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Our journal Acta Universitatis Matthiae Belii, se-
ries Mathematics (shortly, Acta UMB Math), was
founded in 1993 by Alfonz Haviar, a father of the
author of this editorial (for an editorial dedicated to
the seventies of the founder see [1]). The journal pub-
lishes original research articles and survey papers in
selected areas of mathematics and theoretical com-
puter science which are, said in a pragmatic way,
defined as the union of the areas of interest of the
members of its Editorial Board. The printed edi-
tion of Acta UMB Math has from its beginning been
covered by the world renowned reviewing mathemat-
ical journals Zentralblatt MATH of European Math-
ematical Society, founded in 1931, and Mathematical
Rewiews, founded in 1940, of American Mathemati-
cal Society with its famous mathematical electronic
database MathSciNet since 1996.

During the twenty-five years of its existence the
journal has been led by three editors-in-chief: Alfonz
Haviar for the first eight volumes in 1993-2000, Ro-
man Nedela for the next seven volumes in 2001-2009
(no volumes appeared in the years 2002 and 2008)

Alfonz Haviar, the founder of Acta
UMB Math.

and Miroslav Haviar for the subsequent ten volumes in 2010-2017 (two volumes ap-
peared in the years 2010 and 2011). As the managing editors of the journal served
Gabriela Monoszova in 1993-2000, Vladimir Janis in 1994, Dana Smutnd in 2001, Petr
Hlinény in 2002—2011 excepting 2009 and Volume 19, Maridn Grendar in 20052010 ex-
cepting 2009, Miroslav Haviar in 2009 and Jén Karabas since Volume 19 in 2011 (however,
Jan Karaba$§ has served the journal as its technical editor already since 2004).

Online edition of Acta UMB Math was founded in 2013 to make the publication
process more flexible and to shorten it: every article accepted for publication into Acta

Copyright (© 2017 Matej Bel University



4 Miroslav Haviar

UMB Math almost immediately appears in the online edition. So far all articles from
the online version have been selected for publishing in the printed edition. However, the
idea since the birth of the online version has been that in case of possibly many articles
in the online edition only some would be selected for the printed edition which always
appears towards the end of the calendar year.

The journal started with publishing papers of members of Banska Bystrica mathemat-
ical community (the first contributors from outside the city were Pavol Hic from Trnava
and Judita Lihova from Kosice in Volume 3 and the first contributor from abroad was An-
drew Bucki from Oklahoma City, USA, in Volume 4). Until Volume 14 in 2007, roughly
half of the contributors were from Banskd Bystrica mathematical community. We would
still be very pleased with having members of Banskd Bystrica mathematical community
and more generally, of Slovak mathematical community, as prevailing contributors for
Acta UMB Math. The “publishing culture” in Slovakia that has so dramatically changed
over the last decade has unfortunately led to less and less Slovak authors appearing in
the journal. The journal has also been recently offered an Open Access platform within
one of the global scientific publishing houses De Gruyter (headquartered in Berlin, with
offices in Basel, Beijing, Boston and Munich), but for various reasons the move to De
Gruyter Open has not yet happened.

The journal would welcome high quality long papers in the spirit of Transactions of
American Mathematical Society — the journal was privileged to publish two such papers
by Brian A. Davey (Melbourne) as well as by Yan-Quan Feng (Beijing) with Roman
Nedela ( Banska Bystrica) in Volume 13 in 2006. Recent invitations to renowned authors
with connections to Banska Bystrica to publish high quality survey papers in Acta UMB
Math have led to two such great contributions: by Alex Rosa from Canada in Volume
23 (2015) and by Mikhail H. Klin from Israel and Andrew J. Woldar from the USA
in the present Volume 25. We believe that not only the 25th anniversary, but mainly
the wonderful 58 pp. survey article by Misha and Andy, with 229 references, make the
present volume so special.

On behalf of the present Editorial Board of Acta UMB Math I wish to thank all
contributors of the present jubilee issue, in particular Misha and Andy. Let me also
thank all people who over the past 25 years contributed by their articles or by their
work (editorial, reviewing, managerial or technical) to the journal. I wish the journal to
celebrate its other jubilees in good shape and with having its name being wider recognized
on the Slovak and worldwide publishing scenes.
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[1] M. Haviar and L. Snoha, Fonzo Haviar is seventy this year, Special issue dedicated to 70th
birthday of Alfonz Haviar, Acta Universitatis Matthiae Belii, series Mathematics 15 (2009),
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Abstract

Discovery of the strongly regular graph I with parameters (100,22, 0, 6) is almost universally attributed
to D. G. Higman and C. C. Sims, stemming from their innovative 1968 paper. While such attribution
is surely appropriate, this graph has a most intriguing history that for decades has remained hidden to
the vast majority of mathematicians. In this paper, we reveal that I" was in fact constructed as early as
1956 by Dale M. Mesner, who later established its uniqueness in 1964. We provide a detailed account of
both independent discoveries, paying special attention to differing perspectives, styles, motivation and
methodologies of these accomplished mathematicians, and discuss how their contrasting presentations
influenced future generations of researchers. It is also hoped that the new analysis of I' we arrange in
Section 11 will stimulate a renewed interest in the problem of classifying all primitive strongly regular
graphs with no triangles.
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Keywords Algebraic graph theory, association scheme, strongly regular graph (SRG), Higman-Sims graph,
negative Latin square-type graph, triangle-free graph, balanced incomplete block design (BIBD), quasi-
symmetric design (QSD), 3-design, negative Latin square design, Witt design, Steiner system, biplane,
generalized quadrangle, spread, Higman-Sims group, Mathieu group.
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1 Introduction

The discovery of a rank 3 graph on 100 vertices by Higman and Sims [101] was a definite
breakthrough in group theory and combinatorics. Aside from its extraordinary signifi-
cance on the dawn of the era of the classification of finite simple groups, this discovery
served also as a strong impetus for further development of the theory of rank 3 groups.

It turns out that the same graph I' on 100 vertices was discovered 12 years earlier and
described in much detail in the Ph.D. thesis [159] of Dale Marsh Mesner, see also [160].
While the motivating factors and employed techniques of Mesner and Higman & Sims
are essentially different, it is quite surprising to observe that the final form in which this
graph was independently described is nearly identical.

Our objectives in this paper are multifold:

*The author MK gratefully acknowledges support from the Scientific Grant Agency of the Slovak Re-
public under the number VEGA-1/0988/16
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6 Mikhail H. Klin, Andrew J. Woldar

e to provide an historic account of the origins of the graph I'; in particular to recreate
the drama of competing ideas from diverse scientific traditions, backgrounds and
experiences;

e to describe how these independent discoveries influenced future development in
group theory and combinatorics;

e to pay tribute to Dale M. Mesner by promoting awareness of his results to a wide
mathematical audience, in particular to convince the reader that Mesner’s ideas,
hidden from view for so many years, still have fresh and promising potential.

A further hope is that our text will help to promote future investigations of such
extremely rare objects as primitive strongly regular graphs with no triangles.

We do not aim to provide the reader with all necessary preliminaries, however there
is an abundant supply of references throughout. For the purpose of general background
information, the text [42] is extraordinary in its scope and accessibility. The survey [73]
should also be helpful (see, as well, the references cited in Section 2). For a good initial
exposure to the life and mathematics of Dale Mesner we recommend [118], as well as [10]
which fulfills a similar role for Donald G. Higman.

The following conventions will be used freely throughout the text: The abbreviation
(P)BIBD stands for “(partially) balanced incomplete block design”. Likewise, SRG stands
for “strongly regular graph”. Occasionally we write SRG(v, k, \, u) to denote an SRG
with the indicated parameters, although these parameters will sometimes stand alone.
An SRG T is said to be primitive if both I" and its complementary graph I' are connected.
The standard parameters for a BIBD are denoted by (v, b, r, k, A); an appended caret is
used (e.g., U replacing v) when it is necessary to distinguish these parameters from those
of an SRG. Intersection numbers of an association scheme are denoted by pfj. Often, we
shall abuse notation by freely identifying a (symmetric) 2-class association scheme with
its corresponding SRG (or pair of SRGs). We use the abbreviation AGT for “algebraic
graph theory”. Likewise, due to its sheer frequency alone, we abbreviate the name “Dale
Mesner” by DM. In the same spirit we freely append DM to various nouns (e.g., DM-
theory, DM-approach, DM-series, etc.).

The balance of our paper is organized as follows. Sec. 2 is devoted to the most
significant preliminaries, exposing the reader to the core essentials of our exposition. Sec.
3 is a microcosm of the entire story: a brief summary with minimum detail. A rather
thorough account of the texts [159] and [160] appears in Secs. 4 and 5, respectively. Secs.
6-8 introduce the reader to the main techniques, ideas and results of DM as they relate to
the graph SRG(100, 22,0, 6). These sections are meticulously detailed, as are Secs. 9 and
10 which deal with the Witt design [224] and the Higman-Sims group [101], respectively.
The authors’ own personal vision of DM’s construction of SRG(100, 22,0, 6) is presented
in Sec. 11. Here, our own (re)construction relies on the use of computer algebra packages,
with the helpful assistance of Matan Ziv-Av. In Sec. 12 we survey many important
developments that cascaded from the earlier seminal ideas of DM and others. In Sec. 13
we consolidate all extra material that we feel may be of compelling interest to the reader,
but which we intentionally omitted from the main expository thread so as not to disrupt
the flow of our presentation. Finally, in Sec. 14 we briefly explain how the current text
evolved from its earlier incarnations over the course of a dozen or so years.

In broad terms the genre of our paper is dynamic survey; thus we hope to create
its future updates. Any new and illuminating information relevant to our presentation
would be greatly appreciated.
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2 Preliminaries

Our goals in this section are quite modest: to recall central definitions of AGT, to
establish notation and terminology, and to warm up the reader to a few simple examples
treated in a deliberately naive fashion.

Let Q be a finite set of cardinality |2 = n. By S(?) we mean the group of all
permutations of Q with respect to composition of functions, hence we may identify S()
with the symmetric group S, of degree n and order n!. We denote by a9 the image of
a € Q under the action of g € S,,. Clearly (a9)" = a9" for all a € Q and g,h € S,,, and
a® = «a for all @ € Q where e is the identity element of .S,,.

We call (G,Q) a permutation group of degree n provided G is a subgroup of S(Q),
|2] = n. In this case, each g € G may be identified with an n x n permutation matrix
X, € M™*(C). We next consider the algebra V(G, Q) defined as follows:

V(G,Q)={Ae M""(C) | AX, = X A for all g € G}.

It is immediate that V(G, Q) is a matrix algebra with standard basis consisting of (0, 1)-
matrices. Observe that this algebra contains the identity matrix I, the all-ones matrix J,
and is closed with respect to both complex conjugation and Schur-Hadamard (entry-wise)
multiplication. We call V(G, Q) the centralizer algebra of (G, Q).

The centralizer algebra has a very nice formulation in terms of 2-orbits of (G,(Q).
Here, by 2-orbit we mean an orbit of G on Q x €2 induced from the action (G, 2) in the
most natural sense: («, 3)? = (a9, 39). For each directed graph (digraph) (€, R) which
is invariant with respect to a prescribed permutation group (G, <), the arc set R will be
a union of suitable relations from the set 2-orb(G, Q) of all 2-orbits of (G, ). In fact,
many central concepts in modern AGT are based axiomatically on the salient properties
of this set 2-orb(G, ).

Again, let Q be a finite set, |Q2] = n, and let R = {Ry, Ra, ..., R} be a partition of
the Cartesian square Q2. A pair X = (£, R) is called a coherent configuration (briefly,
CC) of rank r provided the following conditions hold:

(CC1) RiNnRj=0forall 1 <i#j<r,

(cc2) () =02
i=1

(CC3) For each i € {1,2,...,r} there exists i’ € {1,2,...,r} such that Ry = RI where
RY ={(8,@) | (o, 8) € Ri};

(CC4) There exists a subset Y C {1,2,...,r} such that |J R; = A ={(a, ) | a € Q};

i€y

(CC5) Foreachi,j, k € {1,2,...,r} the number pfj of elements z € (2 for which (z, z) € R;

and (z,y) € R; is constant for all pairs (z,y) € Ry.

There is a lot to be said about axioms (CC1)-(CC5). First observe that axioms (CC1)
and (CC2) merely reassert that R is a partition of Q2. Each nonempty subset R; is thus
a binary relation on ), called a basis relation. In axiom (CC3) we refer to R as the
transpose relation of R;. In axiom (CC4) we refer to A as the diagonal (or reflexive)
relation on Q. Finally, in axiom (CC5) we refer to the numbers pfj as the intersection
numbers of X.

To each basis relation R; of X we associate a digraph T'; = (Q, R;), which we call a
basis (di)graph of X. Let us denote its adjacency matrix by A; = A(T;). It is then easy
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to verify that the set {43, As,..., A} forms a basis for the vector subspace & = &(X)
of M™*™(C), in particular A;A4; = > pfjAk for all ¢, j.
k=1

The reader will now observe that axiom (CC5) asserts that & is actually a subal-
gebra of M™*™(C). In fact, it may be seen from axioms (CC1)-(CC5) that & contains
I, J, and is closed with respect to complex conjugation and Schur-Hadamard multi-
plication. Indeed, & specializes to the centralizer algebra V(G, Q) in the case where
X = (Q,2-0rb(G,Q)). We call G a coherent algebra of order n and rank r.

A hallmark of the theory is the apparent ease with which one is able to pass between
the languages of relations, graphs and matrices. We cannot stress strongly enough that
this mode of passage is anything but superficial. As one striking example, the inter-
section numbers of X (see axiom (CC5)) correspond to the structure constants of the
coherent algebra &(X). From this observation alone, one sees that the links between the
combinatorial and algebraic perspectives of the theory are not only deep but inescapable.

Observe that axioms (CC1) and (CC4) together imply the existence of the unique
partition {Fy, F»,..., Fy,} of Q, namely via A = [J* {(o, @) | @ € F;}. We refer to
F1,Fs, ... F, as the fibers of X. For each basis relation R; of X there exists s,t €
{1,2,...,m} for which R; C F, x F;. Based on this, if we consider an arbitrary subset
Q' C Q formed by the union of certain fibers of X we can then consider the corresponding
subset R’ C R defined by R = {R € R | R C ' x Q'}. This gives rise to another CC,
namely X' = (', R’), which we call the CC induced on .

A CC with only one fiber is called homogeneous. An alternate name for a homoge-
neous CC' is an association scheme (briefly, AS). We remark that in the case of an AS
it is customary to indicate the diagonal relation A by Ry.

An association scheme X is called symmetric if each of its basis relations is symmetric
(i.e., equal to its transpose). We call X commutative if its corresponding coherent algebra
G(%) is commutative. It is easy to check that a symmetric AS is commutative but not
vice versa.

It is customary to refer to the coherent algebra &(X) of an AS X as the adjacency
algebra of X. In the case where X is a commutative AS, the term Bose-Mesner algebra
(or BM algebra) is generally applied, stemming from the seminal work [19] of Bose and
Mesner.

As previously mentioned, the axioms for a coherent configuration are modeled after
the special class of CC’s of the form X = (9, 2-0rb(G, Q)), where (G, ) is a permutation
group. Such CC’s are said to be Schurian. In particular, X = (,2-0rb(G,Q)) is a
Schurian association scheme precisely when (G, §2) is transitive.

Not surprisingly, non-Schurian C'C’s comprise a special focus of modern AGT. Small-
est examples exist of orders 14, 15, 16, see [142]. In Example 3 below, we exhibit a
non-Schurian C'C of order 16 in rather full detail.

Let &’ be a coherent subalgebra of the coherent algebra G(X). There corresponds
to & a CC X' = (2, R’) in which each basis relation of X’ is a suitable union of basis
relations of X. Following [226] we shall refer to X’ as a fusion CC of X, although we
shall sometimes use the term merging in this precise context, see [24].

Mergings play a significant role in the construction of association schemes; both
Schurian and non-Schurian C'C’s arise in this way. In this text, we mostly consider
AS’s as fusions of non-homogeneous C'C’s, in fact in most cases the resulting fusions will
be symmetric AS’s.

In addition to induced C'C’s and fusion C'C’s, there is one additional general con-
struction. Let M be a subset of M"™*"(C). We denote by ((M)) the smallest CC' that
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contains M. Clearly, such a configuration exists because the intersection of any number
of CC’s is again a CC. We call ({(M)) the coherent closure of M.

Let A = (2, R) be an undirected graph of diameter d with adjacency matrix A(A).
We call A a distance regular graph (briefly, DRG) provided ((A(A))) is an AS of rank
d+ 1. The case d = 2 is very special, as we now discuss.

Let A be a regular graph of valency k& and order v such that each pair of adjacent
vertices has A common neighbors, and each pair of non-adjacent vertices has y common
neighbors. Then we call A a strongly regular graph (briefly, SRG). We refer to the
sequence (v, k, 1, A, 1) as the main parameters of A. (Frequently, the redundant parameter
l =v—k—1is omitted.) The reader can easily verify that a connected SRG is nothing
more than a DRG of diameter d = 2.

The complement A of an SRG A is also an SRG, in fact its parameters (v, kLN, i)
are readily described in terms of the parameters of A, namely

v=v, k=1, l=v—1—1, A\=v—2—2k+pu, g=v—2k+\

We call A primitive if both A and A are connected.
The parameters of a DRG are frequently depicted with the aid of an intersection
diagram, e.g., see [24]. We indicate this diagram for a connected SRG as follows:

A k—p

Or—©=—0

There are certain conditions that the parameters of an SRG must satisfy. We cite
k(k — 1) = lp as just one example, although many others are far more sophisticated
in nature and depend on spectral techniques. These conditions were investigated by
contemporaries of DM, who was already employing them in his 1956 thesis [159]. We
call a sequence feasible if it satisfies these necessary conditions.

Example 1. Consider the permutation group (F3,[0,4]) where F2 is the Frobenius
group of degree 5 and order 20, and [0,4] = {0,1,2,3,4}. Using the fact that (Fy, [0, 4])
is generated by the two permutations (0,1,2,3,4) and (1,2,4,3), we see at once that
(F2,10,4]) may be realized as the automorphism group of the pair {Cs, C5}, where Cs is
the suitably labeled pentagon in Fig. 1. (Note that here automorphisms may interchange
the two graphs in the unordered pair, cf. our definition of C'Aut(X) below.)

0 0

3 2 3 2

Figure 1. The pentagon and its complement

Let © denote the set of 2-element subsets of [0,4]. It then follows from 2-transitivity
of (F2,[0,4]) that (F2, Q) is a transitive permutation group. With the aid of a computer
we determined the centralizer algebra V = V(F2,Q), from which it followed that X =
(9, 2-0rb(F¢, Q) is a rank 6 AS with “color" adjacency matrix A = A(X) given as follows.
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Here, matrix A delineates an arc-coloring of the complete digraph on 10 vertices with
color set {0,1,2,3,4,5}. The reader will further observe that A(X) = Z?:o iA; where
A; is the usual adjacency matrix of the basis graph (Q, R;), 0 <14 < 5.

In fact, X is one of the smallest nontrivial examples of a non-commutative AS. To see
this, simply observe that there is a 2-path from vertex 0 to vertex 2 along arcs colored 1
then 2, but no such path exists along arcs colored 2 then 1.

There are two primitive fusions of X corresponding to the following mergings of basis
relations: R/ = {,RQ7 RiUR4, RoUR3U R5} and R = {Ro, RsUR4, R{URyU R5} The
resulting schemes are isomorphic; graphs (Q, Ry U R4) and (€, R3 U R4) both yield copies
of the Petersen graph, as shown in Fig. 2.

0

6 1 6

VAV
Za\

7 3

Figure 2. Two copies of the Petersen graph via merged relations

The point of Example 1 is to convince the reader that even for a relatively simple AS
on 10 points, manipulation of computer data is a far from trivial task. Indeed, human
ingenuity and intermediation are key to the process.

To each CC X = (2, R) we may associate three groups.

T

1. The (usual) automorphism group Aut(X) = () Aut(
i=1

ut(T;) is that subgroup of S(Q)
which preserves each color graph I'; = (4, R;), 1 < i <

T.

2. The color automorphism group C Aut(X) is a less restrictive subgroup of S(Q) in
the sense that it allows colors to be permuted in a uniform manner:

CAut(X) = {g € S(Q) | R? € R for all R; € R}.
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3. The algebraic automorphism group AAut(X) preserves the tensor of structure con-
stants of X:
AAut(X) = {o € S({1,2,...,r}) | plrjo =P} }-

It is the only type of automorphism of X that need not arise from a permutation
of the set Q.

It is routine to verify that Aut(X) is a normal subgroup of C' Aut(X), and that the
quotient group C Aut(X)/Aut(X) embeds in AAut(X). Groups Aut(X) and CAut(X) are
very helpful in cases in which X has a limited number of fusion schemes.

Let A = (2, E) be an (undirected) graph, and let V- = {Q1,Qs,...,Q} be a partition
of its vertex set Q. For every 4,5 € {1,2,...,s} let e;; = e;;(x) denote the number of
neighbors in §; of a fixed x € ;. We call V' an equitable partition (briefly, EP) of A if
e;; does not depend on the particular vertex x € €; chosen.

Observe that for each subgroup H < Aut(A), the orbits of (H,Q) form an EP. We
refer to such an E'P as automorphic. Clearly, non-automorphic EP’s are a special source
of interest.

To each E'P there corresponds a collapsed s x s matrix E = (e;;). Note that if A is
regular of valency k, then each row sum of E is equal to k.

Example 2. It is well known that the Petersen graph is hypohamiltonian, see Fig. 3(a).
Consider the partition of its vertices into two parts (the 9 black vertices comprising the
outer cycle, and single white vertex at its center). This partition is not an FP simply
because the subgraph induced on the vertices of the 9-cycle is not regular.

In Fig. 3(b), we depict a partition m = {black, white} of the vertex set V' of the
octahedron. Here 7 is an E P with collapsed matrix E given by

0 4
5-[0 4]
In fact 7 is automorphic, as its cells are orbits of the permutation group (Zg x Dy, V).
Finally, in Fig. 3(c) we depict the partition = = {black, white} of the cuneane graph

(i.e., graph of the cuneane molecule, see [213] for details). The partition 7 is again an
E P with collapsed matrix
1 2
= {2 : ] .

However in this case 7 is not automorphic. Indeed, there are two orbits of white vertices
under the action of Zy X Zs, which is the full automorphism group of the cuneane graph.

Example 3. Here we provide a classical example of a non-Schurian AS. It is generated
by the Shrikhande graph Sh of order 16, one of two SRG’s with parameters (16, 6,2, 2).

There are a few well known constructions of this graph, for example as the complement
of a Latin square graph over Zg4, e.g., see [96]. However, we shall deliberately approach
its construction in a more sophisticated way, starting from a CC' with two fibers of size
4 and 12. A candidate for the collapsed matrix here is

0 6
as it satisfies some simple necessary combinatorial conditions as well as one strong spec-

tral condition, see [83, Theorem 9.3.3]. The (1, 1)-entry of E indicates the existence of
a coclique of size 4 in Sh. Hence if the resulting EP is to be automorphic one would
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()

Figure 3. Vertex partitions (black and white vertices) for three graphs

expect to encounter a natural action of the group Sy on the cell of size 4. Of the two
faithful transitive degree 12 actions of Sy, we chose the more natural one: the set ()2( ) of
all ordered pairs of distinct elements of X = {0, 1,2, 3}.

Using the computer package COCO we constructed the centralizer algebra V =
V(S4, Q) where @ = X U (3). The CC X corresponding to V turned out to be of
rank 15, comprised of two reflexive, five symmetric, and four pair of antisymmetric 2-
orbits of (S4,€). COCO subsequently returned 18 nontrivial fusion schemes of X, the
most interesting of which were five mergings corresponding to SRG’s with parameters
(16,6,2,2). Of these, three had automorphism groups of order 1152, while the remaining
two had automorphism groups of order 192. One of these latter two, “Merging #17” (the
name so assigned by COCO), is explained in detail below. As usual, different letters are
meant to indicate different elements of X.

One basis graph A = (2, R) comes by way of merging R = R3UR7;UR;2U Ry3, where
Rs = {a, (b,¢)}, R7 = {(b,¢),a}, Ri2 = {(a,b),(a,c)}, Riz = {(b,¢),(c,a)}. Clearly Ris
and Rj3 are symmetric relations, while Ry = RZ. It is fairly straightforward to see that
A is a regular graph of valency 6 with collapsed matrix E. In fact, A is the Shrikhande
graph Sh, see Fig. 4.

Our next step is to understand the structure of Aut(Sh). At the moment, all that
we know for certain is that Sy < Aut(Sh). However one can show that the stabilizer
Aut(Sh) 0,1y of vertex (0, 1) is the dihedral group Dg of order 12. Indeed, using Fig. 5 as
a partial aid, the reader is encouraged to verify this directly by showing that Aut(Sh) 1)
is generated by the following two involutions s, ¢, whose product st has order 6:

s =(2,3)((0,2),(0,3))((2,1),(3,1))((2,0),(3,0))((1,2),(1,3))((2,3),(3,2)),
t=1(3,(0,3))(2,(2,1))(0,(3,0))(1,(1,2)) ((2,3), (1,0)) ((2,0), (1, 3)).

From this one concludes that Aut(Sh) is a transitive group of degree 16 and order 16-12 =
192.



Acta Univ. M. Belii, ser. Math. 25 (2017), 5-62 13

Figure 4. The Shrikhande graph Sh. Points along the main diagonal (white dots) correspond
to elements of X = {0, 1,2, 3} while all remaining points correspond to elements of (}2()

While Aut(Sh) acts transitively on edges, its action on non-edges is intransitive.
This can be seen by considering the 7-vertex subgraph A’ of Sh induced on (0,1) and
its neighbor set, as depicted in Fig. 5. Transitivity on non-edges would require that
Aut(A’) = Aut(Sh)o,1) act transitively on the non-neighbors of (0,1) which is clearly
not the case. In fact, Aut(Sh) is a rank 4 group with subdegrees 1,6, 6,3. This may be
verified by establishing that (0, 1), 2, 0, (2,3) are distinct orbit representatives under the
action of Aut(A’) & Dg.

At the next stage we wish to show, without the aid of a computer, that the graph Sh
is indeed an SRG. For this purpose it suffices to count the number of 2-paths from (0,1)
to 2 (since {(0,1), 2} represents the single orbit of edges in Sh), as well as the number of
2-paths from (0,1) to each of 0 and (2,3) (since {(0,1),0} and {(0,1),(2,3)} represent
the two orbits of non-edges in Sh). In all cases this number is 2, whence it is confirmed
that Sh is an SRG with parameters (16,6,2,2). We conclude that Merging #17 is a
non-Schurian AS with two classes, Sh and Sh, of valencies 6 and 9.

We end our example with an observation on the automorphism groups of the initial
rank 15 C'C X with two fibers of size 4 and 12. Using COCO in conjunction with GAP,
we were able to confirm that AAut(X) = Zo = C Aut(X)/Aut(X), and that a generating
involution of AAut(X) interchanges four pairs of the 18 fusion schemes of X, one pair of
which consists of two rank 3 mergings with group of order 1152. (Later we shall compare
this information with the situation arising in DM’s construction of N Ly(10).)

It is interesting to compare the fusion scheme Merging #17 of this example with
another fusion scheme of X, assigned the name Merging #14 by COCO. This latter
merging is a rank 3 AS generated by the lattice square graph Lo(4). Like Sh, this graph
also has a natural “grid-like” construction, namely here the neighbors of a vertex (a,b)
in Ly(4) are precisely those vertices that lie either in the same row or column as (a,b)
(hence of the form (a,y) where y # b, or (z,b) where x # a). The key observation here
is that Sh may be obtained from Ls(4) by the process of “switching” with respect to a



14 Mikhail H. Klin, Andrew J. Woldar

3 (0,2)

(2,1) (0,3)

(3,1) 2

Figure 5. Subgraph A’ of the Shrikhande graph, induced on (0, 1) and its neighbors

4-vertex coclique in Ly(4). This procedure goes back to J. J. Seidel, e.g., see [26].
Finally, we wish to pay credit to S. S. Shrikhande [196], the discoverer of this remark-
able graph.

For more details regarding the methodology of CC’s and AS’s, we refer the reader to
the texts [24, 41, 83] and to our papers [73, 134, 135, 136, 142]. The latter two papers
provide information about helpful computer tools for research in AGT, particularly the
packages COCO, GAP, GRAPE, and nauty. These tools were exploited in the current
paper in both visible and hidden form.

Details on the coherent closure of a set of matrices, including a very efficient algorithm
for computing it, may be found in the seminal paper [219] of B. Ju. Weisfeiler and A.
A. Leman. A reasonably elementary treatment of these ideas, plus an historical review,
appears in [138].

Lastly, we mention that in various places in the text we employ a number of different
kinds of incidence structures without further explanation. Among these are (partially)
balanced incomplete block designs, biplanes, Steiner systems, etc. The texts [11, 109]
should provide the reader with sufficient background material regarding these structures.

We also wish to remark that the ingredients of the language of AGT introduced
in this section will not be fully exploited in our forthcoming exposition. Nevertheless,
the reader who is familiar with these concepts will definitely benefit from his/her wider
proficiency, being able to better comprehend many of the discussed links between modern
state-of-the-art AGT and its initial seeds from the latter half of the XX-th Century.

3 Overview

An SRG T' with the parameters (100, 22,0, 6) was first described in the 1956 thesis [159]
of Dale M. Mesner in terms of its adjacency matrix A;. This matrix was presented
in block form with two of its blocks C; and CT interpreted as incidence matrices of
an auxiliary BIBD and its dual design. From here, properties of such a BIBD were
postulated. DM proved that there was at least one such design, thereby establishing
existence of I'. Uniqueness of I' would have followed from an examination of the three
remaining putative designs mentioned by DM, however this was not persued.

This graph was later considered by DM in [160], where the initial arguments from
[159] were presented in a more transparent and rigorous form. The notion of a negative
Latin square association scheme with two classes, already coined in [159], was developed
here to its full extent. The considered schemes were denoted NLy(n) with g,n free



Acta Univ. M. Belii, ser. Math. 25 (2017), 5-62 15

parameters. Special attention was paid to the case pj; = 0 (whereby n = g + 3g), which
led DM to feasible parameters of a putative infinite family of such schemes, denoted
NL,(g* + 3g). For each given g > 1, existence of said scheme on n? vertices (and so, of
the corresponding SRG) was reduced to the existence of a BIBD C on o = g(g? +3g +1)
points satisfying the properties earlier postulated by DM. For g = 1 uniqueness of N L, (4)
was proved as an immediate illustration of DM’s methods.

In contrast to [159], DM’s investigation of the case g = 2 in [160] was more complete.
Here design C was shown to be unique by analyzing the block decomposition of its puta-
tive incidence matrix Cy (recall, a submatrix of A;) and investigating certain auxiliary
structures naturally appearing in this context.

In comparison to [160], which took the form of mimeographed notes, DM’s later paper
[162] enjoyed a quite wider distribution. Covering just a portion of the material from
[160], it contains only a brief mention of the existence of I' = N Ly(10), and it does so
without any supporting evidence or explanation.

Over the next few years, the results from [160, 162] would become known to only
a narrow community of experts in design of experiments. Although this knowledge
would stimulate further clarification and development of DM’s approach, it is unfortunate
that for many decades DM’s results would remain unknown to virtually all experts in
group theory and finite geometries. Indeed, during this period the community of experts
specializing in design of statistical experiments was relatively isolated from the main
body of mathematics, and the links that are fairly commonplace nowadays simply did
not exist at that time.

The second appearance of the graph I' is well known. It was discovered independently
in 1967 by D. G. Higman and C. C. Sims. The result became known almost immediately,
quite before its formal appearance in [101], and strongly influenced further investigation
of I' and Aut(T"). No doubt, interest in Aut(I") stemmed from the fact that it contained
a new sporadic simple group, nowadays denoted HS in honor of its discoverers. In
particular, new proofs of the uniqueness of I' and diverse characterizations of H.S would
be accomplished in the next few years by several authors.

The results in [101] were obtained by a clever combination of combinatorial arguments
with elementary group theoretic observations. A construction of I' was there given, based
on the existence of an auxiliary design previously considered by E. Witt in [224]. (In
subsequent papers one finds a proof of the uniqueness of I".) Although one now recognizes
this design to be isomorphic to the design C of DM, its more common realization is the
Steiner system S(3,6,22) (also denoted Was).

The graph T' contains another SRG with parameters (77,16,0,4), which was also
presented by DM. It follows from his construction that such an SRG is unique up to iso-
morphism. Again, this discovery was an immediate consequence of [101]. The pioneering
paper here was due to by A. Gewirtz [80], establishing uniqueness not only of I" but of
several of its substructures.

More careful analysis soon revealed the 3-design C to be quasi-symmetric (i.e., having
two allowable cardinalities for the intersection of distinct blocks). Moreover, it became
clear that a quasi-symmetric design with suitable parameters yields an SRG by natural
extension [86].

Very quickly, results about the Higman-Sims graph and its automorphism group
inspired an explosion of fruitful activity in group theory and the newly developing AGT.
Thus the main ideas of DM’s discovery became known and influential to two generations
of mathematicians, though without any attribution to his early pioneering work.

This concludes a summary of the main content of our paper. A comprehensive treat-
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ment begins in the next section.
4 Ph.D. thesis of Dale Mesner: a brief outline

The thesis of DM consists of 291+ix pages, is signed by adviser Leo Katz, with acknowl-
edgments to the adviser and W. S. Connor, Jr.

Chapter I discusses general properties of partially balanced incomplete block designs
(PBIBDs) and association schemes.

Chapter II provides a nice comprehensive discussion of the properties of 2-class as-
sociation schemes and corresponding PBIBDs. In particular, DM derives results (with
credits to [51]) on feasible spectral conditions for the existence of such schemes. (Later
on a similar result appears independently as Lemma 6 in [98].)

In Chapter III, DM introduces the new notion of a “negative Latin square type”
scheme. He establishes elements for a general theory of such schemes, and provides
infinite series of examples with the aid of finite fields. This includes implicit consideration
of the concept of a dual strongly regular graph (cf. Section 2.6.3 in [62]).! The content
of Section 3.3 is discussed in more detail below.

Chapter IV is devoted to the investigation of Latin square type schemes, with special
attention to the uniqueness of such schemes with two classes. The results are surprisingly
strong, a real precursor to the more general approach developed later in [196] and [30].
Note that DM is not aware at this time of [29].

Chapter V is a summary of obtained results.

A comprehensive appendix consists of five parts, occupies more than 50 pages and
provides a lot of interesting numerical data, in particular tables of parameter values for
association schemes of small size.

The bibliography consists of 40 items.

Section 3.3 of the thesis is central to our presentation. In Section 3.1, DM suggests to
consider graphs of negative Latin square type, denoted by him as L;(n). These are SRGs
with the parameters v = n?, k = g(n+1),l = (n+1—g)(n+1), A = (g+1)(g+2) —n—2,
= g(g+1). For n a prime-power, some families of such graphs are constructed in Section
3.2 using the notion of a Singer cycle [201].

In Section 3.3, DM faces the question of constructing an SRG of L3(10)-type, desig-
nated #94 in his Table II (‘Supplement’ to thesis). He considers the adjacency matrix
A; of a putative such graph, which by virtue of his Theorem 2.6 may be presented in the
form

0 1---1 0---0

1
: 0 o
A =11
0
:oof T
0

Here C is the incidence matrix of a BIBD with the parameters v = 22, r = 21, k = 6,
b =77, A =5. Let us denote this BIBD as C. Using simple combinatorial arguments
in conjunction with variance counting, DM immediately concludes that each block of
C is disjoint from 16 other blocks, and has exactly 2 common elements with any of the

LOf course, the term strongly reqular graph does not appear explicitly in DM’s thesis. It would later be
coined in [18].
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remaining 60 blocks. (In modern terminology, DM has proved that C is a quasi-symmetric
BIBD with the intersection numbers = 0, y = 2.)

Using his Lemmas 2.1 and 2.2, DM concludes that matrix T is the adjacency matrix
of an SRG T'q, designated #64 in his Table II, which has the parameters v = 77, k = 16,
[ =60, A =0, up =4. It is implicit from DM’s arguments that I'; may be regarded as
the complement of the block graph of the design C. Together with the existence of C,
existence of graph #64 is another necessary condition for the existence of graph #94.
For evident reasons, we denote this latter graph by I.

At the next stage the goal is to prove that the existence of C is sufficient, as well as
necessary, to establish existence of the graph I'. A series of brilliant ad hoc arguments
and computations on pp. 134-137 allow DM to arrive at this conclusion.

The problem is now reduced to the construction of the design C. (Of course, DM at
this time is not aware of the existence of the Witt design on 22 points.) Without the
aid of a computer, DM bravely attacks this problem. He claims in advance that he will
show the existence of at most four possible solutions for C, and that he will use the first
solution encountered, neglecting consideration of other possibilities. Thus he starts his
“systematic trials of possible solutions” (a very clever rigorous backtracking procedure
in modern terms). The protocol of this computational procedure occupies pp. 137-145,
while on p. 146 the result is presented: an explicit listing of the 77 blocks that make up his
BIBD C. Concluding his construction on p. 147, DM stresses the fact that he has arrived
to at least one solution for the graph I', not concerning himself with other solutions. In
DM’s words: “It is not known whether any of the four solutions are equivalent under
some permutation of treatments.”

In actuality, a proof of the uniqueness of I" is nearly achieved in the course of DM’s
presentation in [159]. He further pays consideration to the graph I'y, and to some other
interesting combinatorial byproducts which still today are awaiting a proper interpreta-
tion.

5 Mimeographed notes of Dale Mesner: 1964 and beyond

Our main interest in this section focuses upon a comprehensive set of notes [160] published
in the Mimeo Series of the Institute of Statistics of UNC-Chapel Hill. Many hundreds of
texts published in this series form a scientific treasure, however they were not available
to a wide audience for a very long while. All our attempts to gain access to [160] proved
futile until we learned from Earl Kramer in February 2010 of the possibility of online
access to most texts from this series.

Surprisingly, we were not able to secure a copy of [160] from Dale himself. He men-
tioned that he had lost his own personal copy, and that regardless, in Dale’s own words,
“it doesn’t contain anything new.” According to Dale, everything in [160] could be re-
covered from [159] in conjunction with [162].

To the modern reader the picture is quite the opposite: DM’s mimeographed notes
immediately became a personal source of great inspiration to us. We liken our impressions
upon examining it to the emotions of an archeologist who has just uncovered a rare and
priceless artifact.

The entire text [160] consists of 11 sections (100 pages + cover page) and is dated
November 1964. Acknowledgment is paid to the NSF for support, as well as to Purdue
University for the use of their computer facilities. No doubt, the latter figured promi-
nently in the construction of DM’s many tables.

Section 1 of [160] contains a brief general outline of designs and association schemes.
Already by Section 2, we find ourselves in new territory, being exposed to the notion of an
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N L-square design. The presented graphs? N Ly(8), NL2(9), NL3(9) and N Ly (10) are all
new. Sections 3-4 introduce elements of a general theory of N L-graphs, while Section 5
gives some finite field constructions. Some more advanced geometric constructions form
the content of Sections 6-7. All of these sections merit close examination, especially as a
means of comparison to what are, nowadays, known results.

The real surprise, however, occurs in Section 8. Specifically, this is an introduction to
the new theory of N Lg-graphs with A = 0. In particular, Theorems 8.6 and 8.7 establish
the existence and uniqueness of I' = N Ly(10).

Section 9 provides a proper treatment of PBIB designs, and is replete with many
tables of feasible parameters. More or less, Section 10 coincides with Sec. 4 of [162].
Section 11 contains acknowledgments, followed by a list of 25 references including one to
the 1963 notes of R. C. Bose from the same Chapel Hill Mimeo Series.?

DM’s mimeographed notes comprise just one of three publications that grew out of
his Ph.D. thesis, the other two being [161, 162] each of which was also submitted in 1964.

The short note [161] was received by the editors on March 16, 1964 and revised on
September 10, 1964. Although DM is still not using the term graph, the subject of
[161] is the investigation of necessary conditions for the existence of an SRG with given
parameters in conjunction with conditions for the existence of a PBIB design. Here
DM follows closely the spirit of [20, 21]. In particular, he investigates a few concrete
putative families of parameters (citing [51] as an initial source of information) and coins
the term “pseudo-cyclic” for one such family (with credit for its suggested usage to R.
H. Bruck). Ultimately, DM proves that any SRG with a prime number of vertices must
be pseudo-cyclic.

A number of diverse numerical conditions (some are new, one is attributed to J. S.
Frame) are presented and exploited in [161] for consideration of particular parameter sets.
As a simple exercise, one may readily obtain the result in [105] on putative parameters
of Moore SRGs.

The more comprehensive article [162] (received July 20, 1964, revised August 12,
1966) is the most known and frequently cited of DM’s three 1964 submissions. This is
the text in which L* is officially replaced by VL as a designation for schemes of negative
Latin square type.

The main body of [162] deals with concrete methods for describing SRGs and BIBDs
of NL-type based on the use of geometries over finite fields (in some cases just the field
itself suffices). In this text, DM introduces the notation N L, (n) to refer to an SRG with
the parameters v =n? k=gn+ 1), \=(g+1)(g+2) —n—2, u=g(g+1).

At the close of Section 1 in [162] the author writes: “Methods to be presented in later
papers give solutions for some of the foregoing as well as for NLy(9) and NL2(10). The
schemes N Ly(6), NLy(7), NL3(10) and N L4(10) are still unknown.”

There is but one way to decode DM’s message about N Ly(10) above:

An SRG with the parameters (100,22, 0,6) does exist!

It is bewildering that generations of experts (including the authors) were unaware of this
accomplishment of DM until its formal disclosure in [117].

Remark 4. (a) We provide the current status of the schemes mentioned in DM’s quote:
Nonexistence of NLo(7) was proved in 1989 [34], existence of NL4(10) was proved in

2Here we are taking the liberty of extending DM’s original notation and terminology for schemes (also
used by him for designs) to apply as well to the corresponding SRGs. We shall uphold this convention
in what follows.

3Despite much concerted effort we were unable to locate these notes of Bose. At present we have some
doubts as to their actual existence.
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2003 [123], existence of NL3(10) remains an open problem, and there are many graphs
of type NLs(6), e.g., see [206, 133].

(b) In Section 4 of [162], DM gives feasible parameters for two families of association
schemes. In modern terminology, such schemes are referred to as “amorphic”; cf. [60].

6 The Clebsch graph: The DM-approach in miniature

By the Clebsch graph we refer to the graph NL;(4) in DM’s notation. The name was
coined by J. J. Seidel in [191], though more accurately he applied it to the complemen-
tary graph. Seidel in turn refers to Coxeter [56], who points out the relation of the
corresponding polytope to the 16 lines on the Clebsch quartic surface [47].

An alternate notation for this graph is Os, reflecting its membership to an infinite
series [, of folded n-cubes, e.g., see [24]. In fact, (5 is an SRG with the parameters
(16,5,0,2). It was rediscovered a few times in diverse contexts, see [45, 83, 124]. Our
own vision of this graph is reflected in [137, 135]; in particular Fig. 6 is basically borrowed
from [137]. Also see [83] for a proof of existence and uniqueness.

Figure 6. Clebsch graph

The graph NL;(4) was already a striking example in the thesis of DM [159]. On pp.
102-105 one finds a detailed construction which uses the finite field GF(16) in the spirit
of [201]. At this stage DM believed the example to be new, however in the text [160] he
attributes it to Clatworthy [45]. In fact the graph NL;(4) plays a crucial role in [160],
where it is constructed no fewer than four times, each time elaborating a different method
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for procuring a negative Latin square graph. Below we describe these four constructions
in brief (Models 1-4), although we make no attempt to dogmatically preserve the original
notation and terminology.

Model 1 ([160, Sec. 4]). Theorems 4.1 and 4.8 justify how to construct a 2-class
association scheme from a suitable abelian group H and its partition into three sets:
So = {0}, Si, S2. DM introduces NL;(4) as an example on pp. 25-26; specifically,
he works with the vector space V = GF(2)* (binary strings of length 4) and defines
S; = {0001, 0010, 0100, 1000, 1111}. The graph Os appears as the Cayley graph over V
with connection set S; (see the binary labels in Fig. 6). In modern terminology, what
DM has accomplished is a “merging of classes” in the Hamming scheme H(4,2). His
work in this section also touches upon elementary concepts in S-ring theory.

Model 2 ([160, Sec. 5]). Here N L;(4) appears in the guise of a cyclotomic association
scheme (see [24, Sec. 2.10]). The presentation is similar to the one in [159], though more
compact. On pp. 31-32 the field GF(16) is described in such a way that the set S; of
Model 1 appears as the subgroup of order 5 in the multiplicative group of GF(16).

Model 3 (160, Sec. 7]). In his previous Section 6, DM works with the k-dimensional
Euclidean geometry over the field GF(n) (so here n is a prime-power), in particular with
the Desarguesian affine plane EG(2,n) and the projective plane PG(2,n). He explains
how to derive association schemes from non-degenerate conics in PG(2,n). In DM’s
presentation, he gives credit to B. Segre, R. C. Bose and R. H. Bruck. These techniques
are more deeply exploited in Sec. 7, where DM starts by discussing a construction by D.
K. Ray-Chaudhuri on v = 23! points [177]. He asserts that this construction can never
produce NN L,-graphs, and subsequently generalizes it to one that leads to infinitely many
such graphs, as well as other association schemes. In his typical modest style, DM writes,
“This generalization seems to have gone unnoticed until now.”

Finally, N L;(4) appears in this context as one of a few illustrations of DM’s developed
techniques, together with such new objects as N L3(8) and N L2(9). Not aiming to provide
precise formulations, we refer to [24, Sec. 9.5.C], where N L1 (4) appears as the Hermitian
forms graph over GF(16). This latter family of graphs, along with many other classical
families, was systematically considered in the early 1980s in the works of E. Bannai, A.
M. Cohen and D. Stanton, see [9] for further details and references.

A detailed account of DM’s new method refers to [178, 18] for necessary background.
In fact, it is exactly this portion of [160] that is presented in [162] in a more rigorous
manner. The latter article, which is highly readable and accessible to a wide audience,
greatly influenced further development in AGT. Clearly, such implicit and explicit traces
of DM’s influence deserve a renewed attention.

Model 4 ([160, Sec. 8]). This model appears on p. 72 of [160] as a degenerate case of
the introduced family NL,(g*+3g), see our Section 7 below. Here DM writes, “Design C
is trivial in the case g = 1, giving a fourth method of construction of the N L;(4) scheme.
This construction gives an easy proof of the uniqueness of the scheme.”

In our presentation we intentionally start with this simplest case, hoping to create a
useful visual image for the reader.

Consider the vertex set V' = Sy U S1 U S, where Sy = (), S1 = [1,5], and Sy = {47}
(Here we adopt the notations [i,j] = {i,i +1,...,5} and {{} = {T C S | |T| = k}).
Clearly, the pair C = (S1,52) defines the trivial 2-(5,2,1) design. We now define the
graph N L;(4) with vertex set V', however we use the terminology of designs referring to
vertices in S7 as points and to those in Sy as blocks. The vertex @ (called “initial vertex”
by DM) is adjacent to all points of C, each point is adjacent to those blocks of C which
contain it, and two blocks are adjacent if and only if they have empty intersection.
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Model 4 is also depicted in Fig. 6 if one focuses this time on the vertex labels given by
k-element subsets of [1, 5] with k£ < 2. This of course gives a visual isomorphism between
Models 1 and 4. However, there is another isomorphism lurking about which we feel is
more natural and esthetic. Namely, Let T be a k-element subset of [1,5], & < 2, and let
T' = TN [1,4]. Let &7 be the characteristic vector of 77, and & its bit complement.
We define 0 : T+ &7 if 5 ¢ T and 0 : T+ &, if 5 € T. Tt is straightforward to check
that @ is indeed an isomorphism between the two models.

The uniqueness of NL;(4) as an SRG with the parameters (16,5, 0, 2) follows imme-
diately from elements of DM-theory, see Section 8.

Although DM didn’t at all explore the structure of the automorphism group G =
Aut(NL;(4)), such information may be readily obtained from his constructions. In
particular, three subgroups of G are quite visible from Models 1, 2 and 4. We denote by
H; the subgroup arising naturally from consideration of Model .

From Model 1, we observe that G contains the automorphism group H; = Aut(Q4)
of the 4-dimensional cube Q4. Group H; is the exponentiation Sy 1 Sy (see [131] for
details). In particular, it is easy to see that G acts transitively on V.

From Model 2, we easily identify Hy = E16 X Z5 as a subgroup of G.

Model 4 clearly depicts Hy = S5 as the stabilizer of the vertex @). Indeed, the graph
I'y(0) (that is, the subgraph of T' induced on the vertices at distance 2 from () is the
famous Petersen graph which has automorphism group Ss.

Having already established that Models 1 and 4 are isomorphic, we may now deduce
|G| = |V| - |H4| = 1920, which gives our desired structure G = Ej5 x S5. (Alternatively,
one may deduce |G| = 1|Aut(Qs)| = 1920 directly from Aut(Qs) = E32 x S5 and the
fact that Os is the folded 5-cube.)

Last but not least, we wish to elaborate one more model which, although not explicitly
appearing in [160], still has visible traces to DM’s work.

Model 5 (“Non-edge model”). We wish to start from a non-edge, so let a, b be two
nonadjacent vertices. Now let \S;; denote the set of vertices simultaneously at distance
1 from vertex a and distance j from vertex b, 1 < 4,5 < 2. We now define our vertex
set as V = {a,b} U S1; U (S12 U Sa1) U Saa. Taking into account that our objective is to
construct a (16, 5,0, 2)-SRG, the cardinalities |S;;| are uniquely determined: |S11| = p =
2, |S12] = |S21| = k—p =3, |Se2| = v—2k+pu—2 = 6. (Note that in our model S12 and
Sa1 are merged together.) Moreover, one may deduce the compact intersection diagram
of our graph T which is depicted in Fig. 7. We again refer to [24] for a precise discussion
of such types of diagrams.

One easily identifies subgraphs of I" induced on Sos and Si3 U So; as 6-cycles; the
remaining edges of I' are also quite evident. Model 5 thus makes visible a subgroup Hs
of G, namely the stabilizer of our non-edge {a,b}. Clearly Hs can only preserve the
mentioned 6-cycles, and its action on one determines its action on both. Likewise, the
involution interchanging a with b (the “ends” of our non-edge) preserves each of these
two 6-cycles. Thus Hs = Ss X Dg, where Dg is the automorphism group of a 6-cycle (i.e.,
the dihedral group of order 12).

Finally, we obtain that G = (Hy, Hs) is an amalgam of groups of order 120 and 24
intersecting in a group Ss x S35 = Dg of order 12. This stresses the significance of the extra
involution in G which interchanges a and b. Thus Model 5, together with borrowed group
theoretic information from Model 4, gives an independent proof that G acts transitively
on V.

There is one more “amalgam” we wish to discuss but it is not one of mathematical
formalism. It is the amalgam of two ingenious approaches which greatly shaped the
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Figure 7. Intersection diagram of the Clebsch graph

future landscape of AGT, namely the approaches of DM and Higman & Sims. This will
be accomplished in Section 13.

7 Graphs NL,(g? + 3g): A putative DM-series

We start now a proper consideration of one of the greatest scientific achievements of DM.
As usual, our goal is to preserve the spirit of the text if not the literal word. We follow
DM’s more detailed presentation in [160, Sec. 8, pp. 58-72], though we point to [159] as
a precursory source.

Stated in modern terminology, the problem is to describe all possible parameter sets
of triangle-free SRGs (that is, SRGs with A = 0) that are simultaneously N L-graphs. A
nice introduction to this branch of AGT may be found in Sec. 8 of [42].

Aiming to construct I' = NLy(n) with A = 0, DM again starts from an initial vertex
a and splits the vertex set V = Sy U S; U Sy, where Sy = {a}, S1 =T1(«a), Sz = (a).
He next considers the block decomposition of the adjacency matrix A; = A(T") inherited
from this partition.

Let C7 denote the submatrix of A; whose rows and columns are indexed by S; and
Sa, respectively. DM’s Theorem 8.1 asserts that (i) C; is the incidence matrix of a BIBD
C with the parameters v = k, b= L,LT=k—-X—-1, k= I = u—1, and (ii) each block
of C is disjoint from at least k — p other blocks. (Here the symbol ™ is used by DM to
distinguish BIBD parameters from those of an SRG.)

The proof of Theorem 8.1 boils down to analyzing submatrix products in the matrix
formulation of an SRG: A? = kI + AA; + p(J — I — Ay). The product C;CY suffices for
part (i) but the proof of part (ii) is quite more subtle. From the perspective of a BIBD,
it is convenient to refer to vertices in S; as points and those in Sy as blocks.

It follows from the definition of the graph NL,(n) that A = g?> + 3g — n. Thus the
proposed absence of triangles yields n = g2 + 3g. In particular, this implies v = n? =
(9° +39)% k=9g(¢* +3g+1), L = (¢* +29 — 1)(¢° + 39+ 1), p = g(g + 1)

As a corollary to part (i) of Theorem 8.1, the parameters of design C are presented:

~

9(*+3g+1),b=(*+29—1)(¢°+39+1), 7= (9+1)(9*+29—1), k = g(g+1),

i)\ =
X = g%+ g — 1. Moreover, part (ii) now asserts that each block of C is disjoint from at
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least g?(g + 2) other blocks.

The next portion of DM’s text is aimed at proving that the existence of a design C
with properties (i), (ii) of Theorem 8.1 is not only necessary but sufficient, to establish
existence of NL,(g* 4+ 3¢g). For this task it is necessary to refine the partition of V'
still further. We choose a block v € S> and, as in Model 5, define the sets S;; relative
to initial vertex a and block . Here the cells of the previous partition split further
as S1 = S11 U S12 and Sy = Sap U Sa1 U Saa, where Sag is evidently {v}. Note that
the cardinalities of sets in this case yield suitable intersection numbers of the 2-class
association scheme for which graph NL,(g? + 3g) is the first class, namely |S;;| = pfj.
(Note that {a,~} is a non-edge in this graph.)

DM’s next Lemma 8.2 establishes that, in fact, each block of design C is disjoint
from exactly p3, = k — u = g?(g + 2) other blocks, and moreover that it intersects each
remaining block in exactly g points. The proof is just an easy application of the now
classical method of variance counting in designs, which is attributed to Hussain [111].

Next come Theorems 8.3 and 8.4, which together prove that a BIBD C satisfying
the conditions of Lemma 8.2 completely determines a N Lg(g2 + 3g) graph. The proofs
here involve skillful manipulation of matrix products conjoined with simple combinatorial
arguments. Corollary 8.4.1 now formulates these findings in natural combinatorial terms.
Let C = (51,.52) be a BIBD that fulfills Lemma 8.2 and define the graph I" with vertex
set V ={a} U S; US;y as follows:

(i) « is adjacent to every vertex from S; but to none from S,
(ii) = € S; is adjacent to y € Sy provided x and y are incident in C,
(iii) x € Sy is adjacent to y € Se provided z and y are disjoint in C.
Then I is a NL,(g* + 3g) graph.

Corollary 8.4.1 is followed by a table of parameters for I' and C for the first four values
of g, leading to putative SRGs on 16, 100, 324, 784 vertices. In addition, DM considers a
few auxiliary incidence structures defined in terms of the sets S;;. Next comes Theorem
8.5, which identifies these incidence structures as BIBDs and gives their parameters. The
proof here involves a combination of clever combinatorial arguments and matrix calculus.
Finally, DM gets “for free” a proof of the existence and uniqueness of NL;(4) because
in this case, as noted earlier, C is the trivial design. He next considers the cases g > 2,
which are, in DM’s words, “far from trivial”.

Some interesting byproducts are considered by DM toward the end of this central
section. In the general case, he describes the subgraph A of I' induced on Sy, which
turns out to also be an SRG. Later we will elaborate on A in the particular case g = 2.

Remark 5. (a) The elements of an ingenious theory developed by DM in Section 8 of
[160] are already visible in his thesis [159], though in somewhat rudimentary form. For
example, the case g = 2 is treated there.

(b) Tt is more than once stressed in [160] that if the BIBD C is uniquely determined by
its properties in the sense of Lemma 8.2, then the corresponding graph I' is also unique.
Careful analysis of DM’s arguments shows also that in such case Aut(I") acts transitively
on V though this is never explicitly stated. (Groups were not the subject of DM’s explicit
interest at this stage, see Section 13.)

(c) Unfortunately, DM appears to have missed (both in [159] and [160]) that C is
a 3-design, despite the fact that his arguments are sufficient to articulate a proof. In
evident form, such observations will be formulated by his followers.
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8 Graph NL2(10) via the DM-approach

Consideration of the new SRG on 100 vertices occupies pp. 131-149 of [159], while in [160]
fulfillment of this task is quite more brief, viz. pp. 72-83. The reason for this reduction
is clear: the preliminary job in [159] was transformed into an elegant general DM-theory
in [160], the digest of which was provided above. Moreover, note that while in [159] DM
remains with four possible solutions, in [160] he establishes uniqueness of N L2(10).

The genre of [160] is close to lecture notes, which allows DM the freedom to reveal his
feelings and share his pedagogical views. Two striking examples follow (the first refers
to the case g = 2, the second to his Theorem 8.6):

“The author conjectured that the design did not exist in this case, undertook
an empirical search in hopes of proving its nonexistence, and in the course of
the search inadvertently constructed it.” — p. 72

“This method of proof is reminiscent of Bhaskhara whose 1150 A.D. treatise
on mathematics presented a sketch of a particularly lucid construction for the
Pythagorean theorem, accompanied by the brief written proof, ‘Behold!”” —
p. 74

Construction of the desired N L2(10) according to DM-theory is reduced to the con-
struction of a design C with the parameters v = 22, b =77, r = 21, k = 6, A = 5 (the
case g = 2). DM provides a solution simply by listing all 77 blocks (see Table 8.2, which
occupies the entire p. 73), and asks that the reader verify all required properties. (Note
that the order in which these 77 blocks are listed carries a special significance, serving
as a brief “guide” to a forthcoming analysis performed by DM.) Such detailed inspection
implies DM’s Theorem 8.6, thus asserting the existence of an N L(10) graph. It is indeed
a proof in the style of Bhaskhara.

This is followed by Theorem 8.7, which asserts the uniqueness of N L5(10). In a prefa-
tory remark, DM discusses the obstacles involved in attempting to establish nonexistence
or uniqueness empirically, as well as his own attempt to precariously “steer between te-
dium and non-proof.”

For the proof, DM first explains why it is sufficient to establish uniqueness of the
underlying design C. Recall that in addition to the established parameters for such a
design, we further know that each of its blocks is disjoint from 16 other blocks, while
intersecting the remaining 60 blocks in two points apiece.

Let V' = [1,22] be the point set of C, and assume v = [1,6] to be a block. DM
now splits V' into S11 U S12, where Sy; = [1,6]. Similarly, he splits the block set into
{7} U S21 U S92, where Sy consists of those blocks disjoint from . He is next able to
reveal some auxiliary designs:

(a) a symmetric BIBD F = (S, S21) with 16 blocks of size 6,

(b) a design & with repeated blocks that is uniquely determined by the parameters
v=06,b=60,r=20,k=2 \A=4,

(¢) a (hidden) design N with point set S5 and blocks of size 4.

Now a clever backtracking search, combined with some tedious technical arguments,
establishes that the only possibility for C is the design depicted in Table 8.2. The reader
will become more acquainted with the hidden idea behind DM’s vision of C in Section
11 below.
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Having completed the proof of Theorem 8.7, DM discusses the subgraph of N Ls(10)
induced on the block set of C (non-neighbors of the initial vertex «), a new SRG with
parameters (77,16,0,4), and other substructures. One such substructure (recorded in
Table 8.3 on p. 82) is a beautiful symmetric square of size 6 with empty diagonal. Each
entry of this square is itself a square of size 4, filled by the same four elements. This
substructure, which also appeared in [159], possesses some nice orthogonality properties.
We feel it is certainly deserving of special attention, however its careful consideration is
beyond the scope of our text.

Perhaps the most surprising observation by DM is that N L2(10) contains 7700 sub-
graphs, which are incidence graphs of a symmetric BIBD with v = 16, k= 6, =2

Although DM freely uses quasi-symmetric properties of C, he never makes the formal
observation that C is a 3-design. Fortunately this alternative DM-approach, though
of a more sophisticated nature, provides the modern reader with new perspectives on
attacking existence of N Ly(g? + 3g) for larger values of g.

9 History of the design S(3, 6, 22)

We come now to 1967, the year in which DM’s article [162] finally appears. This is the
first “official” announcement of DM’s discovery of N Ls(10), though quite unpredictably
it is also the last. This was not DM’s intention, e.g., see [162, p. 574] where he speculates
that his discovery will be presented in future papers. What then, are the events that
could have mitigated this change?

As previously mentioned, DM was unfamiliar at this time with the notion of a 3-
design. He constructed his design C using very clever ad hoc arguments, and proved
its uniqueness by a sophisticated brute force attack without the aid of a computer. In
contrast, at the same moment a rather wide mathematical audience was already well
acquainted with this notion, and even with the actual construction. We now attempt to
provide an historical perspective on the object in question, the Steiner design S(3, 6, 22).

The story properly begins in the mid-19*" century with E. Mathieu, a mathematician
who was nearly a century ahead of his time. Even today the mystery is not completely
solved as to how he was able to discover five highly unusual groups that now bear his
name, the Mathieu groups My1, M12, Moo, Moz, Msys. A brief, though very nice, historic
account of this great accomplishment may be found in [2].

It is the group Mao that occupies center stage for us, as its automorphism group
(viz. Aut(Mass) = Mss.Zs) coincides with Aut(C). Nevertheless, all five groups have
some relevance to our discussion, especially Ms3 and Msy as they correspond to 4- and
5-designs that are successive one-point extensions of S(3,6,22). Indeed, anyone who is
already aware of the design S(5, 8,24) well understands all aspects of the design C on 22
points.

Though one may find early attributions to T. Skolem, we may only refer to p. 42 of
[71] as being the first (to our knowledge) prior announcement of a result by Carmichael
[43] relating a similar design construction to Mj;. Actual consideration of S(5,8,24)
appears in [43], as well as later on in the book [44] where Carmichael in fact alludes to
the existence of S(3,6,22), though without giving explicit parameters or a construction.

Remark 6. The authors hold the book [44] in very high regard, a feeling that is shared
by several of our colleagues. In a definite sense it was ahead of its time. The text
contains a plethora of perfect exercises that challenge the reader to work with many
concrete combinatorial and geometric structures, as well as their symmetries. (Note
that the term automorphism was not in use at that time.) One explicit feature of the
exercises in [44] is their vast range of difficulty. Many problems are trivial while others
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are reasonably sophisticated. However, occasionally there is a pearl. Only the strongest
and most committed reader, working independently, will be rewarded with its solution,
which in turn will reveal some deeply hidden treasures. It seems that Carmichael’s failure
to stratify his exercises was not an oversight but a brilliant strategy on his part.

One additional text essential to our presentation is the article [229] of H. Zassenhaus.
This is a landmark paper in the development of the method of transitive extension, e.g.,
see [132]. An actual construction of My appears as Satz 7 in [229] with a clear group
theoretic proof. In [223], E. Witt refers to [229] as the origin of this newly created method.
In turn [223] serves as motivation for [224], which is written in a purely combinatorial
spirit. In particular, Satz / in [224] outlines a proof of the existence and uniqueness of
the Steiner system S(3,6,22).

Unfortunately, the latter paper [224] of Witt went virtually unnoticed for over a
decade, until R. G. Stanton, a Ph.D. student of Richard Brouwer, prepared his 1948
thesis at the University of Toronto. In Stanton’s subsequent publication [208] one finds
reference to S(3,6,22) with credits to the two papers of Witt. As a result of this,
Witt designs and their groups would come to gain deserved acceptance; in fact Wag
serves as a modern alternative to the more traditional notation S(3,6,22). We cite
[168, 215, 76, 214, 107, 3, 216] as only a sample of publications from that era that were
already recognizing the results of Witt, and which today are gaining a lot of traction.

This was also a time when links between groups and geometries were becoming trans-
parent, e.g., Tits in [214] was already citing Segre [189]. Nevertheless, some nice con-
siderations of finite geometries were still living on a separate island. A bright example
of this is the article [69], in which W. L. Edge prepared in a beautiful and surprisingly
translucent manner an analysis of the geometry PG(2,4) and its symmetry group, prob-
ably never anticipating that in a few years his results would have special significance for
group theorists.

However, this bucolic picture of the mathematical world would drastically change
due to the events of one single evening in 1967. The results achieved over the course
of this evening would form the content of [101], a publication that would have profound
influence on the fields of group theory, combinatorics, geometry and computer algebra,
and which would stimulate fruitful interdisciplinary links that nowadays look traditional
and longstanding.

The propagation of waves from this breakthrough was surprisingly quick. To illus-
trate, we mention the book [63] of P. Dembowski, which nowadays is viewed by many as
forming an unbreakable bond between finite geometries and group theory. At the time
of preparation of [63], the result of Higman-Sims was still in preprint form; yet the tele-
scopic eyes of Dembowski had already witnessed existence of the breakthrough, see his
footnote 2 on p. 91 with credits to C. Hering. (In fact, one also finds in [63] references to
a few papers of DM, although it appears Dembowski was not aware of [162].) Similarly,
[150, 151] were also influenced by [101], either implicitly or explicitly, with Hering again
receiving acknowledgment.

We close this section with a discussion of the uniqueness of the Witt design Was.
Nowadays, most authors follow the same basic mode of proof: use of the projective plane
PG(2,4) and its hyperovals. The first clear exposition in this mode was formulated in
[151] by H. Liineburg, who exploited the approach of Edge [69] who in turn was influenced
by Segre. Nice expositions of this method in English appear in [17, 13, 42]. However,
we prefer to follow Theorem 6.6.D on p. 200 of [64], which we outline below. First we
paraphrase the theorem statement as follows:

Up to isomorphism, there exists a unique Steiner system S(3,6,22) = Wa,.
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Moreover, Aut(Wss) acts 3-transitively on the point set of Was.

For the proof, we start with IT = (P, £) = PG(2,4). Note that IT has 168 (hyper)ovals
each consisting of six points. Define an equivalence relation on the set O of ovals as
follows: O = O3 <= |01 N Os| is even. Next show that there are precisely three
equivalence classes of ovals, each of size 56, preserved by the transitive action of PSL(3,4)
on O. Fix one such equivalence class H. Now for a ¢ P, form the sets P* = P U {a}
and B* = L*UH, where L* = {{U{a} |l € L}. Finally, check that (P*,5*) is a Steiner
S(3,6,22)-design with incidence defined by inclusion.

The proof of uniqueness depends on the uniqueness of II plus some nice properties of
hyperovals. (We still believe [69] is the best source for such information.) Uniqueness of
Wag implies the transitivity portion of the theorem: H = Aut(Wsy) acts 3-transitively on
P* because PSL(3,4) acts 2-transitively on P. This also proves |H| > 22-|PSL(3,4)| =
443520, which is the precise order of the group Mss.

Remark 7. (a) In fact |H| = 2 - |Maa|, as H is a transitive extension of the group
PYL(3,4) = PSL(3,4).Zy acting on P. Such vision becomes absolutely clear if we
consider the group Maoy = Aut(Way), where Woy is the unique S(5, 8,24)-design. Indeed,
in the action of My on the point set of Wayy, the stabilizer of two points 3, ¢ yields a
copy of Mso while the stabilizer of the set {3, (} yields H.

(b) Note that the modern way to view this entire picture is to interpret Way as the
set of octads of the Golay code of length 24. The reader is strongly encouraged to consult
[113] for a comprehensive treatment that follows this approach.

10 Higman-Sims graph and the sporadic simple group HS

The discovery of the sporadic simple group HS by D. G. Higman and C. C. Sims stands
as one of the most fascinating stories in modern group theory. Details of this historic
event are well documented, e.g., see [104, 10].

The story begins at a 1967 conference in Oxford, where Marshall Hall has just deliv-
ered his talk, “A search for simple groups of order less than one million”. Higman and
Sims are two of the many in attendance. Hall has just described the construction of a
new sporadic simple group (Hall-Janko group) as a rank 3 permutation group of degree
100. Higman and Sims are immediately inspired to think along the lines delineated in
Hall’s talk. Crucial observations are made during the night of Saturday, September 2
through the morning of Sunday, September 3, 1967. The end result is a new sporadic
simple group HS. A manuscript is submitted fairly quickly (received by the editors on
November 20, 1967, published as [101] in 1968), yet news of their discovery spreads even
faster.

The group H.S was discovered via the procedure of “rank 3 extension”. A graph I' was
constructed from an initial vertex * in such a way that the stabilizer of * in the proposed
group would have orbit sizes 1, 22, 77, and would contain the Mathieu group Mss. The
role of the unique Witt design Wss became crucial in this construction, particularly since
Aut(Was) contains My as a subgroup of index 2. In the end, the construction of I is in
every detail identical to the construction of N L(10) performed by DM. Of course neither
Higman nor Sims was aware of this accomplishment by DM. Their great advantage was
a formidable knowledge of the diverse properties of Was. (Relevant attributions in [101]
are given to [224, 216].)

Higman and Sims denote by G the full automorphism group of the constructed graph
I'. To now obtain their group HS, they note that G is transitive, contains odd permuta-
tions, and that the stabilizer of * in G is Aut(Mas). This alone allows them to conclude
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that G contains a simple group of index 2. They select a vertex a adjacent to * in I' and
show that its stabilizer too is isomorphic to Aut(Mzz). Finally they are able to explicitly
construct HS as a subgroup of G generated by two permutations of respective orders 2
and 7. It is fair to say that at many critical junctures in their proof they rely on purely
combinatorial arguments.

There are amazing numerological coincidences at work here. Sims recalls (see [104]),
“If it were not the case that we use the decimal system and that 100 = 102, T am not sure
we would have asked this question.” DM’s notion of NL,(n) results in a graph with n?
vertices. Many pages of [159] are devoted to the cases 4 < n <9, including a discussion
of the exceptional case n = 6 (there is no field with six elements). In Sec. 3.3 of [159],
where the graph N L,(10) is presented for the first time, DM’s opening remark is, “Since
no Galois field of order 100 exists, the method of Section 3.2 cannot be applied here.
The scheme would seem to have some special interest because of its possible connection
with the unsolved question of the existence of orthogonal 10 x 10 Latin squares.” (Keep
in mind that DM’s remark is more than a half-century old.)

There is an interesting spin-off to our main story of the group HS. In late 1967,
Graham Higman described at the Urbana Group Theory Symposium a certain geometry
on 176 points, having a simple doubly-transitive group of automorphisms (momentarily,
we denote this group as GH). The results were published in [102]. Originally, G. Higman
worked with 176 points and 1100 conics as his objects, but at the suggestion of D. R.
Hughes he realized the existence of a symmetric BIBD with blocks of size 50 (called
quadrics). The paper [102] is filled with beautiful combinatorial arguments relying on
exceptional properties of the symmetric groups S, n € {6,7,8}.

Almost immediately, Sims realized that the groups GH and HS were in fact iso-
morphic. Sims’ proof [200] was published in the legendary collection of papers of the
Symposium on Theory of Finite Groups at Harvard, 1968. During the same short pe-
riod, proofs of this isomorphism were also obtained by J. H. Conway [53], and D. Parrott
& S. K. Wong [169]. (The latter of these papers relies essentially on the uniqueness the-
orem of D. Wales [218] characterizing rank 3 graphs with the parameters (100,22, 0,6).)
A new proof of this same fact was later presented in [203, 204], with again the uniqueness
of Wy, as a key ingredient.

Since its discovery, the group H.S has continued to be the subject of special attention,
e.g., see [119, 153, 75]. The same is true of the Higman-Sims graph I'; over the past four
decades diverse investigations related to the geometry and symmetry of I' have resulted
in numerous publications. Of these we mention only a handful [23, 27, 58, 94, 95] that
correlate strongly with the spirit of our presentation.

We return once more to DM. It is 1968, and by now he has learned of the result of
Higman & Sims. (Dale has discussed with us his conversations with J. J. Seidel from
around this time period, see [117, 118].) One can speculate, probably with great accuracy,
the myriad of emotions he is experiencing over this news. For the next seven years DM
would not publish even a single paper. Over the course of his long career, never again
would he undergo such a prolonged period of silence.

His current state of inactivity is broken in 1974 with his joint paper [144] with E.
Kramer, where one observes DM as a mathematician with revitalized energy and renewed
confidence. A deep familiarity with Steiner systems, acquaintance with the papers of
Witt, references to papers of Frobenius and Wielandt — these are the ingredients of his
research interests. From a pure statistician with a penchant for matrix multiplication
to a mature expert in AGT and design theory, he is now cognizant of the treasures
available through group theory and finite geometries. The world of mathematics is forever
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remaining bright and attractive in his eyes, yet still he is not receiving the recognition
he deserves for the discovery he made 12 years prior to his contemporaries.

11 Mesner’s vision of the case g = 2 revisited

We are now in a position to introduce the main ideas of the initial construction of N Ly (10)
as it originally appeared in [159], and later, in more polished form, in [160]. No attempt
is made to preserve the original terminology or notation. Indeed, our motivation is to
present the construction in a manner that is readily accessible to modern researchers.

Throughout, we rely heavily on the use of the computer packages GAP [186] and
COCO [72]. (To provide full credits, we also mention the GRAPE subpackage of GAP
[205], which in turn relies on the use of nauty [158].)

We begin by introducing certain relevant auxiliary structures.

11.1 Generalized quadrangle of order 2

This famous configuration goes back to J. J. Sylvester (1844), who used the language of
duads and synthemes for its description. Starting from a 6-element set 21, the duads are
the 15 2-element subsets of {21, and the synthemes are the 15 partitions of €2; each into
three duads. Incidence is containment. It is convenient to think of this configuration
in terms of the complete graph Ky with vertex set €21, in which duads are edges and
synthemes are 1-factors.

One can readily check that the resulting incidence geometry & satisfies all axioms
of GQ(2), e.g., see [174]. This geometry is self-dual; letting I's denote its incidence
graph, we have Aut(&) = Sg while Aut(I'g) = Aut(Sg). Thus I's gives a natural way
to visualize the exceptional outer automorphisms of Sg.

Now the concept of a spread becomes essential, that is, a subset of lines of a geometry
that partitions its point set. Clearly, each spread of & corresponds to a 1-factorization
of the graph Kjg. There are six such pairwise isomorphic structures, see [42] for details.
Denote by 25 the set of such structures.

In such manner, we obtain an action (Sg, 2) which differs fundamentally from the
natural action (Sg,€21). Indeed, while (Sg,€21) and (Sg,{22) are equivalent with the aid
of outer automorphisms of Sg, the stabilizers in these actions are not conjugate in Sg.
Namely, in the case of (Sg, 1) a stabilizer is a copy of S5 acting 5-transitively of degree
5, while a stabilizer arising from (Sg,2s) is an S5 acting 2-transitively of degree 6. (Note
that in both cases, we are regarding S5 as a subgroup of the natural action of (Sg,21).)

A philosophical discussion of this unusual occurrence (due to Tarski) goes back to
[165]. We also refer to [175, 103] for additional details in two extrema: nice and convincing
visual images in the first cited article, and rigorous considerations on the border of groups
and geometries in the second. One additional reference of significance here is [167], where
both actions of Sg are investigated with detailed attention to their geometric origins.

We have introduced (Sg,22) in terms of spreads of &, but hasten to point out that
(S6,€21) has a similar such realization. A spread in the dual geometry &7 is a collection
of five duads each of which contains a common element a € ;. Clearly the action
of S on the six spreads of &7 is equivalent to the natural action (Sg, Q7). Thus our
two discussed actions both arise in a natural way in terms of spreads of generalized
quadrangles of order 2.

11.2 The exceptional isomorphism Ag = PSL(4,2)

Of the many presentations of this classical result, we again prefer the one by Edge
[68], which in turn discusses an old paper [55] by G. M. Conwell. This result proceeds

~

in conjunction with another exceptional isomorphism: Sg = PSp(4,2). In fact, the
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structure & introduced above is the smallest case of an infinite family of symplectic
generalized quadrangles.

Note that Sg naturally embeds in Ag as the subgroup (Sg x S2)P°® of all even per-
mutations in Sg x S3. Concurrently, one has an embedding of U = Fs1 x Sg into
Ng,, (V) & Ega x Ag, where Ng,,(V) is the normalizer in Sig of a 4-dimensional vector
space V = Fa1 over GF(2) acting regularly on 16 points. Our aim is to become more
familiar with the geometry of group U, especially with regard to how to recognize its
homomorphic image U/V 22 Sg in these same geometric terms.

11.3 The nicest biplane on 16 points

We are interested in BIBDs with the parameters v = b = 16, k = r = 6, A = 2, a
particular case of biplanes. According to the classical result of Hussain [110] there are
exactly three such designs.

A very friendly and quite elementary exposition on the result of Hussain may be
found in [109]. Note that while DM’s thesis [159] does not refer to [110], his later paper
[160] does so, and quite essentially.

Of these three BIBDs, we denote by D the one with the highest degree of symmetry.
Indeed, Aut(D) is a 2-transitive group of order 11520. The history of D can be traced
back to the 19" Century during which time it acquired such diverse names as the Jordan
design and Kummer’s quartic surface (see Section 13 for historic details). Thus we concur
with [179] in calling D the “nicest biplane on 16 points”.

Our path to D relies on the reader’s familiarity with the Clebsch graph U5, see Section
6. Recall that U5 is a Cayley graph over Fs4 with connection set of size 5. We also know
that Aut(ds) = Eos x S5. We shall again refer to the Clebsch graph Oy depicted in Fig.
6, only this time with one slight modification: Each binary sequence serving as a vertex
label will be substituted by its decimal equivalent ¢, 0 < ¢ < 15.

The following simple device is well known and goes back to [183]. It applies to any
SRG for which A = o — 2, in particular to Os:

Let T’ be an SRG with parameters (v, k, u — 2, i) defined on the vertex set Q. For
each z € Q, form B, = {z} UTi(x) where I';(x) is the set of neighbors of x. Set
B ={B, |z € Q}. Then (Q,B) is a BIBD with parameters (v,k + 1, u).

Taking into account that Aut(ds) contains a subgroup Fa: acting regularly on points,
we observe that D may be additionally obtained with the aid of a difference set over Foa,
for example B = {0,1,2,4,8,15} fulfills this role. Thus we get D = (P,B), where
P =[0,15] and B consists of the following blocks (6-element subsets of [0, 15]):

{0,1,2,4,8,15}  {0,1,3,5,9,14} {0,2,3,6,10,13}  {1,6,10,12,14,15}
{0,4,5,6,11,12}  {0,7,8,9,10,12}  {2,5,9,12,13,15} {1,6,8,9,11,13}
{1,4,5,7,10,13}  {0,7,11,13,14,15} {3,4,8,12,13,14}  {3,4,9,10,11,15}
{2,5,8,10,11,14} {1,2,3,7,11,12}  {2,4,6,7,9,14} {3,5,6,7,8,15}

Clearly D has the parameters v = b =16, k = r = 6, A = 2. We omit simple arguments
that show that U := Aut(D) acts 2-transitively on P and that U = Eqs x Sg.

11.4 Anatomy of the design D
Recall that an oval O is a subset of points of a design such that |O N B| € {0,2} for
every block B of the design. According to the theory presented in [42], ovals in our nicest
biplane D should all have size 4.

We can describe the ovals of D with the aid of the following simple procedure applied
to our canonical copy of [s:
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Fix any edge {a,b} of A = O, and consider the set A(a) N A(b) (mutual non-
neighbors of a and b). The subgraph of A induced on the six vertices of this set is
a l-factor consisting of three edges, say {c,d}, {e, f}, {g,h}. In this case one obtains
{a,b,¢,d}, {a,b,e, f}, {a,b,g,h} as ovals in D. Varying our choice of initial edge, we
obtain 162'_52'3 = 60 distinct ovals in this manner, thus exhausting the entire set O of ovals
in D. Moreover, the incidence structure (P, Q) is another BIBD invariant under G.

Recall that Aut(Os) is a subgroup of index 6 in Aut(D). This implies that there are
exactly six different copies of the Clebsch graph that produce design D via the procedure
outlined in Subsection 11.3. Denote by €2y the collection of these six Clebsch graphs.

The easiest way to observe the members of € is to consider the six blocks of D that
contain the point 0. Each such block (with the point 0 excluded) serves as a connection
set for a Cayley graph over Ejs, and the six Cayley graphs so obtained are none other
than our six Clebsch graphs forming §2;.

Furthermore, as D is a symmetric design (in fact, self-dual), we know that any two
blocks of D intersect in exactly two points. This means that each pair of connection sets
above have exactly one point z # 0 in common, and consequently each pair of Clebsch
graphs from ; intersect in precisely a 1-factor of Esa, namely the Cayley graph over
E5s+ with connection set {z}. In this manner we obtain (g) = 15 such 1-factors, each
yielding a graphical representation of an involution from Fss. Thus it will be convenient
to identify 1-factors with involutions as follows: the 1-factor arising from the involution
x € Ea1 will be denoted by m = m,, where m € [1,15] is the decimal equivalent of z,
regarding x as a binary number. Let us denote by ¥; the set of all such 1-factors.

At this stage we are interested in spreads of the new design (P, O), that is partitions
of O into four ovals. GAP now informs us that there are two orbits of such spreads of
respective sizes 15 and 90. Clearly the smaller orbit is preferable because it corresponds
to a resolution R of (P, ©O) into 15 parallel spreads. In principle, one would like to arrive
at this resolution without the aid of computer-generated data. Indeed this can be done,
however not within the framework of our current presentation. At present, suffice it to
say that the 15 + 90 = 105 spreads of (P, Q) correspond in a natural way to the 105
Klein-4 subgroups of Fy4, and below we exhibit this correspondence explicitly for the 15
spreads in our chosen resolution R.

One relevant Klein-4 subgroup of Fas here is (0001) x (1010), which contains the
three involutions 1,10, 11 (in decimal). The Cayley graph over E3: with connection set
{1,10,11} is 4 o K4 (four disjoint copies of the complete graph K,), and the resulting
partition of the vertex set is given by {0,1, 10,11}, {2, 3,8,9}, {4,5,14, 15}, {6,7,12,13}.
To see that this yields a spread in (P, Q), one need only verify that each 4-element subset
in this partition is indeed an oval of D.

We denote by 35 the set of 15 spreads comprising R. Just as we earlier identified
1-factors with involutions, we here find it convenient to identify spreads with triples of
involutions (again, the underlying connection sets). We may now list the members of ¥y
in a most compact form:

{1,10,11}  {2,9,11} {1,12,13} {1,6,7}  {5,10,15}
{3,8,11}  {4,10,14} {4,9,13}  {2,5,7} {2,12,14}
{6,9,15)  {3,12,15} {5,813}  {3,47} {6,814}

11.5 GQ(2) by way of the nicest biplane

We are now ready to introduce a new incidence structure M = (X1, ¥) with point set
>1 and line set 5. This configuration may be viewed simultaneously at several levels.
For example, incidence in M is easiest described in terms of the group FEsa: points are
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involutions, lines are triples of involutions (coming from the 15 aforementioned “special”
Klein 4 subgroups of Fs4), and incidence is containment.

Simple routine inspection allows us to conclude that M is the same GQ(2) (cf. Subsec.
11.1) in new clothing. To see this it is convenient to interpret points once more as 1-
factors, that is, pairwise intersections of Clebsch graphs from Q. Thus each point is a
duad of Clebsch graphs, and each line is a triple of disjoint duads, that is, a syntheme of
(1. Thus one sees the evident relationship between M and the model & of Sylvester.

Moreover, €21 is nothing more than a spread in the dual geometry MT of M. Indeed,
the action (Sg, §21) coincides with the natural action (Sg, 21) encountered in the context
of the dual geometry &7,

It remains for us to identify six more objects that are for the moment quite hidden
from view, and revealed to us only through the use of GAP.

Recall that the elements of 35 comprise a resolution R in (P, O). As it turns out, the
data generated by GAP facilitate a description of these six hidden objects in terms of six
sub-resolutions S; of R, 1 < i < 6, each consisting of five spreads. These sub-resolutions
are easiest represented in terms of connection sets, that is to say, we represent each S;
as a collection of five triples of involutions, where each such triple is the connection set
of a spread that occurs in S;. Specifically, we get

Sy {{1,10,11},{2,5,7},{3,12,15}, {4,9,13}, {6,8, 14}}
Sy {{1,10,11},{2,12,14},{3,4,7}, {5,8,13},{6,9, 15} }
Sy {{1,6,7},{2,9,11},{3,12,15}, {4, 10,14}, {5,8, 13} }
Sy : {{1,12,13},{2,9,11}, {3,4, 7}, {5, 10, 15}, {6, 8, 14} }
S5+ {{1,12,13},{2,5, 7}, {3,8, 11}, {4, 10, 14}, {6,9, 15} }
Se 1 {{1,6,7},{2,12,14}, {3,8, 11}, {4,9, 13}, {5, 10, 15} }

This representation of six hidden objects turns out to be much more than a notational
convenience. Indeed, from it we readily observe that each S; is a set of five elements from
Y5 (viewed as triples of involutions) that partitions X1 (viewed as a set of involutions).
That is to say, each S; is nothing else but a spread in the design M. Let (~22 denote
the set of these six spreads S;, 1 < i < 6. Clearly, (Sg,Q22) and (S, Q2) are equivalent
actions, as may be observed directly.

The fact that our six hidden objects turn out to be nothing more than spreads in
M helps to remove some of their mystique. However, it is still a mystery as to why
these specific sub-resolutions are the ones that appear. It seems that there are just two
obstacles to a computer-free interpretation of the results thus far presented in this section:
the one alluded to above, and the earlier choice of resolution of (P, ). No doubt, all
clues required to solve this conundrum are living in the nicest biplane on 16 points.

11.6 Assembling the pieces

In modern terms, the initial construction of DM can be compactly expressed by the
intersection diagram in Fig. 8. The monicker of “non-edge model” refers to the fact
that the construction is starting from an initial pair P*, B* of objects that are to be
nonadjacent vertices in the graph NLo(10). Note that including P* and B* there are

2+ |P| + |B| + |O] + |Q] = 2+ 16 + 16 + 60 + 6 = 100

available objects, which evidently will comprise the vertex set €2 of the forthcoming graph.
There are two especially important observations to be made here. First, all indicated
sets of objects are manifestly connected to the nicest biplane on 16 points (viz. points,
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Figure 8. DM intersection diagram

blocks, ovals, sub-resolutions). Second, each set of objects admits a natural action by
the group G := Aut(D) = Esa % Se.

The final task is performed by the computer package COCO. Generators are first
obtained for the intransitive action (G, ) having six orbits of respective lengths 1, 1, 6,
16, 16 and 60. Next, COCO constructs the coherent configuration A = (€2, 2-orb(G, Q))
in the sense of D. G. Higman. It turns out that 2 has rank 51 (i.e., |2-orb(G, Q))| = 51).
At the next stage, COCO computes all intersection numbers of 2, mergings of 2 that yield
associations schemes, and automorphism groups of these resulting association schemes.
In the present case we get two copies of the graph NL2(10) (compare this with the
situation of the Shrikhande graph in Sec. 2). Note that the two obtained copies of
NL5(10) are interchanged by a suitable involution in AAut() = Es2, a fact revealed to
us by GAP. Below we provide a description of one such copy.

11.7 Adjacencies revealed
As indicated by the intersection diagram in Fig. 8, vertex P* is adjacent to every vertex
in P. Similarly, B* is adjacent to every vertex in B.

The link adjoining P to B is simply the incidence graph of the design D. Likewise,
the link adjoining P to O is the incidence graph of the design (P, O).

A vertex B € B is adjacent to a vertex O € O provided B and O are disjoint.

Two vertices from O are adjacent provided they are disjoint and do not occur in any
common sub-resolution S; € 5. B

Finally, a vertex O € O is adjacent to S; € 25 provided O occurs in S;.

Note that the full list of 60 ovals remains hidden from the reader. Only those 15
which contain 0 are listed explicitly at the end of Subsec. 11.4.

11.8 Additional remarks

The reconstruction of DM’s ideas as presented in this section requires special discussion.
Literally speaking, the texts [159, 160] of DM are focusing on a description of the

incidence structure C, whereas we are presenting the entire graph I'. Nevertheless, DM

paid great attention to explaining how the global structure of I' could be derived from

a knowledge of C. In our eyes, the manner in which I' is finally assembled from its

component pieces truly reflects the spirit of DM’s vision, although it does not strictly
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coincide with his presentation.

Further texts that helped shape our ideas and insights in arriving at our interpretation
of DM’s vision are [81, 122, 4, 22, 179]. Indeed, these strongly influenced the direction
of our arranged computer algebra experimentation.

Last but not least, we mention a goal of the authors (together with M. Ziv-Av) to
arrive at a new interpretation of DM’s original proof of the uniqueness of I', which will
be computer-free and rely strictly on knowledge of the design C, its symmetries, and its
substructures.

12 Further developments

In this section, we endeavor to explain how the crucial discovery by DM of a putative
infinite series of parameters for N L,(g* + 3g) was recognized, interpreted and developed
by his followers. Though most of what we here present may be substantiated factually,
there are also a few occurrences of speculation on our part in order to fill gaps in the
literature.

Recall the starting point in the construction suggested by DM, namely a 2-design C
with parameters as given in Section 7, with the property that each block of C is disjoint
from g%(g + 2) other blocks while intersecting each remaining block in exactly g points.
The kernel of our narrative will be to trace the evolution of this set of properties.

12.1 Concept of a quasi-symmetric design

We adopt the definition appearing in Sec. 48 of [49], as formulated by M. S. Shrikhande: A
t-(v, k, A)-design D is quasi-symmetric (or a QSD) with intersection numbers z,y (x < y)
if any two blocks of D intersect in either x or y points.

Given a QSD D, we define the block graph I' = T'(D) to have vertex set the set of
blocks of D, with two vertices B;, B; adjacent if |B; N B;| = y. Of central importance to
us is the fact that I' is an SRG in this case, its parameters being readily expressible in
terms of the parameters of D. The origin of this concept goes back to S. S. Shrikhande
[195] (the father of M. S. Shrikhande), but the term “quasi-symmetric” does not appear
until [210] where it is coined by R. G. Stanton and J. C. Kalbfleisch. Prior to this point,
the concept was further discussed in [209, 198], see also Thm. 10.3.4 of [176] and related
references.

12.2 Emergence of J. J. Seidel

As was the case with Bose, J. J. Seidel started out as an expert in geometry. He submitted
his first AGT-related paper [149] on December 18, 1965, however it is in Seidel’s next
publication [190] where one witnesses his “seduction” to AGT. (Indeed, 14 of the 15
references in [190] are linked to the notion of an SRG.) It is also apparent from [190] the
degree to which Seidel was influenced by the seminal paper [18] of Bose.

The first formal link between Seidel and DM may be found in [84], where reference
is made to [161] (specifically to the term “pseudo-cyclic”, which would later become the
subject of careful investigations by Seidel and others, cf. our discussion of [161] in Sec.
5). From this moment on, the name of DM would be imprinted on Seidel’s mathematical
consciousness. (Recall that a year later they would meet for the first time in Lincoln
NE.)

The first proper and systematic investigation of QSDs was initiated by Seidel et al
at approximately the dawn of the Higman-Sims era in AGT. In evident form this was
accomplished in the extended abstract [85] with a much more comprehensive presentation
being reached in [86]. Both texts refer to SRG(100, 22,0, 6) as being “first constructed
by Higman and Sims, while discovering the simple group which carries their name.”
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Reference is made to [101] here. (Credits in [86] are also given to two papers of Gewirtz,
in particular to [81] for the proof of the uniqueness of the Higman-Sims graph. Finally,
we mention [192], where once more construction is attributed to Higman and Sims and
uniqueness to Gewirtz.)

Curiously, in the very same paper [86] in which Seidel accords priority to Higman
and Sims for the discovery of SRG(100, 22,0, 6), he cites [162] and accredits DM with
construction of the graphs NL4(n) for prime powers n.

Remark 8. We are forced here to speculate on two puzzles. First, we are guessing
that Seidel, upon first exposure to the remark in [162] on the existence of N L2(10), “did
not believe his own eyes” and so intentionally decided to give priority for the discovery
to Higman and Sims. However, there is concrete evidence that after his first personal
meeting with DM during the following year his mind was forever changed: in all sub-
sequent publications Seidel conspicuously omitted the word “first” when referencing the
construction of Higman and Sims. Regardless, we can offer no insight into our second,
more perplexing puzzle: why Seidel never took the opportunity in any of his future ar-
ticles or public presentations to disseminate DM’s discovery to the mathematical world.
We fear this second puzzle may never be given a satisfactory explanation.

12.3 Influence of DM

Here we digress ever so briefly, to emphasize DM’s growing influence at this time on his
colleagues in the field of statistics.

In [50] W. S. Connor cites [159] as one of the motivational sources for his studies.

In [196] S. S. Shrikhande provides new proofs of certain results from [159], in addition
establishing that all Lo-type graphs on 16 vertices are known.

In his seminal paper [18] R. C. Bose accredits DM [159], along with Shrikhande and
Bruck, as laying the foundations for the theory of Latin square type SRGs, which strongly
influenced his techniques.

In [14] one finds reference to [160, 162], as well as specific mention (pp. 365-366) of
DM’s main result regarding the existence of an NL,(g? + 3g)-graph given the existence
of a QSD with suitable parameters. As an example, uniqueness of the case of NL;(4) is
demonstrated. In addition, further exploiting DM’s techniques from [160], the authors
prove nonexistence of any SRG(28,9,0,4).

In retrospect, one would have to consider [14] to have been a very natural place to
mention the result in [160] about the existence of N Ly(10). Indeed, it is a pity that this
was not the case. (Note that [101] was clearly out of the scope of the authors at the time
their paper [14] was written.)

Finally, we draw attention to the paper [193] of Mohan S. Shrikhande, which we
believe to be the earliest text in which attribution is paid to the work of DM surrounding
the graph I'. In his paper Shrikhande refers to the graphs NL,(g* + 3g) introduced in
[160, 162], and provides a complete proof of his Theorem 2.1 in which a construction
of N Lg(g2 + 3g) is described in terms of a suitable quasisymmetric design D. More
specifically, this theorem asserts that the existence of design D is both necessary and
sufficient for the existence of NLgy(g? + 3g).

In his concluding remarks, M. S. Shrikhande mentions only that a suitable design D
for the case ¢ = 2 had been discovered by Witt in [224] and that the resulting graph is
exactly the one obtained by Higman and Sims in [101]. It is a somewhat delicate issue
that while credits are given to DM for his discovery of the family NL,(g* + 3g) there is
still no evident wording in [193] that reflects the construction of N Ly(10) by DM himself.
Thus, although the author MK has been carrying a copy of [193] since 1977, for the great



36 Mikhail H. Klin, Andrew J. Woldar

majority of this time it was not possible for us, nor for our contemporaries, to understand
from [193] a clear message about the priority of DM.

12.4 Two significant lemmas
The first lemma we wish to discuss is due to K. N. Majindar (= K. N. Majumdar), a
statistician by training.

Lemma 1 (Majindar [156]). A given block in a BIBD with parameters v, b, k, r, A
(r=1%k
r7&7k+kA
that many, then % is a positive integer and each of the non-disjoint blocks has

r=A—k+kX
r—1

can never have more than b — 1 — blocks disjoint from it. If some block has

varieties common with it.

The proof is a brilliant half-page exercise in the art of variance counting, a main
tool among statisticians. Starting from the design C used by DM (for which one has the
parameters (22,77, 6,21, 5)), the reader may easily verify that we are getting an extremal

case in the sense of Lemma 1, namely b — 1 — % =16 and “=2=E+EA — 2 (This
latter equation is expressed as y = 2 in the language of QSDs.)

This property was first observed on an empirical level by DM in his thesis [159], which
predated [156] by several years. In contrast DM’s Lemma 8.2 of [160] (a special case of
Majindar’s Lemma stated above) appeared after [156]. Yet DM makes no mention of
[156] in [160]. While we may safely presume that Majindar was unaware of DM’s thesis,
the presumption that DM was unaware of [156] is tenuous at best. The only explanation
we can offer is speculative yet entirely consistent with DM’s character. We believe that
DM may have felt that by referencing [156] in such close proximity to his own earlier
work [159], his actions might be construed as a challenge to priority, something that DM
by his very nature would never abide.

Still, it is unfortunate that only a modest number of scholars recognize the depth of
Majindar’s contributions (e.g., see [63, 13, 94, 112]). It is indeed a pity that for the vast
majority of modern day design theorists his name remains in relative obscurity.

With or without the aid of Lemma 1, we may now better understand what was
outlined in Section 7: the crucial design C should be a QSD with the parameters z = 0
and y = g. It is still not clear, however, why this QSD should be a 3-design. We need
one more auxiliary result for this.

Lemma 2 (Cameron [39]). For a 2-design D, any two of the following imply the third:

(i) D is a 3-design;
(ii) D is a QSD with = 0;

(iii) D has @ blocks.

Surprisingly, there is no proof of this result nor any attribution given in [39]. This
causes us to speculate that at the time the paper was written the author regarded this
result as folklore. In fact, many proofs will appear much later in diverse formulations
and contexts, e.g., see [5, 155, 194, 42]. Nonetheless, our own attempts to detect in the
literature any hint of Lemma 2 prior to 1973 (the year that [39] was submitted) met with
utter failure. Hopefully, active players in AGT will help to shed some light on this small
but intriguing puzzle.

Application of Lemma 2 gives the reader a clear picture of the critical fact that
escaped DM’s awareness at the time: that design C is a 3-design. Had DM realized this
fact at any time prior to 1968 his fate might have been changed dramatically.



Acta Univ. M. Belii, ser. Math. 25 (2017), 5-62 37

12.5 Extensions of designs

We discussed in Section 11 the DM-approach used in the construction of the design C
responsible for the existence of N L,(g*+3g). Unlike DM, Higman and Sims were granted
this design for free by Witt, who obtained it from the projective plane of order 4 via the
method of transitive extension. This explains why an understanding of the result of
Higman and Sims promoted immediate strong interest in the direction of extensions of
designs.

The main driving force in this area was P. J. Cameron, who relied on significant input
from Hughes (see [107]) and Liineburg [151]. In the short span of 2-3 years, Cameron
removed all traces of mystery (at least at the level of feasible parameters) in his series of
papers [36, 38, 39]. Indeed, the classical theorem of Cameron [36] describes all possible
parameters for a symmetric design to admit a transitive extension, namely those which
are occurring in (i) Hadamard designs, (ii) two sporadic cases on 111 and 495 points,
and (iii) an infinite series of designs with v = (A + 2)(A\? + 4\ + 2) points.

The first sporadic case (projective plane of order 10) was disposed of with the aid
of a computer [145], while the second sporadic case has yet to be resolved. Hadamard
designs form their own classical branch of combinatorics. The remaining infinite family
leads, via extension, to the 3-designs necessary for obtaining an NL,(g* + 3g)-graph. If
A =1, we start with a projective plane of order 4, and hence obtain the Witt design Was
upon extending. (The case A = 0 may be regarded here as degenerate, with the extended
design being the trivial design on five points.)

In fact Cameron’s results may be considered in the broader context of SRGs with no
triangles. (See [42] which provides a bright self-contained introduction to the subject.)
The preprint [16] attempts to revive interest in this most appealing, albeit difficult, area
of AGT (see also our Subsec. 13.7 below).

Finally, we mention ongoing efforts to prove nonexistence of 3-QSDs with suitable
parameters, see [172, 173] as samples of this activity.

126 The case g = 3

As was mentioned by S. S. Shrikhande in [197], the case g = 3 provides the next possibility
to construct an SRG of NLg4-type from the DM-family. Here one needs a biplane on 56
points (i.e., k = 11) which extends to a 57-point 3-design. We refer the reader to [109, 37]
for a helpful introduction to biplanes.

For the longest time only four biplanes on 56 points were known (e.g., see [184]) until
a fifth one was discovered in [120]. About three years later, it was asserted that no
biplane on 56 points could be extended to a 3-design (see [6], as well as the corrigendum
in [7] by the same author). The amended proof was believed to be correct, e.g., see [42],
until a fatal flaw was detected by A. E. Brouwer, see [128] for details. Finally, all matters
were put to rest by an exhaustive computer search (316 machines running in parallel for
two months), and the results established in [127] as follows: The five known biplanes on
56 points comprise a complete listing of such objects, and none admits an extension. In
particular, there is no N L3(18) making g = 4 the smallest unresolved case.

It is quite surprising that the particular result about nonexistence of the graph
NL3(18) on 324 points was obtained by A. Gavrilyuk and A. Makhnev in [79] on a
purely theoretical level, prior to the appearance of [127]. Both texts are using a different
terminology, and neither refers to the work of DM.

The reader is welcome to approach the case NL4(28) by starting from a suitable
symmetric BIBD on 115 points.
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13 A more wide panorama

The initial goal of this project was to provide a reasonably self-contained historic narrative
that focused on the origins of SRG(100,22,0,6) and emphasized the important “hidden”
contributions of Dale Marsh Mesner within these frames. It was only upon extensive
investigation of the literature that we came to realize, and appreciate, the true scope of
the task we were undertaking. Many surprises slowly revealed themselves to us, and due
to their depth and sheer number we were forced many times to redefine our objectives.
All the while, we felt a strong obligation to provide the reader with a full panoramic view
of those events which were to play such an important role in the future development of
AGT.

As a consequence, the purpose of this final section is to house all extra material
that in our judgment may have created too burdensome a load on our earlier exposi-
tion. Of course, the reader has complete freedom to decide what will be his/her level
of comprehension in pursuing various portions of this surplus material. Any attempt to
synthesize new scientific leads, based on an appreciation of the ideas of our accomplished
predecessors, will be sufficient reward for the authors.

13.1 Scientific ingredients

All facets of research relevant to the discovery of NLs(10) and its related structures,
including investigations, interpretations and consequent applications, can only be ade-
quately described in a broad interdisciplinary framework. In this fashion we distinguish
eight different branches, which, although clearly not existing in full isolation, may be
characterized separately. To each such branch we devote a few sentences, and suggest
a couple of noteworthy texts that will hopefully allow the interested reader to make a
few independent steps in a new direction. In each case the texts have been chosen to
complement one another in terms of style, time of publication, intended audience, and
presumed background.

e Design of experiments. The initial sentences of [11] explain the role of combinatorial
designs in helping statisticians to answer two questions:

(i) What is the best way of choosing subsets of treatments to allocate to the blocks,
given the resource constraints?

(ii) How should the data from the experiment be analyzed?

R. C. Bose and his collaborators at the Calcutta Institute of Statistics were a
driving force in this area. The book [176] remains today a valuable comprehen-
sive source of diverse examples accumulated over decades of development of the
subject. In contrast, [11] offers a more fresh approach from an author with great
pedagogical skills. Its aim is successfully reached: to give the reader a quicker and
more accessible entrance into the subject.

e Permutation group theory. We were fortunate to witness that DM was fond of
permutation groups, though he claimed to be an amateur in this area. Oppositely,
Higman and Sims belonged to a handful of experts who creatively shaped this part
of group theory. The texts [64, 41] reflect the views of evident leaders in this area,
although their target audiences and expository styles are quite different. Of course
one should also keep in mind the short pioneering book [220] of Wielandt.

e Finite geometries. The reader has already been made aware of the classic text
[63]. A trilogy by Hirschfeld and Thas (covering projective geometries, projective
spaces and general Galois geometries) is an unusually robust work housing the
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accumulated treasures of thousands of researchers. Here we refer to the particular
volume [103] of the trilogy that treats the Mathieu groups and Witt designs.

e Algebraic graph theory. The name AGT was coined by Biggs [15] in 1974. In fact,
the techniques exploited in AGT are so wide that one could justifiably consider AGT
to be a collection of diverse tools, ideas, and even philosophy encompassing many
adjacent mathematical areas with the common goal of enumerating and classifying
graphs with symmetry-related properties. Our own experience suggests that the
text [83] may be enjoyed by a wide spectrum of audiences ranging from university
students to specialists. Recently published introductory lecture notes [130] might
also be helpful for the beginning reader.

e Design theory. The text [109] is a friendly place to start, although by no means
is it trivial or easy. Of a more comprehensive nature is [13], especially the section
entitled “The Higman-Sims group” (pp. 230-236), which is an absolute gem in our
eyes.

e Combinatorial matrix and spectral graph theory. Variations in the name reflect
variations of tools mobilized from linear algebra to investigate symmetry of graphs.
Clearly DM was very strong in this area, belonging to the cohort of statisticians
who created its modern theory and applications. Links of Higman and Sims to
this area were of a more exotic nature, via that branch of representation theory
treating centralizer algebras of permutation groups. The brief introduction to SRGs
found in Sec. 5.2 of [28], as well as the attention paid to Higman in [59], should
immediately convince the reader of the relevance of both sources. Finally, we again
mention [26].

e Coherent configurations and association schemes. This branch is commonly referred
to as “algebraic combinatorics” as coined by E. Bannai and T. Ito in [9]. However,
in more recent times the term has grown to incorporate a much wider range of
combinatorial areas. Nonetheless, our attention is dogmatically restricted to the
line pursued in [9], reflecting those objects (association schemes) developed by R.
C. Bose et al for the purpose of experimental design. The more general notion of a
coherent configuration was developed mainly through the efforts of D. G. Higman,
although a similar concept carrying the name of “cellular algebra” can be traced
to an even earlier period in Moscow (B. Weisfeiler and A. Leman). At present, a
comprehensive treatment of coherent configurations has yet to be written. (Indeed,
among widely accepted textbooks it seems that only [41, Chapter 3] attempts such
a treatment.) Nevertheless, the lecture notes [100] of Higman serve as one of the
most serious introductions to the subject.

e Diagram geometries. Of all branches related to our paper either explicitly or implic-
itly, this is clearly the most modern. Early publications of F. Buekenhout served as
an initial impetus. Presentations in [170, 113] provide a wide background in which
our central design Was is just one of hundreds of illuminating examples. To give the
reader just a small taste of the exposition, we refer to [113, Lemma 4.10.17 (p.189)]
which simultaneously serves as a definition of the Higman-Sims group. Specifically,
it appears as the stabilizer of a suitable induced subgraph of As, which in turn is
defined in terms of the famous Leech lattice A.

13.2 More on historical origins

In their initial role, association schemes served as auxiliary objects, subsidiary to the
investigation of PBIBDs. The latter were a natural generalization of BIBDs, formulated
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as applicative tools for the study of statistical design of experiments. At exactly this
time the creation of catalogues such as [46] emerged, starting what would become a well
established tradition in modern combinatorics. This flavor is already observed in [159],
which focuses much of its attention on PBIBDs. In contrast, the seminal paper [19] is
the first to treat association schemes as objects of independent interest, a vision that
would be supported and strengthened in each successive publication of DM.

As previously mentioned, two influential creators of the theory of SRGs, Bose and
Seidel, both entered into combinatorics by way of geometry. In fact, attention to certain
types of combinatorial structures was already an established tradition in 19*" Century
algebraic geometry; indeed, our favorite example of the Clebsch graph was just one of
many attractive objects inherited from this “old-fashioned” field. The ability to analyze
such structures by means of their coordinate presentations, and to describe their internal
symmetries in strict group theoretic terminology, was a clear advantage at the dawn of
modern combinatorics and AGT.

Seeing great potential in this geometric-combinatorial synergy, more and more ex-
perts in algebraic geometry shifted their attention to finite geometries, simultaneously
honing their skills in group theory. (We cite J. A. Todd and W. L. Edge as two striking
examples.) By the 1960s, especially due to the efforts of Reinhold Baer and his followers,
the marriage between group theory and geometry was already well established. This was
a great advantage to experts like Higman and Sims, however its impact on DM would
not be felt for many years.

Starting from the 1950s, permutation group theory was enjoying a revival through
the efforts of H. Wielandt and other followers of Issai Schur. This approach was enthusi-
astically picked up by a younger generation of researchers, with Higman and Sims serving
as bright leaders. The publications [98, 99, 199] served to strongly fertilize the ground on
the edge between combinatorics and group theory. This explains how, miraculously, an
exotic flower came to bloom on September 3, 1967 from the seeds sown by two colleagues
on just the previous evening.

13.3 Kummer’s quartic surface

This is in fact the title of a book [106] written at the turn of the century and reprinted
in 1990. The main subject is Kummer’s 16 configuration (having today a few alternate
names), which had already attracted the attention of Camille Jordan who viewed it as
an incidence structure, enjoying the 2-transitive action of its automorphism group on 16
points.

Needless to say, the “nicest biplane on 16 points” discussed in Sec. 11 is none other
than 164. Correspondingly, the substructures forming our sets 1, €25 in Subsec. 11.5
were known to algebraic geometers already at the time of Ronald W. H. T. Hudson.

Despite the fact that algebraic geometry has experienced a couple of revolutionary
changes in paradigms throughout the years, one may still observe how the 164 configura-
tion serves as an inspiration to each new generation of algebraic geometers. Occasionally,
it even stimulates the modern researcher to take a trip into an unfamiliar past in order
to observe the beauty and symmetry of the structure in its more natural historic habi-
tat. However, we recognize the hazards of such a journey, particularly when a deeper
comprehension is desired. Thus we just supply the reader with some guidelines. For an
initial exposure to the language of linear complexes, associated congruences, and apolar
pentagons we refer to [122] with credits to [68] and [55]. Some additional papers of Edge
may also be helpful, viz. [65, 66, 67, 70], however the main ingredient will be perseverance
on the part of the individual who decides to brave the journey.
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13.4 Six levels of description of NL3(10)

The graph I' = NL5(10) is a rank 3 graph, in other words, its automorphism group
acts transitively on three naturally defined sets (vertices, oriented edges, and oriented
non-edges). Nowadays, with the aid of the classification of finite simple groups (CFSG),
all rank 3 graphs are characterized, e.g., see the references in [42].

Clearly all rank 3 graphs are SRGs but not conversely. The smallest SRG that is not a
rank 3 graph occurs on 16 vertices and is commonly called the Shrikhande graph. (In fact,
this is exactly the graph appearing in our Example 3 of Section 2.) The Shrikhande graph
already shows up in DM’s thesis [159]. See also a very nice depiction of the Shrikhande
graph on the cover of the text [28].

Based on CFSG, one splits all rank 3 graphs into two categories: classical and spo-
radic. The classical ones may be described in terms of geometries over finite fields. All
requisite information in this case may be found in the framework of geometric alge-
bra, see [1, 212, 90] which collectively reflect the evolution of this subject over the last
half-century.

The situation for sporadic rank 3 graphs is more sophisticated. Such objects generally
arise via ad hoc constructions, and consequently they may be viewed at many different
levels. Unlike the case for classical graphs, a complete comprehension is truly achieved
only by constantly adjusting our looking glass, striving to uncover hidden secrets at each
successive stage. We illustrate this phenomenon below for the graph I', imagining that
we are honing in on its “dwelling” with the aid of a very powerful telescopic lens.

e Leech lattice (cosmic view). There are a lot of diverse texts to help one become
acquainted with this object. For example, [181] is intended for a wide audience while
[54] is a comprehensive source. The short note [222] provides a fresh elementary
perspective.

The Leech lattice was constructed by John Leech in 1965 (see [147]), and although
he is often given credit for its discovery much earlier traces may be observed. Here,
we again refer to Ernst Witt, this time to [225, p. 328], splitting our feelings about
this monumental mathematician between deep admiration and bitter confusion
(e.g., see [181, pp. 131-133]).

The Leech lattice A arises in connection with the sphere-packing problem, admitting
the densest packing of non-overlapping identical spheres in 24-space with centers
at lattice points, see [48]. Its importance is also felt in group theory: Aut(A) is the
double cover of Conway’s largest sporadic simple group Co; [53], and it contains
many other sporadics, including the Higman-Sims group, occurring as stabilizers
of various configurations of its vectors. Moreover, the Griess algebra, which has
the Monster group as its automorphism group [89], can be constructed by means
of compactifying a certain vertex algebra (that describing bosonic string theory)
on the 24-dimensional quotient torus R?*/A.

The aforementioned induced subgraph of Az in Subsection 13.1 is none other than
our graph I'. Note as well that Conway in his classic paper [52] provides an em-
bedding of I' into A.

At this point, the Witt design Whs is barely visible to us. Thus we must increase
its clarity in order to render more revealing views of I':

e Binary Golay code (view from a mountain). Binary and ternary Golay codes are
related to Witt designs as well as the Mathieu groups. The codes were described
in the one-page note [87] of M. J. E. Golay. We are here interested in the extended
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binary [24,12, 8]-code ®ay4, e.g., see [42]. The group Aut(Bq4) = Moy acts transi-
tively on codewords of weight 8, with corresponding orbit the block set of the Witt
design Ws,. Note that in a certain natural sense ®o4 lives inside the Leech lattice
A, while My, lives inside Coy.

o Witt design Way (view from a hill). The largest Witt design Way is none other than
the Steiner system S(5,8,24) with automorphism group Mas. As was discussed,
its discovery (along with that of W7s) is generally accredited to Witt [223] but can
be traced to the quite earlier little known paper [43] of Carmichael.

The literature on these objects is very rich, e.g., see the legendary text [57] of R.
Curtis, as well as a more recent self-contained elementary treatment [115] due to
S. Iwasaki.

o Witt design Waq (street-level view). We have reached the point of absolute clarity,
that of the natural embedding of Was in Way. It is little wonder that this is the
view that fueled two independent approaches to I',; one by Higman and Sims the
other by DM. See the expository paper [12] which pays special attention to the
nature of this embedding.

However, we wish an even closer look, so we enter the dwelling;:

e Projective plane (view from the basement). For most authors, the most natural
way to arrive at Wag is to add a point to the projective plane PG(2,4) and use
the extension procedure. This was a paradigm most clear to Higman and Sims,
inherited from Witt. It was by no means the approach taken by DM.

e The nicest biplane (ascending the staircase). The entirety of Section 11 was de-
voted to this methodological device. Below we will compare it to its underground
alternative, the projective plane PG(2,4) as a possible starting point. Our ultimate
desire is to synthesize these two approaches.

Remark 9. There are some very interesting alternate views of I' = NLy(10) and its
substructures not touched upon in our treatment. A non-standard construction of T’
may be found in [154]. In [185] one encounters relevance of the non-edge decomposition
of I" in a fresh context. In [217] an embedding of Wh, into a symmetric design on 78
points is examined. A characterization of W, in terms of QSDs is given in [35]. Finally
each of [129, 31] provides a construction of the Gewirtz graph; the first focuses as well
on the underlying BIBD, while the second is of a decidedly more geometric flavor.

13.5 A methodological amalgam of two approaches

In this section we share with the reader our vision of the pros and cons of two independent
approaches to the graph I' = N L3(10), namely that of Higman-Sims and the one of DM.
We next “glue” them together to form a methodological amalgam which is based quite
literally on the notion of amalgam from group theory.

Transitivity is the central concept that underlies the notion of a rank 3 graph. It was
a main driving force behind interest in SRGs at the dawn of CFSG. Indeed, each new
rank 3 graph had the potential to lead to the discovery of a new sporadic simple group,
or to at least produce a new action of a known group, thereby providing the possibility
of a new computer-free construction.

The transitivity paradigm was exploited in [101] wherein the authors were building
none other than a rank 3 graph. This approach was also followed by DM, however it was
done so in the absence of adequate descriptive terminology. As was previously mentioned,
the proof of uniqueness in [160] implies vertex transitivity of I' (at the time DM did not
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know of such a term, nor did he care to use it anyway). In addition, DM’s observation on
p. 81 of [160] about “7700 incidence matrices of the symmetric design with r = 6, A = 27
can be interpreted in only one way: Aut(I") acts transitively on all oriented non-edges.

Recall that in [101] generators of Aut(I') were obtained by adjoining a fixed-point-
free involution ¢ to the generators of a point stabilizer, aka Aut(Ws3). This is a familiar
setting in permutation group theory. On a naive level, its roots can be traced back
to W. A. Manning (1921). Namely, let A be a connected vertex-transitive graph, G its
automorphism group, {a, b} an edge of A, H = G,, the stabilizer in G of a, t a permutation
that reverses orientation of {a,b}, e.g., see [82]. Note that this setting applies equally
well to non-edges of A provided its complementary graph A is assumed to be connected.
(Indeed, non-edges of A are edges of A, and one has Aut(A) = Aut(A).)

A more refined formulation of the above is the following: G = (G4, Gay) and
Go N Giapy = Gap. Here one speaks of a triple of subgroups of G which forms an
amalgam, more specifically the amalgam of G, with G,y over Gap.

Nowadays, the notion of an amalgam plays a crucial role on the edge between group
theory and diagram geometries. The above defined amalgam of the vertex stabilizer and
edge stabilizer of a connected vertex transitive graph is one of the simplest illustrations
of this fruitful concept. The interested reader is referred to [114], which additionally
provides interesting information about amalgams related to Mos.

Returning to Section 6, we apply the notion of amalgam to the Clebsch graph 05 (the
simplest example among all N L4-graphs). In this case we have: G = Aut(0s) = E16% S5,
{a,b} a non-edge of 5 (hence an edge of the complementary graph Us), G, = S,
G{a,b} = S5 X Dg, and Gop = Dg.

The next simplest case of an N L,-graph, and the one most relevant to our exposition,
is ' = NLy(10). In the language of amalgams we obtain: G = Aut(I') = Aut(HS) =
HS % 2, Ga = Aut(Mgg) = AUt(WQQ), G{a,b} = E32 X SG; and Ga,b = E16 X S@.

In the presentation of Higman and Sims [101] only parts of this amalgam are visible,
namely the entire group G, the stabilizer G, and an involution ¢ € G4} \ Gap. What
can be said about DM’s presentation in [160]?

At first sight groups are not even visible in [160]. However, let us switch to relational
language, which was adopted by DM before his counterparts. A correct formulation
here is provided by the use of a Galois correspondence between relational structures
and permutation groups, as described in [73]. In this context, the role of Galois-closed
objects is fulfilled by so-called “Schurian configurations” (i.e., coherent configurations the
relations of which are the 2-orbits of a suitable permutation group).

We now get a dual incarnation of the above amalgam. Starting with the Schurian
configuration W = (€, 2-orb(G 5, 2)), we merge its two subconfigurations

Wi = (,2-0rb(Gya5),2) and Wy = (Q,2-0orb(Gy, Q).

Then M = W; N W, is none other than the N Ly(10)-association scheme the classes of
which are the graphs I' and T'. To get a closer picture, let us refer to the intersection
diagram in Fig. 8 of Subsection 11.6, which is just a compact way of viewing W. Here,
in the role of a, b we have P*, B* respectively. Loosely speaking, DM establishes that
W corresponds to the nicest biplane D, W; reflects the fact that D is self-dual, Ws is
providing incidence of points and blocks in C = Ws,, and M is giving the entire graph
I' = NL5(10). This embodies the concept of an amalgam in pure relational language.
To summarize, in [101] one sees groups without an amalgam, while in [160] one sees
an amalgam without groups. This perfectly explains what we mean by “methodological
amalgam” of two approaches. We are here witnessing a real impact of the ideas of
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DM with those of Higman and Sims, which converge to the notion of a mathematical
amalgam.

Indeed, in Higman and Sims we have two established experts in the use of groups.
Higman was, in fact, the creator of the language of coherent configurations, On the
other hand, DM was one of the first experts who established new standards in the use
of association schemes, a particular case of coherent configurations. Though in 1964 DM
was still not aware of the notion of a coherent configuration, he was actually operating
with its matrix theoretic analogue: a stable color graph. In fact, this latter terminology
would not be coined for a few more years, see [219].

A rigorous analogue of the dual amalgam described above may be reflected in the
procedure of transitive extension formulated in pure relational terms. One of the evident
advantages of this approach is that unlike what occurs in the group case, the resulting
object need not be a rank 3 graph. This of course opens the door for new discoveries.
Different roots of such a procedure were developed and analyzed by DM and the present
authors in [132], though work at the final stages of this paper was sadly interrupted by
Dale’s untimely death.

We conclude the established virtual posthumous handshake between Mesner and Hig-
man with mixed feelings: regret that it never happened in real life but satisfaction that
they are forever bonded by the threads of their collective genius.

13.6 Beyond the Higman-Sims graph

The graph I' = N L5(10), also commonly denoted SRG(100, 22,0, 6), is forever historically
linked to the names Higman and Sims. For the balance of this subsection we adopt this
established tradition.

The Higman-Sims graph has many exceptional properties which stress its unique
features as well as those of its substructures. Below we present four of what we consider
to be the most striking examples.

e Two copies of the Hoffman-Singleton graph as an induced subgraph of T'. We
denote by HoSi the unique SRG(50,7,0,1) discovered in [105]. As well, it is a
rank 3 graph and in fact the largest known Moore graph.

It turns out that the vertex set of I' may be partitioned into two halves such that
the subgraph induced on each half is HoS'%. This occurrence is closely related to the
existence of the unique bipartite distance-regular graph A on 100 vertices having
diameter 4 and valency 15. Merging classes of valency 15 and 7 in the metric
association scheme generated by A yields I'. The idea of such a decomposition was
suggested by Sims in [200]. See also [27, 24, 94] for more details.

e Highly transitive finite geometric lattices. In [61], A. Delandtsheer was investigat-
ing geometric lattices of dimension n > 3 such that the automorphism group of the
lattice acts transitively on unordered pairs of secant hyperplanes. With the excep-
tion of the evident classes (Boolean lattices, affine planes, and projective spaces)
there appears only one real surprise: the planar space obtained in a natural way
from the Steiner system S(3,6,22). This generalizes an earlier result of W. M.
Kantor with stronger assumptions [126].

e Spin models. Roughly two decades ago, the (late) mathematician F. Jaeger made
a breakthrough in the theory of link invariants (see the classic paper [121] of V. R.
F. Jones for definitions) by demonstrating how one could produce spin models from
the Bose-Mesner algebras of formally self-dual association schemes. In particular,
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Jaeger constructed a new spin model from the Higman-Sims graph, see [116].*

e FEnergy minimizing point configurations. Over the past decade, there has been
an explosion of interest in spherical point configurations that minimize potential
energy. Motivation here stems from physics, discrete geometry and combinatorics.
Once again the graph I' appears, this time as a naturally defined object on 100
points of the 22-dimensional sphere, see [8].

13.7 SRGs with no triangles

Investigations of DM touched upon two families of SRGs: those of NL,-type and those
without triangles. Graph NLo(10) appears in the intersection of these two families.
While there are known infinite series of NL,-graphs, very few primitive triangle-free
SRGs (briefly, tf~-SRGs) have ever been constructed.

One of the impressive achievements of [159] is the construction of Table II (pp. 257-
259), which gives feasible parameters for all putative SRGs on 100 or fewer vertices.
Among the 101 listed parameter sets, only 9 satisfy A = 0 (the triangle-free condition
for SRGs). The first crucial input of DM was the construction of t{-SRGs on 77 and 100
vertices. In addition, two parameter sets on 28 and 64 vertices were excluded. (Note
that the existence of tf-SRGs on 50 and 56 vertices was totally unknown to DM at this
time, as well as to all other experts.) Such exclusion was achieved by first establishing
necessary conditions for the existence of a t{~-SRG based on the existence of two related
BIBDs with certain properties (Theorem 2.6 of [159]), and next proving nonexistence
of said designs. To do this DM used ad hoc tricks in variance counting to show that
the value of variance should be negative. Recall that the modern way to exclude such
parameter sets (e.g., see Sec. VIL.11 of [49] by Brouwer) is to show that one or more
Krein parameters must be negative. An interesting enterprise would be to compare the
power of old and new techniques on a wider sample of feasible sets, cf. [16].

In fact, a wider family of graphs to which I' belongs is based on a consideration of
Krein parameters. We speak now of Smith graphs, which are primitive SRGs that meet
the Krein bound, see [42]. The name refers to M. Smith, who in [202] established a
two-parameter family of putative rank 3 graphs with extremal properties.

A characteristic feature of Smith graphs is that for each vertex x their first subcon-
stituent (i.e., subgraph induced on the neighbors of ) and second subconstituent (i.e.,
subgraph induced on the non-neighbors of x) are both SRGs. These remarkable graphs
are called 3-tuple regular in [42]; an alternate terminology used by the present authors
is 3-isoregular, see [180]. In turn, the concept generalizes to k-isoregular graphs, k > 2.
All 5-isoregular graphs have been classified, e.g., see [42]. A highly nontrivial result is
the characterization of all feasible parameters for putative 4-isoregular graphs. In the
primitive case, we get only the pentagon, the line graph Ls(3), or an extremal Smith
graph, see [32, 40, 42, 137].

Returning to our main discussion, we refer to [42] as a comprehensive source of
information for tf~SRGs. Valuable new input is provided in [16], where Biggs gives a
list of surviving feasible sets for tf-SRGs on at most 1000 vertices (there are 21 such
sets), as well as a larger list of possibilities on at most 6025 vertices.

Regarding constructed tf-SRGs, our current state of knowledge surprisingly coincides
with what was known in 1968, nothing more. There are just seven known tf-SRGs,
each uniquely determined by its parameters. We list these as (v, k) = (5,2), (10,3),
(16,5), (50,7), (56,10), (77,16), (100, 22) where, as usual, v is number of vertices and k
is valency.

4Note that DM was already aware of this self-dual property of the N L2(10)-association scheme at the
time of his thesis; see [24, pp. 68-71] for a self-contained treatment of this concept.
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The tf-SRG with parameters (56, 10,0, 2) is known as the Sims-Gewirtz graph. Tradi-
tionally, credits are given to [200, 80], see also [81], though the most accurate attribution
would be to an unpublished text of Sims. There are many nice descriptions of this graph
(see [23]), in particular it is a subgraph of I' = N L3(10). To observe this, one need only
consider the edge decomposition of I', exactly like the non-edge decomposition described
in Section 11. The Sims-Gewirtz graph then appears as the induced graph on the set of
vertices nonadjacent to both vertices of a selected edge.

As a result, we may now make a rather striking observation:

Every known tf~-SRG is a subgraph of T".

This raises an intriguing question: Can a tf-SRG exist independent of I'? In our eyes,
this is one of the more important and challenging open problems in modern AGT. (Note
that the existence of a putative Moore graph of valency 57 would resolve this issue since
such a graph would not embed in I'.)

A local approach to triangle free IV L,-graphs was, as far as we know, first developed
by DM. Here, we refer to a way of describing the entire graph in terms of its local
structure with respect to an arbitrary vertex x. The first and second subconstituents
of x, and all remaining adjacencies, may be described with the aid of an auxiliary QSD
which turns out to be a 3-design. Such an approach does not require that the resulting
graph be vertex transitive.

Further “localization” was also outlined by DM in terms of a non-edge decomposi-
tion, as was interpreted by us in Section 11. It is open to speculation as to why DM
was so insistent upon preferring a non-edge decomposition to an edge decomposition.
Indeed, one can even point to a small forfeiture of this behavior: DM failed to discover
SRG(56, 10,0, 2) (#39 in his table of feasible parameter sets) which is immediately visible
from the perspective of an edge decomposition.

A modern scholar may find an intriguing interpretation of DM’s preference. A brief
but striking outline of what could legitimately be called “local theory of suitable SRGs”
(the Clebsch graph being one of these) is provided in Sec. 10.6 of [83], entitled “Local
eigenvalues”. There one finds links between the eigenspaces of a putative SRG with
those of its subconstituents. The origins of this local theory go back to [77, 78, 92, 74].
In particular, it is known that for certain SRGs the second subconstituent should be
distance-regular. This is fulfilled for every tf~-SRG, moreover the distance-regular graph
in this case has diameter at most 3, see [16]. This modern extension of the original local
DM-theory opens new horizons for research in this area.

The first open case is SRG(162, 21,0, 3). Interesting information about such potential
graphs, related to possible order and structure of their automorphism groups, is provided
in [157]. In our eyes, existence of SRG(162, 21,0, 3) is a difficult though far from hopeless
problem. A more ambitious stream of hope and challenge stems from the paper [152].

13.8 Maturation of ideas

This section contains a blend of material with one unifying feature: all presented notions
and ideas, alterations to language and terminology, shifts in perspectives and paradigms
can be in some way traced to seeds planted by DM, Higman and Sims, and their math-
ematical predecessors. As mentioned earlier in the context of algebraic geometry, there
are periods when a field undergoes dramatic change due to turbulent forces both internal
and external. The same sentiment applies to modern combinatorics and group theory.
We here focus on the relative historic positioning of DM and Higman and Sims in the
midst of such changes.
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e Graphs. As already mentioned, DM never used the notion of a graph in his texts
[159, 160] as an analogue of a class of an association scheme. Instead he operated
strictly within the confines and terminology of association schemes, its classes and
related PBIBDs. What is somewhat surprising is that one finds on p. 213 of [159]
evidence of his familiarity with the term; indeed DM there lists all 11 graphs on
four vertices, referring, in particular, to [182].

A similar remark applies to the initial papers of Higman. Nowhere in [98], which
establishes a theory of rank 3 permutation groups, does the explicit notion of a
graph appear. Instead Higman operates at the level of incidence structures at-
tributed to a permutation group (G, Q): points are elements of €2, while blocks are
suborbits of G (i.e., orbits with respect to a stabilizer G,, a € ). The seminal
paper [18] of Bose marks a definite change in paradigm. From this moment on,
graphs (and SRGs in particular) begin to gain acceptance in design of experiments,
finite geometries and group theory, though the process is still gradual.

e Orbitals. Given a transitive permutation group (G, 2) one can consider all directed
graphs on {2 (without loops) on which G is acting both vertex transitively and arc
transitively. Such graphs (more correctly, their arc sets) are traditionally called
orbitals. Note that the number of orbitals will be » — 1 where r is the rank of
(G,Q). The term orbital was suggested by Sims [199], and is commonly used in
modern literature, e.g., see [26, 146].

The authors usually prefer the more universal terminology of k-orbits suggested
by H. Wielandt in [221]. It is applicable to arbitrary permutation groups (G, Q)
acting on QF (not just transitive permutation groups (G, () acting on Q2). The
texts [125, 73, 131, 132] adequately demonstrate the advantages of such terminology.

e Schur rings. Also called S-rings in the literature, this is a concept that goes back

to I. Schur [187], its name attributed to Wielandt. The texts [220, 188, 143, 211]
provide classical foundations for S-rings and their applications to group theory, see
also [166] for combinatorial applications. In the terminology of association schemes,
S-rings are sometimes called translation schemes (see [24]), that is, association
schemes which admit a regular (transitive) subgroup of the full automorphism
group.
A thoughtful acquaintance with the early work of DM [159, 160] extends our un-
derstanding of combinatorial applications of S-rings. Indeed, in [160, Sec. 4] one
finds evident seeds of a theory that is equivalent to the elementary use of such
objects. Credits are given there to [20, 207]. These links warrant a more careful
and thorough examination.

e Diagram geometries. A number of results in this area are based on the exceptional
properties of the graph I'" and the Higman-Sims group HS, and likewise for the
design-group tandem Wy and Msy. Examples of such geometries are provided in
[228, 171, 148]. In particular, the diagram discussed in [148, Sec. 2] is closely related
to DM’s non-edge decomposition of I'. Earlier discussions of this same diagram can
be traced to [33, 108].

e Negative Latin square graphs. This was a favorite topic of DM, dating back to his
1956 thesis. DM’s work on IVL4-graphs with A = 0 has already been discussed in
the context of triangle-free SRGs, so here we may speak less restrictively.

Construction of an SRG(81,20,1,6) was presented in Sec. 3.2 of [159] (#68, in
DM’s table of feasible parameters). Later this graph was rediscovered a few times
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in diverse settings. A proof of its uniqueness and detailed information about its
structure may be found in [25].

The case NL3(6) with corresponding parameters (36,14, 4,6) marks the smallest
N Lg-graph the existence of which DM was unable to settle. Nowadays, all such
graphs have been classified with the aid of a computer. There are an astonishing
180 N Ly(6)-graphs in total, of which only one is a rank 3 graph. Of the remaining
179 graphs, only three additional ones satisfy the 4-vertex condition in the sense
of Hestenes and Higman [97]. These four graphs were the subject of careful inves-
tigation in [133], where edge decompositions for all graphs were described. Some
similarities to the DM-approach, though unknown to the authors at the time, sup-
port hope that further investigations of these and larger /N L4-graphs satisfying the
4-vertex condition may provide new insights into SRGs with high combinatorial
symmetry.

Motivated by chemistry, I. Gutman formulated in [91] a notion of “energy of a graph”.
It turns out that the parameters of certain N L4-graphs form a concrete family of putative
SRGs of maximal energy. At the level of parameters, such graphs are characterized in
[93] and are seen to be equivalent to a certain class of Hadamard matrices. In particular,
this is relevant to the case NL4(10) (#100 in DM’s table). The first five examples of
100-vertex graphs with maximal energy were constructed in [123] via the technique of
switching in SRGs.

13.9 DM as a mathematician

For the first part of his career, DM should definitely be regarded as a statistician whose
main area of expertise was design of experiments with clever use of association schemes.
Formally, DM was never a student of Bose, however the Bose school (regarded in a
very wide sense) created for DM an environment conducive to scientific exploration and
collaboration through a healthy exchange of ideas. DM’s famous contribution [19], which
is one of the frequently cited texts in modern AGT, is in fact the product of such fruitful
collaboration.

The fact that by its very definition an association scheme appears in conjunction
with a suitable PBIBD created a permanent geometric vision for leading experts in
experimental design. The approach to SRGs suggested in [18] had a heavily geometric
flavor from the very beginning: the most interesting and significant SRGs are those
arising as point graphs of incidence structures. This point of view was adopted by
DM to the fullest extent. Each SRG considered by him was the subject of immediate
geometric interpretation. As a consequence, DM’s thesis [159] is filled with consideration
of PBIBDs. As a typical example, the lattice square graph Ls(6) on 36 vertices is
accompanied by a list of 16 feasible parameter sets for its corresponding PBIBD, 10 of
which are supported by actual constructions.

By 1964, the concept of isomorphism of combinatorial structures was available to DM
but only on a rather empirical level. For example, in the formulation of Theorem 8.7
in [160] DM writes that the NLy(10) scheme is unique up to “permutation of objects”.
The concept of an automorphism group is never discussed by him explicitly, although, as
previously mentioned, there is evidence that he understood in naive terms that Aut(T")
is acting transitively on the vertex set. In our eyes, this is the main reason why the
Higman-Sims group was not discovered in either of [159, 160]. One can indeed agree
with the remark on p. 139 of [181] that DM “laboured for years” to discover his graph
I'. However this discovery came at a time when the scientific community was not yet
prepared for the rapidly approaching explosion of attention to sporadic simple groups.
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No doubt, in a practical sense DM made the best of what was available to him at the
time.

At the next stages of his career DM became quite comfortable with the concept of
a group. For example, the notion of Kramer-Mesner matrices has no meaning if not
preceded by a group.

Below we share with the reader an excerpt from one of Dale’s letters to us, dated
August 25, 2007. It was written during the preparation of our paper [131], and fairly
well describes his vision of the extension procedure:

“If such a group was available I was happy to use it to construct the [associa-
tion scheme on triples] but to me the group action was only a means, not an
end. Bhattacharya had a stronger background in group theory ... and may
have given more thoughts to transitive groups, but I don’t think it showed
up in our 1990 or 1994 papers ...”

Here DM is referring to the two joint papers [163, 164] with P. Bhattacharya.

This is a confession of great significance. The process outlined by DM in [159], and
rigorously described in [160], is the typical procedure of combinatorial extension. In
principle, it doesn’t depend at all on the knowledge of a group, although the use of a
known group would drastically reduce the size of the search space.

At a time when all rank 3 graphs are known courtesy of CFSG, the real challenge for
new discoveries starts when transitivity assumptions are dropped. In this fashion the DM-
approach, as it resurfaces after 50 years in the shadows, still remains fresh, significant, and
well arranged algorithmically. Of course a modern researcher may derive even stronger
benefits by interpreting the DM-approach in the frames of coherent configurations, thus
enriching DM’s vision with Higman’s formalism.

Last but not least, we come to DM’s prophetic understanding of a dual association
scheme. This concept was formalized in the 1973 thesis of Delsarte [62], yet its practical
use requires only an acquaintance with spectral invariants of commutative association
schemes, a favorite ingredient of DM’s methodology as far back as 1956 [159]. As a
consequence, many traces of duality appear in his text both implicitly and explicitly. In
particular, connections and distinctions between variance counting and the Krein bound
are still awaiting careful clarification by modern researchers.

14 About our project

14.1 Evolution of the project

Both authors were actively working with the graph I' = NL5(10) before realizing its
evident relevance to DM, e.g., see [123, 140, 227] as a representative sample.

Beginning in 2005 we were fortunate to have the opportunity to collaborate with DM
on an extended project that resulted in the papers [131, 132].

In December 2008, the author MK prepared a short note as a private communication
to R. Griess, who at the time was working on [10] and had an interest in clarifying some
of the history surrounding DM’s discovery of I'. The original note was never intended
for publication, however it conveyed the definite hope that many more details could be
clarified in a future project. This was to be accomplished jointly with DM, who expressed
a desire to continue our collaboration.

After the sudden death of DM these hopes were forever dashed. Our focus at this
point became singularly aimed at making the mathematical community aware of DM’s
contributions, some of which had been almost completely hidden from view.
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Quite soon it became evident that we had to restart the project virtually from scratch
in order to give it its due justice. Moreover, we both realized that the entire story could
be traced to a very specific date, namely Friday, October 21, 2005.

Both authors were visiting the mathematics department at the University of Nebraska
at Lincoln, awaiting their participation in the Special Session Association Schemes and
Related Topics at the 1011th Meeting of the AMS. (Thanks go out to coorganizer Sung-
Yell Song for extending them the invitation to speak.) The talks were scheduled to begin
on Saturday, October 22. Having arrived one day early, we met Dale in his office and
arranged to have dinner with him.

Our meeting with Dale was precipitated by a prior correspondence with the author
MK, who had requested a copy of the DM’s thesis [159]. This request was literally
fulfilled by 200%, as Dale had prepared in advance two copies of his thesis, distributing
one to each of us.

There was something very special, even a bit ceremonial, in this first meeting of all
three parties. (The author AW had met Dale many years earlier while still a graduate
student at The Ohio State University.)

Dale was a quite shy and reserved individual. However, on this particular evening
one could detect definite traces of pleasure and satisfaction in his facial expressions. This
was the satisfaction of an elderly scholar who, after spending much time in the shadows,
had come to realize the deep admiration had for him by two of his younger colleagues.
Clearly, they would read his thesis with heightened care and interest, conspicuously aware
of the treasure newly provided to them.

In the development of further events, the influence of Robert Jajcay would be critical.
There is something symbolic in the fact that he appeared as a coauthor of the text [117]
where DM’s discovery would be announced for the first time, as well as serving as witness
to the authors’ personal acquaintance with Dale. The initial note of MK was shared
with a few colleagues, Jajcay among them, and it was he who encouraged the authors to
expand their starting note to its present form.

This process took a lot of time. A preliminary version [139] was published in BICA,
the same journal in which [118] had earlier appeared.

In fact, the full story is quite more complicated. In 2010 a rough draft of the current
text, regarded as a privately distributed preprint, was prepared and sent to a number of
colleagues. The job over this draft involved, in particular, several months of intensive
investigation of the relevant literature. After that, the task we had chosen to follow
further required our reaction to several obtained responses. In addition, wishing to
conform to the format and style of BICA, we prepared a version of the preprint that was
greatly reduced in size and mathematical content. This was exactly the aforementioned
[139].

At some moment another draft was prepared, jointly with Matan Ziv-Av. This version
was strongly influenced by [141], a report urgently published in a collection that is not
even reflected in MathSciNet. This huge draft (85 pp.) was rather artificially conceived
by gluing together the current story about DM and his discovery of N L2(10) with the
known primitive triangle-free SRGs, their properties and mutual embeddings.

Fortunately, we soon realized that this attempt was counterproductive to our goals,
and decided to concentrate more concretely on the careful extension and polishing of our
preprint as it existed in 2010. As it turns out, the amount of time devoted to this task
was comparable to that of the preparation of the preprint itself. The end result is the
text here provided.

In a strong sense, the genre of this article is simultaneously an essay and an expository
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survey, paying equal attention to the psychology of scientific discovery and to historic
events that helped to shape the current mathematical landscape. However, within these
frames lies a deeper intended purpose: to expose the reader to a plethora of interesting
perspectives and useful ideas that have remained in the underground for a good half-
century yet have emerged in modern mathematics in various elaborate forms and guises.

Moreover, it is an article about DM, about his mathematics, about N Lg4-graphs, and
their special subclass of tf-SRGs. The main objects of our presentation are the graph
I' = N,(10), its related substructures, and the Higman-Sims group.

14.2 Possible updates

By our initial assumptions, everything essentially linked to the first and second appear-
ances of I', its origins, development, and further advancement of relevant ideas, is of
potential interest to the reader. However, by no means do we pretend that our presen-
tation exhaustively touches all that is known about this graph. Indeed such an attempt
would result in a volume of encyclopedic size, with hundreds if not thousands of refer-
ences. Nevertheless, should such an ambitious task ever come to fruition we would be
delighted to learn that in some small way our current text played an initial influential
role.

Speaking about less ambitious tasks, we recall that this article is also regarded by
us as a kind of dynamic survey. In our eyes this genre does not mandate that each
forthcoming update should become a physical extension of a previous version. Rather,
there are realistic chances that over time, new and deeper perspectives may become
visible which would warrant a fresher, expanded view of the material. One possibility
may be based on the aforementioned draft with Ziv-Av, carefully fashioned into a more
refined and thoughtful treatment of the subject matter.

During Fall of 2016, the author MK immersed himself in the study of certain concepts
related to algebraic geometry (AG) in order to understand potential links between AG
and AGT. As he was basically a novice in this area, one could argue that this was not
the best decision. (In fact, it delayed the appearance of this paper for about a year.)

Nevertheless, one of the pleasant byproducts of this extended activity is the fruitful
collaboration with a few younger colleagues — S. Balagopalan and E. Shamovich, to name
a couple — whose interests are quite close to AG. In fact, in a talk recently delivered at
the conference ACA 2017 in Jerusalem (joint with Eli Shamovich) some definite potential
is demonstrated at the crossroads of AG and AGT, expressed via a fresh discussion of
the famous Clebsch graph.

Of course it is foolish to make concrete promises about what lies ahead. However, after
roughly 12 years of deep reflection on DM’s sundry contributions, the authors cannot
help but look to the future with great optimism and high expectations.

14.3 Epilogue: On every branch there are many twigs

Sometimes it is difficult to set a precise line of demarcation, and then resist all tempta-
tions to cross it. The present article is no exception.

Under the general heading of “objects related to the graph N Ly(10)” we encountered
numerous observations, remarks and clarifications that could have easily made their way
into our paper had we so desired. However, we also recognized the need to not lead the
reader (and ourselves) too far astray. Facing a hard and fast deadline to submit our
paper to the editors of Acta UMB also contributed to our restraint. In brief, we confined
our efforts to the main branches but not to all of the twigs.

Nevertheless, we describe below a portion of material that didn’t make its way into
our text yet occupied an area very close to our defined boundary. Although we do not
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give precise references in every case, we provide the appropriate attributions.

e Breaking the silence of DM’s discovery: The text [117] was definitely the first one.
Short remarks are made in [11, p. 351] and [94]. One finds a delicate discussion
in [118]. Further references are found at Wikipedia and the homepage of A. E.
Brouwer [23]. Recent citations are made by S. S. Magliveras, M. S. Shrikhande, J.
Moori, W. Knapp and their coauthors, and so on.

e Some constructions and nice decompositions of the graph I': A beautiful inter-
pretation of I' is made by I. Shimada (2014) in terms of AG. A nice preprint of
T. Vis (2007) emphasizes certain subgraphs of I".  Decompositions of I" and the
Hoffman-Singleton graph HoSi are provided by Magliveras et al (2012).

e Attention of peers of AGT: A very interesting account can be found on the well
known blog of Peter Cameron (dated 23.11.2011). This was influenced by [117] and
an earlier draft of the present text, as well as the initial version [139]. Two further
preprints of N. L. Biggs (2010, 2011) report on a failed attempt to construct new
triangle-free SRG’s with A = 0, u = 2, with moving credits to W. Edge [69].

e On the edge between AGT and EGT: A pioneering paper of H. Nozaki (2015)
presents the known primitive triangle-free SRG’s as exceptional objects from the
perspective of EGT (Extremal Graph Theory). Further results in this direction
were obtained by S. Cioaba, W. Li and others at the University of Delaware.

e Codes related to the Higman-Sims group HS': Early origins of this work can be
traced back to R. Calderbank and D. Wales (1982), who relied on the 2-transitive
action of HS of degree 176. Among other texts on this topic, the one by A.
Cossidente and A. Sonnino (2012) is a nice combination of generous credit to DM
and a beautiful computer-aided investigation of the quadric @~ (9, 2).

e Other relevant objects: These include generating sets and regular maps of the group
HS (initiated by the author AW and subsequently investigated by M. Conder, G.
Jones and others), a triality rank 5 AS on 150 points (E. van Dam et al, 2013),
pentagonal geometries, on the edge between incidence geometries and AG (S. Ball
et al, 2013; K. Stokes et al, 2016), and group theoretical extensions of HS in new
clothes (S. Koshitaki et al, 2013; Y. Yang and S. Lin, 2014).

We shall stop here, reiterating our hope and optimism for the future.
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Abstract

An induced matching M in a graph G is a matching in G that is also the edge set of an induced subgraph
of G. That is, any edge not in M must have no more than one incident vertex saturated by M. The
maximum size |M| of an induced matching M of G is maximum induced matching number of G, which
is denoted by Max(G). In this article, we obtain upper bounds for Max(G), for G = Gn,m, grids with
n,m>9, m=1 mod 4 and nm odd.
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1 Introduction

Let G be a graph with edge and vertex sets E(G) and V(G), respectively, and for any
u,v € V(G), let d(u,v) be the distance between u and v. A matching is a set of edges
with no shared vertices. The vertices incident to an edge of a matching M are said to
be saturated by M, the other vertices are unsaturated by M. A subset M C E(G) of G
is an induced matching of G if for any two edges e; = w;u; and ex = v;v; in M, then
d(ui,v;) > d(us,vy) > 2 and d(uj,v;) > d(us,v;) > 2. In other words, M is an induced
matching of G if for any two edges e1, ez in M, there is no edge in G incident to both
e1 and es. Equivalently, an induced matching is a matching which forms an induced
subgraph.

Introduced by Stockmeyer and Vazirani [9] as a special case of the well known match-
ing problem, the concept finds applications, among others, in cryptology where certain
communication channels between two ends are classified [2].

The size | M| of an induced matching M is the number of edges in the induced match-
ing. Denote by Max(G) the maximum size of an induced matching in G. A maximum
induced matching M in G is an induced matching with Max(G) edges. We refer to
Max(G) as the maximum induced matching number (or strong matching number) of G.
Unlike in the case with finding the maximum matching number of a graph, which can
be obtained in polynomial time [4], obtaining Max(G) in general, is N P—hard, even for
classes of graphs such as the regular bipartite graphs [3].

Copyright (© 2017 Matej Bel University
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In [10], it was observed that for any G with maximum degree A(G),

V(@)
Max(G) = 202A(G)2 + 2A(G) + 1)

The above bound is certainly not a sharp one and therefore, Joos in [6], presented the
following bound:

(1.1)

Max(6) > — WO

([==1+D(==]+1)
Joos also showed that it holds for A(G) = 1000 and this, according to him, could be
reviewed down to 200. In the end, he conjectured that this bound holds for A(G) > 3
with the exception of certain graphs that he listed. Inspired by the work in [6], Nguyen [8]
showed that the conjecture is true for A(G) = 4 as long as G is not one of the excepted
graphs.

The maximum induced matching number of many graphs can be obtained efficiently
just as in the cases of chordal graphs [2], bounds of bounded cliques width, intersection
graphs [1], circular arc graphs [5] among others.

A grid G, 1, is obtained by the Cartesian product of any two paths of lengths n and m,
where n, m > 2 are integers, representing rows and columns of the grid, respectively. We
introduce an odd grid as a grid whose path factors are of odd order. Marinescu-Ghemaci
in [7], obtained Max(G) values for all grids with even nm, and some cases where nm is
odd. She also gave useful lower and upper bounds. Particularly, she showed that for any
odd grid Gy, m, Max(Gpm) < L%HJ

This paper improves Marinescu-Ghemachi’s upper bound for G,, ,,, n,m odd, m =1
mod 4. The results provide new upper bounds for some cases whose lower bounds are
established in [7] and thus, in a number of situations, precise values of Max(Gy, ) were
obtained. These may also prove useful in probing some of the unresolved conjectures
made in [7].

(1.2)

2 Definitions and Preliminary Results

Grid, G, as defined in this work, is the Cartesian product of paths P, and P, with
n and m being positive integers, where P, and P,, have disjoint vertex sets V(P,) =
{ui,ug, -+ ,un} and V(P,,) = {v1,va, -, v}, respectively. Unless explicitly stated, n
is any odd integer, m =1 mod 4 and 2 < n < m. We introduce the following notations:
Vi = {wrvg, ugvy, - -+ yunvi} C V(Gpm) and U; = {uv1, w02, -+, uUm } C V(Gym); for
edge set E(Gpn,m) of G m, if uvj upv; € E(Gp ) and u;v; uivy € E(Grpm), we write
U3V € BE(Gpm) and wvg;ny € E(Ghpm) respectively.

Recall that a vertex v is said to be saturated by an induced matching M if it is
a member of an edge in M and unsaturated by M, otherwise. We say v is saturable
if either v is saturated by M or v is unsaturated by M, but satisfies d(v,u) > 2 for
every saturated vertex u in V(G). This implies that an unsaturated vertex can become
saturated if there is no saturated vertex within distance 2. If v can not be saturated, then
we say v is an isolated vertex. A boundary vertex is a vertex on any of Vi, V,,, Uy, U,,.
A saturable vertex v in subgraph G, of GG, which is not saturated by induced matching
M, of G, can still be saturated by M of G in case v is on the boundary of G,. However,
if v is not on the boundary of G,, then v is isolated. The sets of all saturated vertices,
saturable vertices and isolated vertices in a graph G are denoted by V(G), Vi (G) and
Vis(G), respectively. Clearly, |Vs(G)| is even and V5(G) C Vi (G) .

The following results about grid G,, ,,, are from [7]:
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Figure 1. Saturable vertices as black squares and an isolated vertex as white square in an
induced matching of G4 5

Lemma 1. Let m,n > 2 be two positive integers.

1. If m = 2 mod 4 and n odd, then, Vo (Gpm)| = 52 and |V (Gpym)| = 22
otherwise;

2. Form >3, m odd, |Vap(Gpm)| = Z2EL, for n € {3,5}.

Theorem 2. For G, ,, where 2 < n < m, let |M| = Max(Gn,m). Then, for n even,
Max(Gpm) = [22], forn € {3,5}, m =1 mod 4, Maz(Gn,m) = W + 1 and for
m =3 mod 4, Max(Gp,m) = 7”(7”21”2.

Remark 3. For m =1 mod 4, |Vs(Gs.m)| = 2(Max (Gsm)) = |Vs(Gnom)|-
Theorem 4. For m,n odd integers, Max(Gyp m) < L%‘HJ

The obvious implication of Theorem 4, based on the proof, is that Vs, G, m| < %ﬂ,
for n, m odd.

3 Results
We start our results by stating a few observations.

Remark 5. Let G533 be a 3 x 3 grid with induced matching M. Clearly, by Lemma 1,
|Vao(G3,3)| = 5. Suppose ugy 23vo € M, then |[M| = 1. However, there are non-adjacent
saturable vertices uzv, and uzvs.

Lemma 6. Let M be an induced matching of Gz m. If uggyve € M. Then, |M| #
Max(Gs,m).

Proof. Suppose ug; 2yv2 € M and let G, = G3 -3 C G3,m, be a subgrid of G3 ,, induced
by V(G37m)\ {Vl, Vs, Vg}, where Vi, V5, V3 C V(Gg,m), m > 3.

Case I: Suppose m =3 mod 4, m > 7. Then m = 4k + 3 for some positive integers
k. By Lemma 1 and Theorem 2, |Vi(Ga)| = 6k. Now, with wug;2yva € M, ugvy is
saturable, by its position and Vs(G.) = Ve (G,). Since m — 3 is even, then either ugvs
remains isolated (or unsaturated) or if it is forced to be saturated with uzvy, a saturable
vertex in V(G,) becomes isolated (or unsaturated). So without loss of generality, we
may assume uzvs is unsaturated. Therefore G35 ,, contains 3 4 6k saturable vertices and
then, |M| < 3k + 1, which is a contradiction since by Theorem 2, Max(G3 ) = 3k + 2.
Note that m = 3, has been covered by Remark 5.

Case II: Suppose m =1 mod 4. From Lemma 1, Theorem 2 and following similar
argument as in Case I, we see that if ug 9yve € M then one vertex in Ver(G3,m) will
become isolated and therefore, |V, (Gs,m)| = 6k+1. Hence |M| < 3k and a contradiction
since Max(Gs,m) = 3k + 1 if m = 4k + 1.
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Case III: If m =0 mod 4, then m —3 =1 mod 4, and by Remark 3, G5 ,,,—3 = G,
[Vi(Ga)| = |Vap(Ga)|. Now |Vi(G,)| = w = 6k — 4. By following the argument in
the previous cases, we see that |V, (G,)| = 6k — 1. Therefore, |M| < 3k — 1, which is
less than 3k.

Case IV: If m = 2 mod 4, then m —3 = 3 mod 4 and therefore, |V (G,)| =
w = 6k — 1, which is odd. Therefore, there exists a saturable vertex in V(G,),
which can pair with uzvs and thus the two vertices become saturated. This way, we
have the total saturable vertices in G5 m, which has uy; 2yv2 € M, to be 6k + 3 which
implies that |M| < 3k + 1. But from the results in Theorem 2, if m = 2 mod 4,
Max(Gs.,m) = 3k + 2. This is a contradiction and the claim holds. O

Remark 7. Suppose we have uy 2yv2 € M in a grid G5, then the following holds for
[Vsb(G3,m)|, from Lemma 6.

m |Vsb(G3,m)|

4k 6k — 1
4k +1 6k + 1
4k + 2 6k + 3
4k + 3 6k + 3

Lemma 8. If m =1 mod 4 and there exists M, an induced matching of G3 ., such
that U{1,2}V5, U{1,2}Vj+2 € M, then ‘M| 7& Max(G&m).

Proof. Let uy 2yvj,uq1,2yvj4+2 € M, where M is an induced matching of G5 .

Case I: Suppose that j+1 =3 mod 4, then m—(j+1) =2 mod 4. Since u; 2v; €
M, by Lemma 6, suppose there exist an induced matching M’ in G, = G35 j41, induced
by Vi,Va, -, Vjy1, with ugy 9yv; € M’, then |[M'| # Max(G,). By Remark 7, given
a non-negative integer I, |Vip(G,)| = 61 + 3, which being odd, contains a saturable
vertex v/ = wugvj41 which is not a member of Vi(G,). In fact, v’ € V;5(G,), since
uq1,2yv541 € M. Since m — (j + 1) = 2 mod 4, then given a subgrid Gy = G5 ,—(j41),
induced by Vji2,Viys, -, Vin [Vs(Gy)| = 6(k — 1) — 2. Therefore, |Vsp(G3.m)| = 6k and
hence, |M| < 3k, which is less that 3k + 1.

Case IL: If j + 1 = 1 mod 4, by following the argument in Case I, v € V;5(Gs.m).
Now, j+1 = 4l+1, and by the isolation of v', and Remark 7, |Vt (Gs,m )| = 614V (Gb)|-
Meanwhile, m — (j +1) =0 mod 4 and therefore, |Vs,(Gy)| = 6k. Thus, |[M| < 3k.

Case III: If j + 1 is even, we follow similar arguments as the earlier cases. O

Lemma 9. Suppose that m = 1 mod 4 and M is an induced matching of Gs . If
Uf1,2)Uj, Ug1,2) U3 € M, then |M| # Max(G3 ).

Proof. For some positive integers k, let m = 4k + 1. Now suppose that j = 3 mod 4.
This implies that j+3 =2 mod 4 and uyy 2yuj, ugi 23uj13 € M. Let Gy = G341, Gy =
G3,m—(j+1) C G3,m, induced by V1, Vo, -+, Vi1 and Vjyo, Viys, -+, Viy, respectively. By
earlier result and remark, |V, (G,)| = 61—1 since j+1 = 4. Also, |Vsp(Gy)| = 6(k—1)+1,
since m — (j +1) = 4(k — 1) + 1. Certainly, |Vs,(Gs,m)| = 6k. Thus |M| < 3k. Therefore,
|M| # 3k. For j =1 mod4, j+3 =3 mod4. Let ugoyuj,uqioyujrz € M. By
earlier lemma and result, we have that [V, (Ga)| = 61 + 3. Since j + 1 = 41 + 2. Also,
[Vso (Gy)| = 6[(k—1) — 1]+ 3. Therefore, |Vip(G3.m)| = 6k and therefore, | M| = 3k, which
is a contradiction. O

Remark 10. By following similar argument as in the last result, it is easy to see that
if M contains wugy 2yuj, ugy 23Ujta, then [M| # Max(G3 ). Therefore, suppose M’ is a
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maximum induced matching of (G3,,) and gy 2yuj, ugy 23ujps € M', then there is no
U{1,2}Ujtk € j\47 such that 2 < k < 6.

Theorem 11. Form = 4k+1, there exist at least 2k saturated vertices in Uy C V(G3 ).

Proof. Let G, = G2, C Gz, induced by Us,Us, a subgrid of G3,,. From earlier
results, |Vip(Gao)| = 4k + 2. Now, |Vip(Gsm)| = 6k + 2. Therefore, V7 has at least 2k
saturable vertices. O]

Theorem 12. Suppose ufy oyuj, ug1,21vj+8 € M, in a Gz, and m =1 mod 4.
(a) There exists four other saturated vertices from uiv; to u1vj4s.
(b) There exists at most one saturated vertex between usv; and ugvjts.
(c¢) There exists at most five saturated vertices from V3V 10 U3V 18-

Proof. (a) From Remark 10, let |[M| = Max(G3 ), and ugy 23y, ug 230548 € M, then
there is no ugy 9yvx € E(G3,,), 1 <k < 7 such that ugy oyvx € M. Thus, suppose there
exists another saturated vertex such that uivy;yr jyr—1y € M. Then there exist at least
four saturated vertices from wuiv; to uiv,,. Now suppose that there is no other saturated
vertex on Uy, then by the Theorem 11, the grid G, = G2, C G3,m, induced by vertices
{ugvj, ugvji1, -+ ,ugvjis} and {usv;, uzvjy1,--- ,u3v;ys} must contain ten saturated
vertices (including ugv; and usvjyg). Clearly, vertices uavjt1, ugvj47,usv; and ugvjis
can not be saturated by G,. It is clear, therefore, that G, only has eight saturable
vertices, which is a contradiction. Thus, there exists two more saturated vertices in Uq,
and hence the claim.

Parts (b) and (c) follow from (a). O

Remark 13. (a) Since there are five saturated vertices between uzv; and uzv;4g and
there exist only one saturated vertex between usv; and usv;45, then there are edges
e1,e2 € E(Gy), Gy induced by ugvj, ugvjs1, - UsVjts.

(b) Suppose m = 4k + 1, k being positive integers, then, at G. = Gi,m C G3m,
induced by either V7 or V3, there exists at least k edges of G, in the maximum
induced matching M of G5 .

Figure 2. A G3,9 grid with Maxz(Gs,9) =7

Next, we consider the grid G4, m =1 mod 4.

Lemma 14. Let M| = Max(Gy,,) and let Uy contain ™51 saturated vertices. Then,

for any edge e; € E(Gy), Gy = G1,m C Gam, induced by Uy C V(Gam), e1 ¢ M.

Proof. Let uqv;,usvir1 € Us C V(Ga,m), be saturated vertices. By hypothesis, there
are mT_5 other saturated vertices in Us. Suppose G, = Ga2,, C Gam, induced by
U1,Uz. The |Vi(Go)| = |Vsb(Go)| = m+ 1. Let Gy, = Goyn C G4, induced by

Us,Uy. Since |V4(G,)| = m + 1, then |Vi(Gy)| < m — 1 where |Vi(G4,m)| = 2m. By
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m=1 gaturated vertices in Uy, then there are also at most

hypothesis, suppose there exist ™5

mT’l saturated vertices in Us. Without loss of generality, suppose for all the ™ 5 other
saturated vertices in Uy, there exist adjacent saturated vertices in Us, then we have that
Vs(Gy)| =2 m = 3.

Claim: There are at most mT_5 saturated vertices in Us.

Reason: Since there are at most mT_l saturated vertices in Uy, then suppose vy is sat-
urable in Us, vy, is not incident to a saturable vertex in Uy. Also, since V5(G,) = Va(GL),
then there is no saturable vertex in Us to which vy is incident to form an edge in M.
Thus, suppose there exists a vertex vi_1, adjacent to vy € Us, vi—1 will be adjacent to
a saturated vertex in Us since there can not be two adjacent vertices both of which are
not saturated in Us. Thus, v is isolated.

Finally, |Vs(Ga.m)| < 2m—2 which implies that [M| < m—1. However by Theorem 2,

Max(G4,m) = m. O

Corollary 15. Let G, be a grid withn =0 mod 4,m =1 mod 4 and U, contains
m=L saturable vertices, with |M| = Max(G,, ), then no two saturated vertices, say,
v, v" € U, such that v'v" € M.

Figure 3. A Gu4,9 grid with Maz(Ga9) =11

Next we observe some results in the grid G ,,,, where m =1 mod 4.

Lemma 16. Let G55 be a grid and suppose that |M| = Max(Gs5), and ugy o301 € M,
then

(a) there exists at least another saturated vertex in Vi (either ugvy, usvy or both).

(b) suppose G, = Gs55\V1, and M, is some induced matching in G,, then |M,| #
Max(Gy).

(c) there exists some e € M with e = u;u;, such that u;,u; € Vs.

Proof.  (a) By Theorem 2, |[M| = 6. Suppose that ug; syvy € M and that no other
vertex in V) is saturated. Clearly, uqve and ugvs can not be saturated. Therefore,
there can only be two saturated vertices in V5. Suppose ujy 51v2 € M. Now we show
that in G55\ {V4,V2}, only three edges belong to M. Let vertices uivs, u1v4, U105
and usv3, ugVs, Ugvs, induce Gy = G23 C Gs5. Now, Gy has a maximum of four
saturable vertices. Also let G, be a subgraph of G5 5, induced by ugvs, ugva, usvs;
UqVy, UqV5 and usvg, usvs. The subgraph G, also has a maximum of four saturable
vertices. However, if we consider the positions G and G, it is clear that at least
a saturable vertex in Gy is adjacent to a saturable vertex in G, which implies that
|Vs(GpUG,)| < 6. Thus |Vs(Gs5)| < 10, and therefore |[M| # Max(Gs 5) and hence
a contradiction. By following similar argument, it can be seen also that |M| =5 if
we consider u(3 4y,, € M.
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(b) Suppose that G, = G55\{V1} C G55. Assume that V7 contains only three satu-
rated vertices. There exists a saturated vertex us € V5 such that given some vertex
uy € Vi, vive € M. Now, it is clear that vive ¢ F(G,) therefore, |Vsp(Ga)\v2| = 9,
implying that |M,| < 4, while Max(G,) = 5.

(c) By (a)and (b)above, |[M,| = 4. Suppose that uzv(s 3} ¢ M, then, for G5 5\{V1, V2},
there must be at least two saturated vertices on V5. Let G = G5 2 = G5,5\{V1, V2, V5 }
C Gj,5. Clearly G5 » will contain at most six saturated vertices. Suppose that wu,, u
are saturated in Vs, and u,up ¢ E(Gs5), then u, and u, form two edges with ad-
jacent vertices v,, v, € V4. However, it can be seen that if this is so, there would
be, at most, only four saturable vertices in G”, apart from v, and vy, and at least
one of which is an isolated vertex. Thus, there could only be four saturated ver-
tices in G”, which is a contradiction. Suppose uzv{z 3y € M. It is easy to see by
observation that it is impossible to have the matching in subgraph G C G55, in-
duced by {u1v3, U104, U105, U2V4, U2Vs5, U3V5, UgV4, U4Vs5, UsV3, UsV4, UsV5 } € V(G5,5)
since it contains at most three edges in M without any of them being made up of
adjacent vertices in V5. O

Lemma 17. Let M be a mazimum induced matching of Gs 9. If v(1 2yu1 € M, and there
is at most one more saturated vertex v on Vi. Then, v1 = usvy.

Proof. Tt is obvious that if ugy oyvy € M, then ugvy ¢ Vi(Gs9). Suppose that v; = uqvy,
then since it is the only lone saturated vertex on Vi, then, ujvg; 2y € M. For G, some
G52 grid, induced by Vi, Vs, clearly, there is no other saturable vertex in Vo. Now, let
Gy = G59\Gy. The subgrid G, is a G5 7 grid and Max(Gp) = 8. Thus, |M| = 10, and
hence, not Max(Gs59). Hence a contradiction. O

Lemma 18. Suppose that there are at most two saturated vertices on Vi C V(Gs5), and
that they are adjacent. Then, there are at least three saturated vertices on Vs C V(G5 5),
two of which are adjacent.

Proof. Suppose M is the maximal induced matching of G5 5, and that u,u, € M, where
u;v1, uj+101 € Uy (It should be noted that since there are two saturated vertices in V;
and are adjacent, then by Lemma 16(a), none of j and j + 1 is either 1 or 5). Suppose
that Gy C G5, induced by Va, V3, V4 and that Vs only contains two saturated vertices
u;Us, u;+1v5 and are adjacent, (meaning also that neither ¢ nor ¢4+ 1 is 0 or 5.) Let
j # i and obviously, without loss of generality, set i« = 2, while j clearly becomes 3. Let
G4, G C Gy be two subgraphs of Gy, induced by vertex sets {uyvs, u1vs, U104, Ugvs, Usvy }
and {ugvs, uqva, Ugvs, usvs, usvs, usvy }. E(Gq), E(G.) can only have a member each in
M and if ugz 43v3 € M, then no member of E(G4) belongs M. Then |M| < 4, which is
a contradiction. If ¢ = j = 1, let G4 be induced by {u1ve,u1vs, u1v4, ugvs} and G, by
{ugus, ugva, UgV3, ULV, UsV2, UsV3, UsVy ;. Following similar argument as above, E(Gq)
and E(G.) have maximum of three members in M, and thus |M| = 5, which is a con-
tradiction. Suppose V5 contains three saturated vertices, such that none is adjacent to
another. Clearly the saturated vertices are uivs,uzvs and usvs. Since they are satu-
rated, then uiv(3 4y, u3v(3,},usvg3 4y € M. Therefore by this, only two vertices on V3 is
saturable. Obviously |M| < 5. O

Remark 19. Let G, € G, ,, be a G5 g grid induced by Vi, Vs, -+, Vg, an induced
matching M. From Lemma 16 and Lemma 18, we see that if ug; oyv; € M, it is possible
to have some M, C M, for which |M,| = Max(G,) as seen in the grid above. Also,
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Figure 4. A Gs5,9 grid with Maz(Gs,9) = 11

from Lemma 18, since V7 has three saturated vertices with two of them being adjacent,
then for M, to be maximal, Vy will also have three saturated vertices. It is easy to
determine, however, that if this scheme extends to m > 13, then |M| # Max(G, ., ) since
M| <11+45+5k, j >k,and j —k < 1.

Lemma 20. Let M be a matching of Gsm, m =1 mod 4, m > 13, with ug; 23v1 € M,
then | M| # Max(Gs ).

Proof. Let m — 10 = q. Clearly, ¢ = 3 mod 4. For ¢ > 7, let G5 ;, = G,, induced by
Vi1, Via, - -+ Vp. We already know that |V, (G,)| = 5q2+1, while |V5(G,)| = 2 (W).
Therefore, there are two saturable vertices, say, vy, v on V(G,). Suppose that vi,ve €
Vii. Note that vi,v2 are not adjacent, else viva € M. Let Gy, C G5, be a Gso,
induced by Vi, Va,---,Vy. Suppose that ug;yv1 € M, then there are two adjacent
saturated vertices in Vg and at least a saturated boundary vertex, by Lemma 18 and
Remark 19. This implies that there are two adjacent saturable vertices on Vi, say
u1,us. Now, there could be at most one edge in M from {uq,us,v1,v2}. Hence, |[M| =
Max(Gp) +Max(G,)+1 = %. Since ¢ = m — 10, we have |M| = w, which is less
than Max(G5.,.,) by an edge, and hence a contradiction. For g = 3, the result is similar
to that obtained by careful observation of the positions w1, us and the possible isolated
vertex or vertices on G,. O]

Corollary 21. Let M be a matching of G m, m > 13, with ugy syv; € M, 1 <i < m,
then | M| # Max(Gs ).

Lemma 22. Let Uy C V(Gs5,,). Then there are at least mTH saturable vertices in Uy.

Proof. This follows similar arguments as in the proof of Theorem 11. O

Remark 23. We note that for m = 4k+1, m“ is odd, also from Lemma 20, the number
of saturated vertices on Uj is even and there cannot be any isolated vertex on U; if M is
a maximal induced matching of G5 ,,,. Therefore, for Gy C G5, induced by Ui, there
exists at least k + 1 edges of G1 in M, for m > 13. For m = 9, there are at least k edges
in (G as seen in the last figure.

Theorem 24. Let G, ,, be a grid withm =1 mod 4, m > 13 and let M be the mazimum
induced matching of Gp . Then

L%J ifn=1 mod 4;

Maz(G,m) <

Lizmngm“)’J ifn=3 mod4



Acta Univ. M. Belii, ser. Math. 25 (2017), 6571 71

Proof. Let n = 41 4+ 1, | a positive integer, and let » = n — 5, that is, »r = 0 mod 4.
Suppose G, is a G, induced by Vi, Va, -+, V.. By Theorem 22, at least there are mT“,
saturated vertices on U, and these are u,va, uyv4, -+ ,upVm—1. Let Gy, be a G5, grid,
induced by V,41,Vyg2, -,V and G¢ be a Gy, grid, induced by U,4;. By Remark 23,
there are k 4+ 1 edges of F(G,) in M. Clearly a saturated vertex induced by M on each
of the k + 1 edges is adjacent to some saturated vertices in U,., implying that only one
of the two saturated vertices belongs to Vi, (Gym). Hence, Vi (Gpm) < 22H — k4 1.
Now, k41 = ™1 4+ 1. Therefore, V(G m) < 22m5™=1 and hence, [M| < |22mom=1]
For n = 41 + 3, set s = n — 3, that is, s = 0 mod 4. By Remark 23, and following the
argument above, Vg (G ) = %‘H — k with k = %, Max(Gp m) < LQW";E;”"'?’J O

Remark 25. For the grid Gy, 1, it should be noted that the results in the last theorem
depend mainly on the value of m.

Remark 26. Following similar argument as Theorem 24, for m = 9, Max(Gp,9) <
LM ]
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Abstract
The objective of this paper is to obtain sharp upper bound for the second Hankel functional associ-

1

ated with the k** root transform [ f(zk)] k of normalized analytic function f(z) when it belongs to
bounded turning functions, defined on the open unit disc in the complex plane, with the help of Toeplitz
determinants.
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1 Introduction

Let A denote the class of analytic functions f of the form
(oo}
f(2) :z—i—Zanz” (1.1)
n=2

defined in the open unit disc E = {z : |z| < 1}, satisfying the conditions that f(0) = 0
and f'(0) = 1. Let S be the subclass of A consisting of univalent functions. In 1985, Louis
de Branges de Bourcia proved the Bieberbach conjecture, i.e., for a univalent function,
its n*" Taylor coefficient is bounded by n (see [2]). The bounds for the coefficients of
these functions give the information about their geometric properties. In particular, the
growth and distortion properties of a normalized univalent function are determined by

*corresponding author
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the bound of its second coefficient. The k** root transform for the function f given in
(1.1) is defined as

F(z) := [f(z")] Py > bgnr 2T (1.2)
n=1

Now, we introduce the Hankel determinant for the k*" root transform for the function f,
for ¢,n,k € N={1,2,3,...}, defined as

bkn bkn+1 ce bk(n+q—2)+1
1 bknJrl bk(n+1)+1 ce bk(n+q—1)+1
[Hq(n)]* = . . . ) (b =1).
bi(ntq-2)+1 Ok(niq—1)+1 °  brg2(g-1)—1]41

In particular for £ = 1, the above determinant reduces to the Hankel determinant
defined by Pommerenke [9] for the function f given in (1.1). For the values ¢ =2,n =1
and ¢ = 2,n = 2, the above Hankel determinant simplifies respectively to

=

b b
[Ha(D)]x =| % B = by — b}y

br+1 bart1

and  [Hy(2)]* = bar Dok = bogbsri1 — b3ppr- (1.3)

bor+1  b3kt1

Ali et al. [1] obtained sharp bounds for the Fekete-Szegé functional denoted by |bagy1 —

1
pb?_ | associated with the k' root transform [f(z¥)]* of the function f given in (1.1)

and belonging to certain subclasses of S. We refer to [H2(2)]% as the second Hankel
determinant for the k" root transform associated with the function f. In the present
paper, we consider the Hankel determinant given by [H2(2)]% and obtain sharp upper
bound to the functional |bgy1bsg+1 — b§k+1| for the k" root transform of the function
f when it belongs to certain subclass denoted by R of S, consisting of functions whose
derivative has a positive real part, defined as follows.

Definition 1. Let f be given by (1.1). Then f € R, if it satisfies the condition
Ref'(z) > 0, Vz e E.

The subclass & was introduced by Alexander in 1915 and a systematic study of prop-
erties of these functions was conducted by MacGregor [7] in 1962, who indeed referred to
numerous earlier investigations involving functions whose derivative has a positive real
part (also called Bounded turning functions).

Some preliminary Lemmas required for proving our result are as follows:

2 Preliminary Results

Let P denote the class of functions consisting of p such that
(o)
p(Z) =1+ Z cn 2", (21)
n=1

which are analytic (regular) in the open unit disc E and satisfy Rep(z) > 0, for any
z € E. Here p(z) is called a Caratheédory function [3].



Acta Univ. M. Belii, ser. Math. 25 (2017), 73-78 75

Lemma 2 ([8], [10]). Ifp € P, then |ck| < 2, for each k > 1 and the inequality is sharp

14
for the function {=£.

Lemma 3 ([4]). The power series for p(z) = 14> 07| ¢ 2" given in (2.1) converges in
the open unit disc E to a function in P if and only if the Toeplitz determinants

2 c1 Co Cn
Cc_1 2 C1 Cn—1
D, =|¢2 ¢ 2 2| n=1,2,3....
C—n Cp41 Copi2 - 2

and c_y = ¢k, are all non-negative. They are strictly positive except for
p(2) = >y pepo(€™2), Y0y pre = 1, ty, real and ty, # t;, for k # j, where po(z) = 12;
in this case D,, >0 forn < (m —1) and D,, =0 for n > m.

This necessary and sufficient condition found in (see [4]) is due to Caratheédory and
Toeplitz. Without loss of generality, in view of Lemma 2, we consider ¢; > 0. On using
Lemma 3, for n = 2 and n = 3 respectively, we have

2 1 ¢
Dy=|¢ 2
cy €1 2

On expanding the determinant, we get
Dy =[8+42Re{cica} —2|coa|>—4|c1 2] >0,

Applying the fundamental principles of complex numbers, the above expression is equiv-
alent to
2co = 2 +y(4 — ¢3), for some complex value of y with |y| < 1. (2.2)

2 C1 C2 C3
C1 2 C1 C2

and D3 = & @ 2 ¢ E
c3 C ¢1 2
Then D3 > 0 is equivalent to
|(4es — derea +c3) (4 — ) + c1(2c0 — ¢3)?] < 2(4 — ) — 2|(2¢2 — ¢2)|2. (2.3)

Simplifying the relations (2.2) and (2.3), we obtain

des = {cd] + 20(4 — )y — a4 — y? + 214 — DA — WP (24)

for some complex values y and ¢ with |y| <1 and |¢]| < 1 respectively.
To obtain our main result, we refer to the classical method developed by Libera and
Zlotkiewicz [6], which has been used widely (see [11, 12, 13, 14, 15]).

3 Main Result
Theorem 4. If f € R and F is the k™" root transformation of f given by (1.2) then

4
2
br4103k41 — bag 1] < 2

and the inequality is sharp.
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Proof. For f € R, by virtue of Definition 1, we have
' (z) = p(z), VzeE. (3.1)

Using the series representation for f and p in (3.1), upon simplification, we obtain
Cn
n+4+1’

Gpy1 = n e N. (3.2)

For the function f given in (1.1), on computing, we have

1
1

o] ®
1 1 1 1-k
[f(zk)] ek nEZQ anz”k] =z+ %a22k+1 + {Eag + ( 972 )a%}z%'|r1
[ C ) (L= k)L = 2K) 3\ a4
+ {ECM + 12 az2a3 + TGQ}Z + e (33)

From the equations (1.2) and (3.3), we get

1 1-k
b1 = 702 bakt1 = past ( 272 )a§ ;
1 (1—k) (1—Fk)(1—2k) 4
b3k+1 = %a4 + 2 asas3 + e asy. (34)
Simplifying the expressions (3.2) and (3.4), we get
_ C1 . o Co (k’— 1) 2 .
b1 =5 3 barr = ok gz 1
o (-1 (F-DEE-1)
b3k+1 = E — 62 ci1co + 48K3 Cq- (35)

Substituting the values of by11,bag+1 and bsxy1 from (3.5) in the functional |bg41b3k4+1 —
b341 |, which simplifies to give

|bk+1b3k41 — b3jpq| = 72c1c5 — 64c3)k? + 3(k* — 1)ci] . (3.6)

1
576k* |(

Substituting ¢ and c3 values from (2.2) and (2.4) respectively, on the right-hand side of
the expression (3.6), we have

1
576k bt1b3k11 — b3piq| = | [72¢1 % Z{cif +2¢1(4 =)y —ci1(4—c)y?
1
+2(4—c)(1 = [y*)¢} — 64 x Z{C% +y(4— c%)}2 | K +3(k* = 1)cf|.

Then applying the triangle inequality and using the fact |¢| < 1, will give

576k |brr1bskt1 — b3pyr| < |(Bk% — 3)c + 36k%ci (4 — ¢f) + 4k*cT (4 — )|y
+2(c1 +2)(c1 + 16)k*(4 — c)|y?| . (3.7)

Choosing ¢; = ¢ € [0, 2], noting that (¢; + a)(¢1 +b) > (¢1 — a)(c1 — b), where a,b > 0,
applying the triangle inequality and replacing |y| by p on the right-hand side of (3.7),
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we obtain
576k by 1bsks — b2y < {(51@2 — 3)ct 4 36k2c(4 — 2) + 4224 — )
+2(c — 2)(c — 16)k%(4 — )2 ]
= F(c,p), for 0 <=yl <1 (3.8)

Here F(c,p)=(5k* —3)c* + 36k%c(4 — ) + 4k*c*(4 — *)p
+2(c — 2)(c — 16)k*(4 — ). (3.9)

Next, we need to find the maximum value of the function F'(c, ) on the closed region
[0,2] %[0, 1]. For this, let us suppose that there exists a maximum value at any point (¢, 1)
in the interior of the closed region [0,2] x [0, 1] for the function F(e, u). Differentiating
F(e,p) in (3.9) partially with respect to u, we get

g—i :4k2{02+(c—2)(c—16)u}(4702). (3.10)

For 0 < pu < 1, for fixed ¢ with 0 < ¢ < 2, from (3.10), we observe that g—i > (. Therefore,
F(c, u) becomes an increasing function of p and hence it cannot have a maximum value
at any point (¢, u) in the interior of the closed region [0, 2] x [0,1]. The maximum value
of F(c,u) occurs on the boundary only i.e., when p = 1. Therefore, for fixed ¢ € [0, 2],
we have

Jnax, F(e,u) = F(e,1) = G(e). (3.11)

In view of (3.11), replacing p by 1 in (3.9), we get
G(c) = —(k* 4 3)c* — 40k%c* + 256k2, (3.12)

G'(c) = —4(k* + 3)c® — 80k*c. (3.13)

From the expression (3.13), we observe that G'(¢) < 0 for all values of ¢ in the interval
[0,2] and for every k. Therefore, G(c) is a monotonically decreasing function of ¢ in the
interval [0,2] and hence it attains the maximum value at ¢ = 0 only. From (3.12), the
maximum value G(c) at ¢ = 0 is given by

_ 2
max, G(0) = 256k~. (3.14)

Simplifying the relations (3.8) and (3.14), we obtain

4
b4 1b3141 — b3 | < oz (3.15)

Choosing ¢; = ¢ = 0 and selecting y = 1 in (2.2) and (2.4), we find that c; = 2 and
¢z = 0. Substituting the values ¢ = 2 and ¢; = ¢3 = 0 in (3.5) and the obtained values
in (3.15), we see that equality is attained, which shows that our result is sharp. For these
values, from (2.1), we can derive

oo

n 1427
p(z)zl—i—ZZzQ =1 .2 (3.16)

n=1
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Therefore, in this case the extremal function is

This completes the proof of our Theorem. O

Remark 5. By choosing k£ = 1 in (3.15), the result coincides with that of Janteng et
al. [5].
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The purpose of the present paper is to investigate a new integral operator associated with Bessel function.
Some sufficient conditions are derived for this integral operator belonging to various subclasses of starlike
functions under certain conditions.
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1 Introduction

Let A denote the class of functions f of the form
f(2) :z—|—2akzk (1.1)
k=2

which are analytic in the open unit disc U = {z:2z € C and |z| < 1} and satisfy the
normalization condition f(0) = f’(0) — 1 = 0. Further, we denote by S the subclass of A
consisting of functions of the form (1.1) which are also univalent in U. A function f(z)
in A is said to be starlike of order §(0 < § < 1) if the following condition is satisfied

m{zf(g)} >4, (z € U), (1.2)

we denote by S*(d) the class of starlike functions of order §. Clearly S*(4) C S*(0) =
S*(0<d0<1)and S* C S.

Copyright (© 2017 Matej Bel University
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The Bessel function of the first kind of order v is defined by the infinite series

jo%s) (_1)n z 2n+v
Ju(2) = ;n!f‘(ng—%—&-l)’ (1.3)

where I" stands for the Euler-Gamma function z € C and v € R . Recently, Szasz and
Kupan [17] investigated the univalence of the normalized Bessel function of first kind
gy : U — C defined by

gu(2) = 2T (v + 1)z 5 J,(22). (1.4)
Baricz and Frasin [3] have obtained the sufficient condition for the univalence of the
various integral operators involving Bessel functions of the first kind of order v.

Recently, Frasin [5] introduced the following integral operator involving the normal-
ized Bessel function of the first kind

Qg
P ¢ /H(g”l ) dt, (1.5)

and obtain several sufficient condition for this operator to be convex and strongly convex
of given order in the open disc U. Recently analogous to these result Porwal and Breaz
[15] studied the sufficient condition for the operator defined by (1.5) for certain class
of univalent functions. Very recently, Mishra and Panigrahi [9] obtain some sufficient
conditions for starlikeness of certain integral operator. In this paper, motivated with the
above mentioned work and work of Kumar [6] we obtain some sufficient condition for the
operator defined by (1.5) is in the class S*.

To prove our main results we shall require the following lemmas:

Lemma 1. (/17]) Let v > %‘/5 and consider the normalized Bessel function of the
first kind g, : U — C defined by

gu(2) = 2°T(v + 1)z 57, (22),

where J, stands for Bessel function of the first kind, then the following inequality hold
for all z € U.

wﬂ@'< vt2
gv(2) 42+ 100 +5
Lemma 2. ([16]) If feA satisfies
zf"(2) 0+1
m%*’fu>}<2w—n’ (ze0),

for some 2 < § < 3,
or

zf"(2) 50 — 1
%{l—i— 702 }< %1 (z€U),

for some 1 <6 <2, then feS*.
Lemma 3. ([16]) If f€A satisfies

zf"(2) ~6+1 .
%{1+.ww>}> we-1 U
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for some § < —1,

or
"
%{1 + ij(g)} > 2;’(55111), (2€U),

for some § > 1, then feS*(55).

Throughout this paper, we frequently use the notation Fy,,...,.. a1 s---sa, (2) =
F,, .0, (2).
2 Main Results
Theorem 4. Let n be a natural number such that vq,vs, ....... , Up > (%‘/5) Consider

the function g, : U—=C defined by

gu,(2) = 29T (v; + )27 J,, (27).

Let v =min{vy,va, ......, v} and suppose that the inequality
v+ 2 zn:oz-< 3-96 (2.1)
W +10v+54< " 7 26 - 1) '

is satisfied. Then the function F,, ., (z) defined by (1.5) is in the class S* for some
2<4<3.

Proof. First we observe that, since for all i€ {1,2,...,n}, we have g,,€A i.e.

9v.(0) = g,,(0) =1 =0.

From (1.5) we have

Taking logarithmic differentiation

R 85, (302 _1)
P (2) 2\ 00 (2) 2
2F) v, (2) - (Zg() >
G AL Q; |
e D SLl e
2F . (2 2g,,(2)
m{u””}u < = 1)
FY, 0,(2) Z vi(2)
< 1+Z Zg"’ 1‘
<143 o (U2 ) (2.2)
T & "\ 42 +10v; +5 '
For all z€U and vy, vs,....... U > _5%\/5. Since the function ¢ : (_51\/5,00) — R,
defined by,
T+2
o(x)

T 422+ 10245
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is decreasing and consequently for all i€ {1, 2, ....... ,n}. We have

v, +2 < v+2
4v2 +10v; +2 — 42+ 100 +5°

Using this result, inequality (2.7) can be written as

n

z2F) o, (%) v+2
R R N R
=G < s o

Since

v+2 ia_< d+1
2 +10v+54< " 20 -1

V42 " §+1
= i< ——1

4u2+10u+5;a 361
0412042

- 2(6-1)

3-96

206 —1)

Hence from Lemma 2 F,,,,, (z)€S* for some 2 < § < 3.
Thus the proof of Theorem 4 is established. O

Theorem 5. Let n be a natural number and v, s, ...... ,Up > (_5%\/5)
Consider the function g,, : U—=C defined by

v (2) = 2T (v + 1)1, (23).

Let v =max {v1, V2, .....,Un} be a positive real numbers and suppose that the inequality
2 = 202 — 6
_ V2 5, 20
42 +10v +5 26(6 —1)

i=1

(2.3)

is satisfied then Fy, .o, (2) defined by (1.5) is in the class S*(‘%l) for some § < —1.
Proof. First we observe that since for all i€ {1,2,3,...,n}, we have g,,€A i.e.

9.:(0) = 9,,(0) =1 =0.
From (1.5) we have

F o (2) = ﬁ (91/;(2))% .

i=1

Taking logarithmic differentiation,

Y7 -
vi1Qg i=1
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From Lemma 1, we have

29,,(2) 1 < vi+2
v, (Z) T 42+ 10p; + 5

Since R(z) < |7|

/ .
§R{l_zgu,.,(Z)}< Vi +2

9v;(2) | 7 4?2 +10v,+5
% 29,,(2) -1 vi +2
v, (Z) - 4v;2 +10v; + 5

ZFyN e (Z) - v; + 2
14 e L B (P . B D
et e (- erts)

v+2
<41/2+101/+5)Za -

5> __0+1
=250 -1)
v+2 " §+1
— >l —
4V2+10V+5Za1_ 25(6 — 1)
v+2 = §+1
402 + 100 + 2 Z 26(6—1)
=1
v+2 —26+6+1
41/2+101/+5Za1_ (6-1)
262 -6 +1
25(5—1)

Hence from Lemma 3, F), ,q, (z)eS*(%ﬁ) for some 6 < —1.
Thus the proof of Theorem 5 is established.

Theorem 6. Let n be a natural number such that vi,vs, ... vy > (
Consider the function g,, : U—=C defined by

9 (2) = 2"D(i + 1)2' 77, (22).
Let v =min{vy,va,....... ,Un} and suppose that the inequality
v+ 2 z": 50 — 1
42 4+100+5 — = 26 +1)

n
_ E «;
=1

—5+\/5)
T .

83

(2.4)

is satisfied. Then the function F,, ., (z) defined by (1.5) is in the class S* for some

1<6<2.
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Proof. First we observe that, since for all i€ {1,2,...,n}. We have g,,(z)€A i.e.

9,,(0) =g,,(0) =1 =0.

From (1.5) we have

(o) -2 (25 )

=1
2F) o (2) } - (zg’y.(z) >
RI1T4+ L — 14+ R AN
{ Fl i (2) ; 9, (2)
- 9,,(2) ‘
< ]. —+ Q; a — ].
Z: 9v: (%)

v; + 2
+;O‘Z <4uz 2 10v; +5)

v+2 n
<14+—2T2 N,
= +41/2+10V+5;a

For all zeU and vy, s, ........ yUn > #\/?

Since the function,
¢ (*51\/5, oo) R defined by

T+ 2
o) = T 10r 15

is decreasing and consequently for all i€ {1, 2, ...... ,n}, we have

v, + 2 < v+2
4v;2 4+ 10v; +5 — 42+ 100 + 5

Since,

n

V42 50— 1
14— T2 Ny, < 0
+41/2+101/+5;a =26+ 1)

v+2 55 —1
< _
47+ 100+ 5 ;a =206 +1)
50 —-1-2(0+1)
B 20+ 1
50 —1-26—-2
206+
3(0—1)
200+1)°
Hence from Lemma 2 , F),,q, (2)€S* for some 1 < §<2
Thus the proof of Theorem 6 is established.
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Theorem 7. Let n be a natural number and vy, vs...... Uy > (_5%‘/5)
Consider the function g,, : U—=C defined by

N

v, (2) =2V T (v; + 1)2’17%(]”1(2 ).

Let v = max {v1,va, ...... ,Un} be positive real numbers and suppose that the inequality

n

v+2 §+1— 262
P — P G
4u2+101/+5; YT 20(04+1)

is satisfied then Fy,,q, (2) defined by (1.5) is in the class S*(53) for some § > 1.

Proof. First we observe that since for all i€ {1,2,...,n}. We have g,,€A i.e.

9.:(0) = 9,(0) =1 =0.

4
Taking logarithmic differentiation

w{ie e - Z o

From (1.5) we have

n
1/17041 | I <

i=1

2g,,.(2) ) v, +2
Ju; (Z) ~ 4v2 +10p; + 5

l/1+2

/ .
N ACI DY
9v, (%) 4v;2 +10v; + 5
{ v (%) 42+ 100+ 5

g
2F o, (2) " vi + 2
S Rl LA Z P PN (I i 1-3
{ T F (z)}_za< e +10uz+5)+ ZO‘

V100 i1
2F! o, (2) v+2
RI14 V2L S (1 — 1—
{+Fyl,ai(z)}—( 4u2+10v+5>20"+ ZO"
Here ¢(z) = m is decreasing. So for all i€ {1,2,...,n}.
v+2 35+1
1_7 7 ]‘ (=
(1w mes) Dot - S gy
v+2 = 30+1
v > 0T
4u2+1()u+5;a = 2600+ 1)

30 +1—25(5+1)
= 250+ 1)
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304128225

25(6+1)
04126
25(0+1)
Hence from Lemma (2), F,, o,€5*(%5) for some § > 1.
Thus the proof of Theorem 7 is established. O
Remark 8. 1. One may also obtain the analogukes of these results for various sub-

classes of analytic functions e.g. Convex functions, Strongly convex functions and
Strongly starlike functions, Spiral-like functions etc.

. The results of this paper can also be extended by using the integral operator studied

by Breaz et al. [4], Merkes and Wright [7], Miller et al. [8], Pesker [10], Porwal and
Kumar [13] and Porwal and Singh [14].

Recently Baricz [1] introduced generalized Bessel functions of first kind which is
a natural generalization of Bessel function, Modified Bessel function, Spherical
Bessel function and Modified spherical Bessel function and give wide applications
in Geometric Function Theory. For detailed study one may refer [2], (see also [11],
[12]).

It is interesting to find the analogues of these results for harmonic starlike and
convex functions.
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