where e(t) is a periodic
function.
Recently, in [8], the authors extend results obtained in [24] to the following third order
non autonomous differential equation with delay

[g(x(t))x′(t)]′′ + (h(x(t))x′(t))′ + ϕ(x(t))x′(t) + f(x(t− r)) = e(t), (1.2)

In this paper, we are concerned with the third order delay differential equation
(
q(t)

(
g(x(t))x′(t)

)′
)′

+ a(t)
(
h(x(t))x′(t))′ + b(t)ϕ(x(t))x′(t) + c(t)f(x(t− r)) = e(t),

(1.3)
where r > 0 is a fixed delay and a, b, c, e, f, g, h, and ϕ are continuous functions and
depend only on the arguments shown explicitly; f(0) = 0; f ′(x), g′(x), h′(x), and ϕ′(x)
exist and are continuous for all x. Our objective here is to extend results obtained in [8]
to (1.3). The paper is organized as follows. In section 3 we study the problems of the
boundedness and ultimate boundedness of solutions when e(t) 6= 0. The assumptions
will also give us an opportunity to discuss the existence of periodic solutions of the same
equation when a, b, c, e, q, are periodic functions. Finally we investigate the asymptotic
stability of the zero solution of the delay differential equation (1.3) with e(t) = 0. We
give an example to illustrate the effectiveness of main results obtained in Section 3.
Clearly the equation discussed by Zhu in [24] is a special case of equation (1.3) when
g(x) = h(x) = ϕ(x) = 1, a(x) = a, and b(t) = b, also (1.2) is a special case of (1.3) with
q(t) = 1.

2 Preliminaries

To describe the main result of this paper, we include some preliminary knowledge on
the stability and ultimate boundedness for a general class of nonlinear delay differential
system

x′ = f(t, xt), xt(θ) = x(t+ θ) , −r ≤ θ ≤ 0, t ≥ 0, (2.1)
where f : CH → Rn is a continuous mapping, f(0) = 0, CH := {φ ∈ (C[−r, 0], Rn) :
‖φ‖ ≤ H}, and forH1 < H, there exists L(H1) > 0, with |f(φ)| < L(H1) when ‖φ‖ < H1.

Lemma 1. [12] If there is a continuous functional V (t, φ) : [0,+∞[×CH → [0,+∞[
locally Lipschitz in φ and wedges Wi such that:
(i) If W1(‖φ‖) ≤ V (t, φ), V (t, 0) = 0 and V ′(2,1)(t, φ) ≤ 0.

Then, the zero solution of (2.1) is stable. If in addition V (t, φ) ≤ W2(‖φ‖). Then, the
zero solution of (2.1) is uniformly stable.
(ii) If W1(‖φ‖) ≤ V (t, φ) ≤W2(‖φ‖) and V ′(2,1)(t, φ) ≤ −W3(‖φ‖).

Then, the zero solution of (2.1) is uniformly asymptotically stable.

Definition 2. [4] Solutions of (2.1) are uniform ultimate bounded for bound B at t = 0
if for each A > 0 there is a K > 0 such that φ ∈ CH , ||φ|| < A, t ≥ K imply that
x(t, 0, φ) < A.

Lemma 3. [4] Let V (t, ϕ) : R× C → R be continous and locally Lipschitz in ϕ. If

i) W0(|x(t)|) ≤ V (t, xt) ≤W1(|x(t)|) +W2(
∫ t

t−r
W3(|x(t)|)ds),

ii) V ′(2.1) ≤ −W3(|x(t)|) +M,
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for some M > 0, where Wi(i = 0, 1, 2, 3) are wedges, then the solutions of (2.1) are
uniformly bounded and uniformly ultimately bounded for bound B.

If (2.1) is periodic system with period T , we have the following result:

Lemma 4. [20] Suppose that, for α > 0, there exists L(α) > 0 such that |f(t, xt)| ≤ L(α),
for t ∈ [−T, 0] and ‖xt‖ ≤ α, and suppose that the solutions of (2.1) are equi-bounded
and equi-ultimately bounded for bound B, then there exists a periodic solution of (2.1) of
period T .

3 Main Results

We shall give here some assumptions which will be used on the functions that appeared in
equation (1.3). Suppose that there are positive constants a0, a1, b0, b1, c0, c1, g0, g1, h0, h1,
ϕ0, ϕ1, δ0, δ1, µ1 and µ2 such that the following conditions are satisfied:

i) 0 < a0 ≤ q(t) ≤ a(t) ≤ a1, 0 < b0 ≤ b(t) ≤ b1, 0 < c0 ≤ c(t) ≤ c1.

ii)
∫ +∞
−∞ (|q′(u)|+ |a′(u)|+ |b′(u)|+ |c′(u)|)du <∞.

iii) 0 < g0 ≤ g(x) ≤ g1, 0 < h0 ≤ h(x) ≤ h1, 0 < ϕ0 ≤ ϕ(x) ≤ ϕ1.

iv)
∫ +∞
−∞ (|g′(u)|+ |h′(u)|+ |ϕ′(u)|)du <∞.

v) f(0) = 0, f(x)
x
≥ δ0 > 0 (x 6= 0), and |f ′(x)| ≤ δ1 for all x.

vi) c1g1δ1
b0ϕ0

< µ1 <
a0h0
a1

and

µ2 = min
{

1, 2D2,
2g2

0D1

g2
1
(
2a1h1 + 2 + b1ϕ1

)
}
, where

D1 =
a0
(
µ1b0ϕ0 − c1δ1g1

)

g2
1

> 0, D2 = a0h0 − µ1a1
a1g1

> 0,

Before stating theorems, let us introduce the following notations:

Θ1(t) = 1
β1

( 1
g(x(t))

)′
,Θ2(t) = 1

β1

(h(x(t))
g(x(t))

)′
, Θ3(t) = 1

β1

(ϕ(x(t))
g(x(t))

)′
,

Θ4(t) = 1
β1

( q(t)
g(x(t))

)′
, Θ5(t) =

(
|q′(t)|+ |a′(t)|+ |b′(t)|+ |c′(t)|

)
,

Θ6(t) = 1
β3

(
h(x(t))

)′
, (3.1)

and

Ω(t) =
∫ t

0

[
|Θ1(s)|+ |Θ2(s)|+ |Θ3(s)|+ |Θ4(s)|+

( 1
β1

+ 1
β2

)
Θ5(s) + |Θ6(s)|

]
ds.
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Also,

γ1 = max
{
a1ϕ1
2g0

,
a1

2µ1
,
µ1a1h1
g2

0
+ b1ϕ1

2g0
+ c1

2µ1

}
,

γ2 = max
{
h1
g0

(µ2 + 1
2 + a1h1

g0
), a1ϕ1

2g0
,
a1α

2 ,
ϕ1b1
2g0

+ c1α

2

}
, such that α = a0b0ϕ0

c1g1a1
,

D3 = c0δ0 −
(1 + b1ϕ1)

2 , D4 = a0b0h0ϕ0 − a1c1δ1g1
g2

0
> 0.

Now, our main result on the boundedness and ultimate boundedness of (1.3) with e(t) 6=
0.

Theorem 5. If hypotheses (i)-(vi) hold true, and in addition the following conditions
are satisfied

vii) |e(t)| ≤ m,

viii) D3 > 0.

Then all solutions of (1.3) are uniformly bounded and uniformly ultimately bounded pro-
vided r satisfies

r < min
{

2D2 − µ2
δ1c1

,
2D3
δ1c1

,
2g3

0D4
δ1c1[g0(2 + µ2) + a1(µ1 + h1)(1 + g2

0)]

}
. (3.2)

Proof. We write the equation (1.3) as the following equivalent system




x′ = 1
g(x)y,

y′ = 1
q(t)z,

z′ = −a(t)h(x)
q(t)g(x) z − a(t)Θ2(t)y − b(t)ϕ(x)

g(x) y − c(t)f(x) + e(t)

+c(t)
∫ t

t−r

y(s)
g(x(s))f

′(x(s))ds.

(3.3)

Note that the continuity of the functions a, b, c, e, f, g, h, ϕ, f ′, g′, h′, and ϕ′

guarantees the existence of the solutions of (1.3) ( see [7], pp.15). It is assumed that the
right hand side of the system (3.3) satisfies a Lipschitz condition in x(t), y(t), z(t), and
x(t−r). This assumption guarantees the uniqueness of solutions of (1.3) ( see [7], pp.15).
We shall use as a tool to prove our main results a Lyapunov functionW = W (t, xt, yt, zt)
defined by

W (t, xt, yt, zt) = e−Ω(t)V (t, xt, yt, zt) = e−Ω(t)V, (3.4)
where

V = V1(t, xt, yt, zt) + V2(t, xt, yt, zt) + λ

∫ 0

−r

∫ t

t+s
y2(ξ)dξds,

V1 = µ1q(t)c(t)G(x, y) + µ1q(t)
2

(a(t)h(t)− µ1q(t)
g2(x)

)
y2 + 1

2
(
z + µ1q(t)

g(x) y
)2

+q(t)
2
(ϕ(t)b(t)

g(x) − c(t)δ1
µ1

)
y2, (3.5)
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V2 = a(t)c(t)h(x)F (x)− q(t)c2(t)g(x)
2b(t)ϕ(x) f2(x) + 1

2

(
z + a(t)h(x)

g(x) y + µ2x

)2

+q(t)b(t)ϕ(x)
2g(x)

(
y + c(t)f(x)g(x)

b(t)ϕ(x)

)2
+ 1

2µ2(1− µ2)x2, (3.6)

such that F (x) =
∫ x

0 f(u)du andG(x, y) = F (x)+ 1
µ1
f(x)y+ δ1

2µ2
1
y2. λ is positive constant

which will be specified later in the proof. We easily rearrange the above functional V1 as
follows

V1 = µ1q(t)c(t)F (x) + q(t)b(t)ϕ(x)
2g(x)

(
y + c(t)f(x)g(x)

b(t)ϕ(x)

)2
− q(t)c2(t)g(x)f2(x)

2b(t)ϕ(x)

+1
2(z + µ1q(t)

g(x) y)2 + µ1q(t)(a(t)h(x)− µ1q(t))
2g2(x) y2. (3.7)

Using (i), (iii) and (vi) we have

µ1q(t)(a(t)h(x)− µ1q(t))
2g2(x) ≥ µ1a0(a0h0 − µ1a1)

2g2(x) > 0.

Thus there exists a positive constant δ2 such that

1
2(z + µ1q(t)

g(x) y)2 + µ1q(t)(a(t)h(x)− µ1q(t))
2g2(x) y2 ≥ δ2y2 + δ2z

2. (3.8)

On the other hand, using the assumptions (i), (iii), (v) and (vi) we obtain

µ1q(t)c(t)F (x)− q(t)c2(t)g(x)f2(x)
2b(t)ϕ(x) ≥ µ1q(t)c(t)

∫ x

0
(1− c(t) g(x)f ′(u)

µ1b(t)ϕ(x) )f(u)du

≥ µ1a1c1

∫ x

0
(1− g1c1δ1

µ1b0ϕ0
)f(u)du

≥ δ3F (x),

where δ3 = µ1a1c1(1− g1c1δ1
µ1b0ϕ0

) > 0. Hence, from the last inequality, (3.8) and (3.7),

V1 ≥ δ3F (x) + δ2y
2 + δ2z

2. (3.9)

Clearly, using hypothesis (v) we have the following estimate

V1 ≥
δ3δ0

2 x2 + δ2y
2 + δ2z

2. (3.10)

By adding and subtracting some terms together with condition (i) we can estimate the
functional V2 above thus

V2 ≥ q(t)c(t)H(x, y) + 1
2

(
z + h(x)

g(x) y + µ2x

)2
+ 1

2µ2(1− µ2)x2

+q(t)
2

(
b(t)ϕ(x)
g(x) − αc(t)

)
y2,

where
H(x, y) = h(x)F (x) + f(x)y + α

2 y
2.
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From condition (vi) we have b(t)ϕ(x)
g(x) − αc(t) ≥ 0, and 1− µ2 ≥ 0, it follows that

V2 ≥ q(t)c(t)H(x, y).

But

H(x, y) = h(x)F (x) + α

2
(
y + 1

α
f(x)

)2 − 1
2αf

2(x)

≥ h(x)F (x)− 1
2αf

2(x)

≥
∫ x

0

(
h0 −

δ1
α

)
f(u)du.

From condition (vi) H(x, y) ≥ 0. Hence, by (i) we get

V2 ≥ a0c0H(x, y). (3.11)

It is easily seen from (3.6) that

V2 ≥ a(t)c(t)h(x)F (x)− q(t)c2(t)g(x)
2b(t)ϕ(x) f2(x)

≥ c(t)
(
a0h0F (x)− a1c(t)g1

2b0ϕ0
f2(x)

)

≥ c1

∫ x

0
(a0h0 −

a1g1c1δ1
b0ϕ0

)f(u)du

≥ δ4F (x),

where δ4 = c1
(
a0h0 −

a1c1g1δ1
b0ϕ0

)
> 0. Thus from (v) we obtain,

V2 ≥
δ4δ0

2 x2. (3.12)

Clearly, from (3.12), (3.10) and the fact that the integral
∫ 0
−r
∫ t
t+s y

2(ξ)dξds is positive,
we deduce that

V ≥ δ2y2 + δ2z
2 + δ5δ0

2 x2,

where δ5 = δ3 + δ4. Further simplification of the last inequality gives

V ≥ k(x2 + y2 + z2), (3.13)
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where k = min{δ2; δ5δ02 }. In view of the hypotheses (i)-(iv) we have

Ω(t) =
∫ t

0

[
|Θ1(s)|+ |Θ2(s)|+ |Θ3(s)|+ |Θ4(s)|+

( 1
β1

+ 1
β2

)
Θ5 + |Θ6(s)|

]
ds

≤ (1 + ϕ1 + h1 + a1)
β1

∫ σ2(t)

σ1(t)

|g′(u)|
g2(u) du+ 1

β1

∫ σ2(t)

σ1(t)

|ϕ′(u)|+ |h′(u)|
g(u) du

+ 1
β3

∫ σ2(t)

σ1(t)
|h′(u)| du+ 1

β1g0

∫ t

0
|q′(u)|du

+
( 1
β1

+ 1
β2

) ∫ t

0
(|q′(u)|+ |a′(u)|+ |b′(u)|+ |c′(u)|)du

≤ (1 + ϕ1 + h1 + a1)
β1g2

0

∫ +∞

−∞
|g′(u)| du+ 1

β1g0

∫ +∞

−∞

(
|ϕ′(u)|+ |h′(u)|

)
du

+ 1
β3

∫ +∞

−∞
|h′(u)| du+ 1

β1g0

∫ +∞

−∞
|q′(u)|du

+
( 1
β1

+ 1
β2

) ∫ +∞

−∞
(|q′(u)|+ |a′(u)|+ |b′(u)|+ |c′(u)|)du ≤ N <∞,

where σ1(t) = min{x(0), x(t)}, and σ2(t) = max{x(0), x(t)}. Therefore we can find a
continuous function W1(|Φ(0)|) with

W1(|Φ(0)|) ≥ 0 and W1(|Φ(0)|) ≤W (t,Φ).

The existence of a continuous function W2(‖φ‖) which satisfies the inequality W (t, φ) ≤
W2(‖φ‖), is easily verified.

For the time derivative of the Lyapunov functional V (t, xt, yt, zt), along the trajectories
of the system (3.3), we have

V ′(3.3) = V ′1(3.3)
+ V ′2(3.3)

+ λry2 − λ
∫ t

t−r
y2(ξ)dξ,

where

V ′1(3.3)
= µ1

(
q(t)c(t)

)′
G(x, y) +

[
q(t)c(t)g(x)f ′(x)− µ1q(t)b(t)ϕ(x)

g2(x)

]
y2

+
[
µ1q(t)− a(t)h(x)

q(t)g(x)

]
z2 − µ1a(t)q(t)

2
h(x)
g(x) Θ1(t)y2

+a(t)
(
yz + µ1q(t)

(
1− 1

g(x)
)
y2
)

Θ2(t) + q(t)b(t)
2 Θ3(t)y2 + µ1Θ4(t)yz

+µ1
(
a(t)q(t)

)′ h(x)
g2(x)y

2 + 1
2
(
b(t)q(t)

)′ϕ(x)
g(x) y

2 − 1
2µ1

(
c(t)q(t)

)′
y2

+µ1
q(t)
g(x)e(t)y + e(t)z + c(t)

(
z + µ1q(t)

g(x) y

)∫ t

t−r

y(s)
g(x(s))f

′(x(s))ds.
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In view of conditions (i), (iii) and (v) we get

V ′1(3.3)
≤ µ1AΘ5(t)G(x, y)−D1y

2 −D2z
2 + γ1Θ5(t)y2

+µ1a
2
1

2
h1
g0
|Θ1(t)|y2 + a1b1

2 |Θ3(t)|y2 +
(
a1|yz|+ µ1a

2
1
(
1 + 1

g0

)
y2
)
|Θ2(t)|

+µ1|Θ4(t)||yz|+ µ1
a1
g0
|y|m+ |z|m

+c(t)
(
z + µ1q(t)

g(x) y

)∫ t

t−r

y(s)
g(x(s))f

′(x(s))ds,

where A = max
{
a1, c1

}
. Using the Schwartz inequality |uv| ≤ 1

2 (u2 + v2), we obtain

µ1a
2
1

2
h1
g0
|Θ1(t)|y2 + a1b1

2 |Θ3(t)|y2 +
(
a1|yz|+ µ1a

2
1
(
1 + 1

g0

)
y2
)
|Θ2(t)|

+µ1|Θ4(t)||yz| ≤ k1

[
|Θ1(t)|+ |Θ2(t)|+ |Θ3(t)|+ |Θ4(t)|

]
(y2 + z2),

where k1 = max{µ1
2 (1 + h1

g0
), 1

2(1 + µ1
g0

), 1
2}.

From condition (v) and the Schwartz inequality, we obtain the following

c(t)µ1q(t)
g(x) y

∫ t

t−r

y(s)
g(x(s))f

′(x(s))ds ≤ δ1µ1a1c1r

2g0
y2 + µ1a1c1δ1

2g3
0

∫ t

t−r
y2(ξ)dξ, (3.14)

and
c(t)z

∫ t

t−r

y(s)
g(x(s))f

′(x(s))ds ≤ δ1c1r

2 z2 + δ1c1
2g2

0

∫ t

t−r
y2(ξ)dξ.

After some rearrangements we get

V ′1(3.3)
≤ µ1AΘ5(t)G(x, y)−

[
D1 −

µ1a1δ1c1
2g0

r

]
y2 −

[
D2 −

δ1c1r

2

]
z2 (3.15)

+γ1Θ5(t)y2 + k1

[
|Θ1(t)|+ |Θ2(t)|+ |Θ3(t)|+ |Θ4(t)|

]
(y2 + z2)

+µ1
a1
g0
|y|m+ |z|+ δ1c1

2g2
0

(1 + µ1a1
g0

)
∫ t

t−r
y2(ξ)dξ.

In addition,

V ′2(3.3)
=

(
a(t)c(t)

)′
h(x)F (x) +

(
q(t)c(t)

)′
f(x)y + a(t)c(t)Θ6(t)F (x) + µ2

a(t)h(x)
g2(x) y2

+q(t)c(t)f ′(x)g(x)− a(t)b(t)h(x)ϕ(x)
g2(x) y2 + µ2

g(x)

(
1− b(t)ϕ(x)

)
xy + µ2

g(x)yz

+b(t)q(t)
2 Θ3(t)y2 − µ2c(t)xf(x) + µ2xe(t) + a(t)h(x)

g(x) ye(t) + ze(t)

+a′(t)h(x)
g(x)

(
µ2xy + yz + a(t)h(x)

g(x) y
2)+ 1

2
(
b(t)q(t)

)′ϕ(x)
g(x) y

2

+c(t)(µ2x+ z + a(t)h(x)
g(x) y)

∫ t

t−r

y(s)
g(x(s))f

′(x(s))ds.
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We can now proceed analogously to (3.14)

µ2c(t)x
∫ t

t−r

y(s)
g(x(s))f

′(x(s))ds ≤ µ2δ1c1r

2 x2 + µ2δ1c1
2g2

0

∫ t

t−r
y2(ξ)dξ,

a(t)c(t)h(x)
g(x) y

∫ t

t−r

y(s)
g(x(s))f

′(x(s))ds ≤ δ1a1c1h1r

2g0
y2 + a1h1δ1c1

2g3
0

∫ t

t−r
y2(ξ)dξ,

and

c(t)z
∫ t

t−r

y(s)
g(x(s))f

′(x(s))ds ≤ δ1c1r

2 z2 + δ1c1
2g2

0

∫ t

t−r
y2(ξ)dξ.

These estimates and Schwartz inequality imply the following

V ′2(3.3)
≤

[(
a(t)c(t)

)′ −
(
q(t)c(t)

)′
]
h(x)F (x) +

(
q(t)c(t)

)′
H(x, y)

+a(t)c(t)Θ6(t)F (x)− µ2

[
c0δ0 −

(1 + b(t)ϕ(t))
2

]
x2

+q(t)c(t)f ′(x)g(x)− a(t)b(t)h(x)ϕ(x)
g2(x) y2

+ µ2
2g2(x)

(
2 + b(t)ϕ(x) + 2a(t)h(x)

)
y2

+µ2
2 z2 + b(t)q(t)

2 Θ3(t)y2 +
(
µ2|x|+

a(t)h(x)
g(x) |y|+ |z|

)
m

+a′(t)h(x)
g(x)

(
µ2xy + yz + a(t)h(x)

g(x) y
2)+ 1

2
(
b(t)q(t)

)′ϕ(x)
g(x) y

2

−α2
(
q(t)c(t)

)′
y2 + µ2δ1c1r

2 x2 + δ1a1c1h1r

2g0
y2 + δ1c1r

2 z2

+δ1c1
2g2

0

(
µ2 + a1h1

g0
+ 1
) ∫ t

t−r
y2(ξ)dξ.

It is easy to check that by (i), (iii) and (v) we have

[(
a(t)c(t)

)′ −
(
q(t)c(t)

)′
]
h(x)F (x) ≤

[
|
(
a(t)c(t)

)′|+ |
(
q(t)c(t)

)′|
]
h1δ1

2 x2

≤ h1δ1B

2 Θ5(t)x2,

such that B = max
{

2a1, c1
}
. By conditions (i), (iii) and (v) we have

q(t)c(t)f ′(x)g(x)− a(t)b(t)h(x)ϕ(x)
g2(x) ≤ a1c1δ1g1 − a0b0h0ϕ0

g2
0

< 0.
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Using condition (i) and (iii) again we get

V ′2(3.3)
≤ h1δ1B

2 Θ5(t)x2 +AΘ5(t)H(x, y) + a1c1|Θ6(t)|F (x)− µ2D3x
2

−
[
D4 −

µ2
2g2

0

(
2 + b1ϕ1 + 2a1h1

)]
y2 + µ2

2 z2 + b1a1
2 |Θ3(t)|y2

+
(
µ2|x|+

a1h1
g0
|y|+ |z|

)
m+ γ2Θ5(t)(x2 + y2 + z2) (3.16)

+µ2δ1c1r

2 x2 + δ1a1c1h1r

2g0
y2 + δ1c1r

2 z2 + δ1c1
2g2

0

(
µ2 + a1h1

g0
+ 1
) ∫ t

t−r
y2(ξ)dξ.

Combining (3.16), (3.15) and condition (vi) we get

V ′(3.3) ≤ AΘ5(t)
(
µ1G(x, y) +H(x, y)

)
+ a1c1|Θ6(t)|F (x)

−µ2

[
D3 −

δ1c1r

2

]
x2 −

[
D4 − r(λ+ δ1a1c1µ1

2g0
+ δ1a1c1h1

2g0
)
]
y2

−
[
D2 −

µ2
2 −

δ1c1r

2

]
z2 + µ2|x|m+ h1 + µ1

g0
|y|m+ 2|z|m

+k2

[
|Θ1(t)|+ |Θ2(t)|+ |Θ3(t)|+ |Θ4(t)|+ Θ5(t)

]
(x2 + y2 + z2)

+
(
δ1c1[g0(2 + µ2) + a1(µ1 + h1)]

2g3
0

− λ
)∫ t

t−r
y2(ξ)dξ,

where k2 = max
{
γ1 + γ2,

h1δ1B

2 , k1 + 1
2

}
.

Choosing δ1c1[g0(2 + µ2) + a1(µ1 + h1)]
2g3

0
= λ, since r and D3 satisfy (3.2) and condition

(viii) respectively, there is η > 0 such that

V ′(3.3) ≤ AΘ5(t)
(
µ1G(x, y) +H(x, y)

)
+ a1c1|Θ6(t)|F (x)

−η(x2 + y2 + z2) + ηM(|x|+ |z|+ |y|)
+k2

(
|Θ1(t)|+ |Θ2(t)|+ |Θ3(t)|+ |Θ4(t)|+ Θ5(t)

)
(x2 + y2 + z2),(3.17)

where

η = min
{
D4 − r(λ+ δ1a1c1µ1

2g0
+ δ1a1c1h1

2g0
), D3 −

δ1c1r

2 , D2 −
µ2
2 −

δ1c1r

2

}
.

M = m

η
max

{
2, h1 + µ1

g0
, µ2

}
.

The above inequality may be written as

V ′(3.3) ≤ AΘ5(t)
(
µ1G(x, y) +H(x, y)

)
+ a1c1|Θ6(t)|F (x)

−η2 (x2 + y2 + z2) + k2
(
|Θ1(t)|+ |Θ2(t)|+ |Θ3(t)|+ |Θ4(t)|

)
(y2 + z2)

−η2 [(x−M)2 + (y −M)2 + (z −M)2] + 3η
2 M2

≤ AΘ5(t)
(
µ1G(x, y) +H(x, y)

)
+ a1c1|Θ6(t)|F (x)− η

2 (x2 + y2 + z2)

+k2
(
|Θ1(t)|+ |Θ2(t)|+ |Θ3(t)|+ |Θ4(t)|+ Θ5(t)

)
(x2 + y2 + z2) + 3η

2 M2.
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It is easily verified that

W ′(3.3) = e−Ω(t)

[
V ′(3.3) −

(
|Θ1(t)|+ |Θ2(t)|+ |Θ3(t)|+ |Θ4(t)|

+
( 1
β1

+ 1
β2

)
Θ5(t) + |Θ6(t)|

)
V

]
.

Using the fact that

G(x, y) = F (x) + δ1
2µ2

1

(
y + µ1

δ1
f(x)

)2 − 1
2δ1

f2(x)

≥ F (x)− 1
2δ1

f2(x)

=
∫ x

0

(
1− f ′(u)

δ1

)
f(u)du ≥ 0,

since 1− f ′(u)
δ1
≥ 0. It can be followed from (3.5) and (iii) that there exist δ6 > 0 such

that
V1 ≥ µ1a0c0G(x, y) + δ6y

2 + δ6z
2. (3.18)

Combining (3.9) and (3.12) we have

V1 ≥ δ3F (x) + δ2y
2 + δ2z

2 and V2 ≥
δ4δ0

2 x2.

From (3.11) and (3.18) we get

V ≥ µ1a0c0G(x, y) + δ6y
2 + δ6z

2 + a0c0H(x, y).

Hence, by (3.13) and the last inequalities we have the following estimate

W ′(3.3) ≤ e−Ω(t)

[
V ′(3.3) −

(
k
(
|Θ1(t)|+ |Θ2(t)|+ |Θ3(t)|+ |Θ4(t)|

+ 1
β1

Θ5(t)
)(
x2 + y2 + z2)

+ 1
β2

Θ5(t)
(
µ1a0c0G(x, y)δ6y2 + δ6z

2 + a0c0H(x, y)
)

+|Θ6(t)|
(
δ3F (x) + δ2y

2 + δ2z
2 + δ4δ0

2 x2)
)]

.

So choosing β1 = k

k2
, β2 = a0c0

A
and β3 = δ3

a1c1
this reduces to

W ′(3.3)(t, xt, yt, zt) ≤ L
[
−η2 (x2 + y2 + z2) + 3η

2
2]
, for some L > 0.

Hence the conclusions of Theorem 5 can be followed from Lemma 3, this completes the
proof of Theorem 5

The following Theorem being a consequence of Theorem 5 and Lemma 4
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Theorem 6. If hypotheses of Theorem 5 be satisfied and a, b, c, e, q are periodic
functions of period T , then there exists at the east periodic solution of system (1.3) with
the period T .
Proof. It only remains to verify using the assumptions of Theorem 5 that the conditions
of Lemma 4 follow easily.

Example 7. We consider the following third order delay differential equation
[
ln(3 + cos t)

[
( cos(x)
1 + x2 + 4)x′(t)

]′
]′

+ (2ln(5 + 2 cos t)
( sin x+ 3ex + 3e−x

ex + e−x
x′(t)

)′

+(3ln(2 + cos t) + 1)( sin(x)
1 + x2 + 11)x′(t)

+(1
2 ln(4 + cos t))

[
x(t− r) + x(t− r)

1 + x2(t− r)

]
= 3 sin t+ 5. (3.19)

It can be seen that

2ln3 = a0 ≤ a(t) = 2ln(5 + 2 cos t) ≤ 2ln7, a′(t) = − 4 sin t
5 + 2 cos t ,

1 = b0 ≤ b(t) = 3ln(2 + cos t) + 1 ≤ 1 + 3ln3, b′(t) = −3 sin t
2 + cos t ,

ln3
2 = c0 ≤ c(t) = 1

2 ln(4 + cos t) ≤ ln5
2 , ≤ c′(t) = 1

2
sin t

5 + cos t ,

ln2 ≤ q(t) = ln(3 + cos t) ≤ 2ln2,≤ q′(t) = − sin t
3 + cos t ,

50 ≤ f(x)
x

= 50 + 1
1 + x2 with x 6= 0, |f ′(x)| ≤ δ1 = 2, t ≥ 0,

Moreover,

2 ≤ e(t) = 3 sin t+ 5 ≤ 8, 3 ≤ g(x) = cos(x)
1 + x2 + 4 ≤ 5,

10 ≤ ϕ(x) = sin(x)
1 + x2 + 11 ≤ 12, 5

2 ≤ h(x) = sin x+ 3ex + 3e−x
ex + e−x

≤ 7
2 .

Also, 0.80 = c1g1δ1
b0ϕ0

< µ1 <
a0h0
a1

= 1.41 and 50 = δ0 >
1 + ϕ1b1

2c0
= 47.83.

It is straightforward to verify that
∫ +∞

−∞
|g′(u)| du ≤

∫ +∞

−∞

[∣∣∣∣
sin u

1 + u2

∣∣∣∣+
∣∣∣∣

2u cosu
(1 + u2)2

∣∣∣∣
]
du

≤ π + 2.
Similarly,

∫ +∞

−∞
|ϕ′(u)| du ≤

∫ +∞

−∞

[∣∣∣∣
cosu

1 + u2

∣∣∣∣+
∣∣∣∣

2u sin u
(1 + u2)2

∣∣∣∣
]
du

≤ π + 2.
∫ +∞

−∞
|h′ (u)| du =

∫ +∞

−∞

∣∣∣∣∣
(eu + e−u) cosu− (eu − e−u) sin u

(eu + e−u)2

∣∣∣∣∣ du

≤
∫ +∞

−∞

(
1

eu + e−u
+ u

(eu + e−u)2
(
eu − e−u

)
)
du = π.
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∫ +∞

−∞
|q′(u)| du =

∫ +∞

−∞
| sin u
3 + cosu |du ≤

∫ +∞

−∞

1
3 + cosudu

=
∫ +π

2

−π2

1
2 + u2 du = 2√

2
tan−1( π

2
√

2
).

∫ +∞

−∞
|a′(u)| du =

∫ +∞

−∞
| 4 sin u
5 + 2 cosu |du ≤

∫ +∞

−∞

4
5 + 2 cosudu

=
∫ +π

2

−π2

8
7 + 3u2 du = 16√

21
tan−1(π

√
3

2
√

7
).

∫ +∞

−∞
|b′(u)| du = 3

∫ +∞

−∞
| sin u
2 + cosu |du ≤ 3

∫ +∞

−∞

1
3 + cosudu

= 3
∫ +π

2

−π2

1
2 + u2 du = 4√

3
tan−1( π

2
√

3
).

∫ +∞

−∞
|c′(u)| du = 1

2

∫ +∞

−∞
| sin u
4 + cosu |du ≤

1
2

∫ +∞

−∞

1
4 + cosudu

=
∫ +π

2

−π2

1
5 + 3u2 du = 2√

15
tan−1(π

√
3

2
√

5
).

Thus all the assumptions of Theorem 5. hold, this shows that every solution of (3.19) is
uniformly bounded and uniformly ultimately bounded. Since a, b, c, e, q are periodic
functions of period 2π, then there exists a periodic solution of (3.19) of period 2π.

For the case e(t) = 0, the equation (1.3) is equivalent to the system




x′ = 1
g(x)y,

y′ = 1
q(t)z,

z′ = −a(t)h(x)
q(t)g(x) z − a(t)Θ2(t)y − b(t)ϕ(x)

g(x) y − c(t)f(x) + c(t)
∫ t

t−r

y(s)
g(x(s))f

′(x(s))ds.

(3.20)
The following result is introduced.

Corollary 8. One assumes that all the assumptions (i)-(vi) and (vii) hold. Then the
zero solution of equation (1.3) is uniformly asymptotically stable.

Proof. If e(t) = 0, similarly to above proof, the inequality (3.17) becomes

V ′(3.20) ≤ AΘ5(t)
(
µ1G(x, y) +H(x, y)

)
+ a1c1|Θ6(t)|F (x)− η(x2 + y2 + z2)

+k2
(
|Θ1(t)|+ |Θ2(t)|+ |Θ3(t)|+ |Θ4(t)|+ Θ5(t)

)
(x2 + y2 + z2),

Hence
W ′(3.20)(t, xt, yt, zt) ≤ L

[
−η(x2 + y2 + z2)

]
, for some L > 0.

Thus, all the conditions of Lemma 1 are satisfied. This shows that the zero solution of
equation (1.3) is uniformly asymptotically stable.
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4 Conclusions

Liapunov’s method has proved to be a popular and useful technique in the study of the
stability and boundedness of solutions of higher order non-linear differential equations.
In this paper we examine the boundedness and ultimate boundedness of solutions for
certain third order non-linear non-autonomous differential equations with delay. Suffi-
cient conditions were obtained for the existence of at least one periodic solution of the
equation. Finally, we investigate the asymptotic stability of the zero solution of the same
equation for the case e(t) = 0.
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Abstract
We present another elementary proof of Euclid’s Theorem concerning the infinitude of the prime numbers.
This proof is “geometric” in nature and it employs very little beyond the concept of “proportion.”
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Euclid’s Theorem ([2], Book IX, Proposition 20) establishes the existence of infinitely
many prime numbers. It has been one of the cornerstones of mathematical thought.
More than a dozen different proofs of this result, with many clever simplifications and
variants, have been published over the past two millennia (for lists of proofs and good
discussions of their historical relevance, see [1], [3], [4] and [6]). A decade ago, in [5], we
gave a short direct proof of Euclid’s Theorem that has received a surprising amount of
attention. Here we would like to present another idea, not quite as simple as the first
one, but perhaps equally fundamental. It makes use of the ancient concept of proportion,
the theory of which was perfected by Pythagoras, Eudoxus and finally Euclid himself (a
fact demonstrated by the results summarized in Book V of his Elements [2]).

We rephrase the problem slightly. The question we ask is: Why cannot products of
powers of a finite number of primes cover the entire set N?

We investigate the factorization geometrically and consider the canonical representa-
tion as an operation (on exponents) in two dimensions, with single prime powers repre-
senting what we will call the “vertical” and their products the “horizontal” dimensions.

Vertical Dimension. For a fixed prime number p, and 0 ≤ i ≤ m, there are m + 1
positive integers that can be written in the form pi, the largest of which is pm. Since,
clearly, m + 1 ≤ (1 + 1)m = 2m ≤ pm, many integers are not of this form; so for the
proportion ∇(pm) of these powers (up to pm) we not only have ∇(pm) < 1, for all m > 1
(as well as ∇(pm)→ 0, as m→∞), but also ∇(pm) > ∇(pm+1), because

m + 1
pm

>
m + 2
pm+1 ⇐⇒ 1− 1

m + 2 >
1
p

. (1)

Thus, considered vertically, the proportions are monotonically decreasing.
Copyright c© 2016 Matej Bel University
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Horizontal Dimension. Recall that a function f : N → C is called multiplicative, if
f(1) = 1 and f(ab) = f(a)f(b), for all a, b ∈ N with gcd(a, b) = 1. A critically important
property of the proportions ∇ is their multiplicativity. For all k ≥ 2, let us define

∇(pm1
1 · · · pmk

k ) := #{n = pa1
1 · · · pak

k : 0 ≤ aj ≤ mj , for 1 ≤ j ≤ k}
pm1

1 · · · pmk

k

,

then, for all permutations of exponents mi, we have

∇(pm1
1 · · · pmk

k ) = ∇(pm1
1 ) · · · ∇(pmk

k ) < 1. (2)

In other words, the multiplicativity of ∇ implies the horizontal monotonicity.
Combining these two monotonic orthogonal trends is enough to prove the infinitude

of the prime numbers. This is because the vertical dimension is (trivially) infinite, and
(1) implies an ever-increasing sparseness of integers represented by a given prime power;
while from the monotonicity property of (2) it follows that the same will remain true
upon any finite composition of such powers, and therefore only an infinite horizontal
dimension could possibly compensate for the growing deficit and create a complete cover
of N, guaranteed by the unique factorization theorem.
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