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Abstract
Discovery of the strongly regular graph Γ with parameters (100, 22, 0, 6) is almost universally attributed
to D. G. Higman and C. C. Sims, stemming from their innovative 1968 paper. While such attribution
is surely appropriate, this graph has a most intriguing history that for decades has remained hidden to
the vast majority of mathematicians. In this paper, we reveal that Γ was in fact constructed as early as
1956 by Dale M. Mesner, who later established its uniqueness in 1964. We provide a detailed account of
both independent discoveries, paying special attention to differing perspectives, styles, motivation and
methodologies of these accomplished mathematicians, and discuss how their contrasting presentations
influenced future generations of researchers. It is also hoped that the new analysis of Γ we arrange in
Section 11 will stimulate a renewed interest in the problem of classifying all primitive strongly regular
graphs with no triangles.
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1 Introduction

The discovery of a rank 3 graph on 100 vertices by Higman and Sims [101] was a definite
breakthrough in group theory and combinatorics. Aside from its extraordinary signifi-
cance on the dawn of the era of the classification of finite simple groups, this discovery
served also as a strong impetus for further development of the theory of rank 3 groups.

It turns out that the same graph Γ on 100 vertices was discovered 12 years earlier and
described in much detail in the Ph.D. thesis [159] of Dale Marsh Mesner, see also [160].
While the motivating factors and employed techniques of Mesner and Higman & Sims
are essentially different, it is quite surprising to observe that the final form in which this
graph was independently described is nearly identical.

Our objectives in this paper are multifold:
∗The author MK gratefully acknowledges support from the Scientific Grant Agency of the Slovak Re-
public under the number VEGA-1/0988/16
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• to provide an historic account of the origins of the graph Γ, in particular to recreate
the drama of competing ideas from diverse scientific traditions, backgrounds and
experiences;

• to describe how these independent discoveries influenced future development in
group theory and combinatorics;

• to pay tribute to Dale M. Mesner by promoting awareness of his results to a wide
mathematical audience, in particular to convince the reader that Mesner’s ideas,
hidden from view for so many years, still have fresh and promising potential.

A further hope is that our text will help to promote future investigations of such
extremely rare objects as primitive strongly regular graphs with no triangles.

We do not aim to provide the reader with all necessary preliminaries, however there
is an abundant supply of references throughout. For the purpose of general background
information, the text [42] is extraordinary in its scope and accessibility. The survey [73]
should also be helpful (see, as well, the references cited in Section 2). For a good initial
exposure to the life and mathematics of Dale Mesner we recommend [118], as well as [10]
which fulfills a similar role for Donald G. Higman.

The following conventions will be used freely throughout the text: The abbreviation
(P)BIBD stands for “(partially) balanced incomplete block design”. Likewise, SRG stands
for “strongly regular graph”. Occasionally we write SRG(v, k, λ, µ) to denote an SRG
with the indicated parameters, although these parameters will sometimes stand alone.
An SRG Γ is said to be primitive if both Γ and its complementary graph Γ are connected.
The standard parameters for a BIBD are denoted by (v, b, r, k, λ); an appended caret is
used (e.g., v̂ replacing v) when it is necessary to distinguish these parameters from those
of an SRG. Intersection numbers of an association scheme are denoted by pkij . Often, we
shall abuse notation by freely identifying a (symmetric) 2-class association scheme with
its corresponding SRG (or pair of SRGs). We use the abbreviation AGT for “algebraic
graph theory”. Likewise, due to its sheer frequency alone, we abbreviate the name “Dale
Mesner” by DM. In the same spirit we freely append DM to various nouns (e.g., DM-
theory, DM-approach, DM-series, etc.).

The balance of our paper is organized as follows. Sec. 2 is devoted to the most
significant preliminaries, exposing the reader to the core essentials of our exposition. Sec.
3 is a microcosm of the entire story: a brief summary with minimum detail. A rather
thorough account of the texts [159] and [160] appears in Secs. 4 and 5, respectively. Secs.
6-8 introduce the reader to the main techniques, ideas and results of DM as they relate to
the graph SRG(100, 22, 0, 6). These sections are meticulously detailed, as are Secs. 9 and
10 which deal with the Witt design [224] and the Higman-Sims group [101], respectively.
The authors’ own personal vision of DM’s construction of SRG(100, 22, 0, 6) is presented
in Sec. 11. Here, our own (re)construction relies on the use of computer algebra packages,
with the helpful assistance of Matan Ziv-Av. In Sec. 12 we survey many important
developments that cascaded from the earlier seminal ideas of DM and others. In Sec. 13
we consolidate all extra material that we feel may be of compelling interest to the reader,
but which we intentionally omitted from the main expository thread so as not to disrupt
the flow of our presentation. Finally, in Sec. 14 we briefly explain how the current text
evolved from its earlier incarnations over the course of a dozen or so years.

In broad terms the genre of our paper is dynamic survey; thus we hope to create
its future updates. Any new and illuminating information relevant to our presentation
would be greatly appreciated.
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2 Preliminaries

Our goals in this section are quite modest: to recall central definitions of AGT, to
establish notation and terminology, and to warm up the reader to a few simple examples
treated in a deliberately naive fashion.

Let Ω be a finite set of cardinality |Ω| = n. By S(Ω) we mean the group of all
permutations of Ω with respect to composition of functions, hence we may identify S(Ω)
with the symmetric group Sn of degree n and order n!. We denote by αg the image of
α ∈ Ω under the action of g ∈ Sn. Clearly (αg)h = αgh for all α ∈ Ω and g, h ∈ Sn, and
αe = α for all α ∈ Ω where e is the identity element of Sn.

We call (G,Ω) a permutation group of degree n provided G is a subgroup of S(Ω),
|Ω| = n. In this case, each g ∈ G may be identified with an n × n permutation matrix
Xg ∈Mn×n(C). We next consider the algebra V(G,Ω) defined as follows:

V(G,Ω) = {A ∈Mn×n(C) | AXg = XgA for all g ∈ G}.

It is immediate that V(G,Ω) is a matrix algebra with standard basis consisting of (0, 1)-
matrices. Observe that this algebra contains the identity matrix I, the all-ones matrix J ,
and is closed with respect to both complex conjugation and Schur-Hadamard (entry-wise)
multiplication. We call V(G,Ω) the centralizer algebra of (G,Ω).

The centralizer algebra has a very nice formulation in terms of 2-orbits of (G,Ω).
Here, by 2-orbit we mean an orbit of G on Ω× Ω induced from the action (G,Ω) in the
most natural sense: (α, β)g = (αg, βg). For each directed graph (digraph) (Ω, R) which
is invariant with respect to a prescribed permutation group (G,Ω), the arc set R will be
a union of suitable relations from the set 2-orb(G,Ω) of all 2-orbits of (G,Ω). In fact,
many central concepts in modern AGT are based axiomatically on the salient properties
of this set 2-orb(G,Ω).

Again, let Ω be a finite set, |Ω| = n, and let R = {R1, R2, . . . , Rr} be a partition of
the Cartesian square Ω2. A pair X = (Ω,R) is called a coherent configuration (briefly,
CC ) of rank r provided the following conditions hold:

(CC1) Ri ∩Rj = ∅ for all 1 ≤ i 6= j ≤ r;

(CC2)
r⋃
i=1

= Ω2;

(CC3) For each i ∈ {1, 2, . . . , r} there exists i′ ∈ {1, 2, . . . , r} such that Ri′ = RTi where
RTi = {(β, α) | (α, β) ∈ Ri};

(CC4) There exists a subset Y ⊂ {1, 2, . . . , r} such that
⋃
i∈Y

Ri = ∆ ≡ {(α, α) | α ∈ Ω};

(CC5) For each i, j, k ∈ {1, 2, . . . , r} the number pkij of elements z ∈ Ω for which (x, z) ∈ Ri
and (z, y) ∈ Rj is constant for all pairs (x, y) ∈ Rk.

There is a lot to be said about axioms (CC1)-(CC5). First observe that axioms (CC1)
and (CC2) merely reassert that R is a partition of Ω2. Each nonempty subset Ri is thus
a binary relation on Ω, called a basis relation. In axiom (CC3) we refer to RTi as the
transpose relation of Ri. In axiom (CC4) we refer to ∆ as the diagonal (or reflexive)
relation on Ω. Finally, in axiom (CC5) we refer to the numbers pkij as the intersection
numbers of X.

To each basis relation Ri of X we associate a digraph Γi = (Ω, Ri), which we call a
basis (di)graph of X. Let us denote its adjacency matrix by Ai = A(Γi). It is then easy
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to verify that the set {A1, A2, . . . , Ar} forms a basis for the vector subspace S = S(X)
of Mn×n(C), in particular AiAj =

r∑
k=1

pkijAk for all i, j.

The reader will now observe that axiom (CC5) asserts that S is actually a subal-
gebra of Mn×n(C). In fact, it may be seen from axioms (CC1)-(CC5) that S contains
I, J , and is closed with respect to complex conjugation and Schur-Hadamard multi-
plication. Indeed, S specializes to the centralizer algebra V(G,Ω) in the case where
X = (Ω, 2-orb(G,Ω)). We call S a coherent algebra of order n and rank r.

A hallmark of the theory is the apparent ease with which one is able to pass between
the languages of relations, graphs and matrices. We cannot stress strongly enough that
this mode of passage is anything but superficial. As one striking example, the inter-
section numbers of X (see axiom (CC5)) correspond to the structure constants of the
coherent algebra S(X). From this observation alone, one sees that the links between the
combinatorial and algebraic perspectives of the theory are not only deep but inescapable.

Observe that axioms (CC1) and (CC4) together imply the existence of the unique
partition {F1, F2, . . . , Fm} of Ω, namely via ∆ =

⋃m
i=1{(α, α) | α ∈ Fi}. We refer to

F1, F2, . . . , Fm as the fibers of X. For each basis relation Ri of X there exists s, t ∈
{1, 2, . . . ,m} for which Ri ⊆ Fs × Ft. Based on this, if we consider an arbitrary subset
Ω′ ⊂ Ω formed by the union of certain fibers of X we can then consider the corresponding
subset R′ ⊂ R defined by R′ = {R ∈ R | R ⊆ Ω′ × Ω′}. This gives rise to another CC,
namely X′ = (Ω′,R′), which we call the CC induced on Ω′.

A CC with only one fiber is called homogeneous. An alternate name for a homoge-
neous CC is an association scheme (briefly, AS). We remark that in the case of an AS
it is customary to indicate the diagonal relation ∆ by R0.

An association scheme X is called symmetric if each of its basis relations is symmetric
(i.e., equal to its transpose). We call X commutative if its corresponding coherent algebra
S(X) is commutative. It is easy to check that a symmetric AS is commutative but not
vice versa.

It is customary to refer to the coherent algebra S(X) of an AS X as the adjacency
algebra of X. In the case where X is a commutative AS, the term Bose-Mesner algebra
(or BM algebra) is generally applied, stemming from the seminal work [19] of Bose and
Mesner.

As previously mentioned, the axioms for a coherent configuration are modeled after
the special class of CC’s of the form X = (Ω, 2-orb(G,Ω)), where (G,Ω) is a permutation
group. Such CC’s are said to be Schurian. In particular, X = (Ω, 2-orb(G,Ω)) is a
Schurian association scheme precisely when (G,Ω) is transitive.

Not surprisingly, non-Schurian CC’s comprise a special focus of modern AGT. Small-
est examples exist of orders 14, 15, 16, see [142]. In Example 3 below, we exhibit a
non-Schurian CC of order 16 in rather full detail.

Let S′ be a coherent subalgebra of the coherent algebra S(X). There corresponds
to S′ a CC X′ = (Ω,R′) in which each basis relation of X′ is a suitable union of basis
relations of X . Following [226] we shall refer to X′ as a fusion CC of X, although we
shall sometimes use the term merging in this precise context, see [24].

Mergings play a significant role in the construction of association schemes; both
Schurian and non-Schurian CC’s arise in this way. In this text, we mostly consider
AS’s as fusions of non-homogeneous CC’s, in fact in most cases the resulting fusions will
be symmetric AS’s.

In addition to induced CC’s and fusion CC’s, there is one additional general con-
struction. LetM be a subset of Mn×n(C). We denote by 〈〈M〉〉 the smallest CC that
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containsM. Clearly, such a configuration exists because the intersection of any number
of CC’s is again a CC. We call 〈〈M〉〉 the coherent closure ofM.

Let ∆ = (Ω, R) be an undirected graph of diameter d with adjacency matrix A(∆).
We call ∆ a distance regular graph (briefly, DRG) provided 〈〈A(∆)〉〉 is an AS of rank
d+ 1. The case d = 2 is very special, as we now discuss.

Let ∆ be a regular graph of valency k and order v such that each pair of adjacent
vertices has λ common neighbors, and each pair of non-adjacent vertices has µ common
neighbors. Then we call ∆ a strongly regular graph (briefly, SRG). We refer to the
sequence (v, k, l, λ, µ) as themain parameters of ∆. (Frequently, the redundant parameter
l = v − k − 1 is omitted.) The reader can easily verify that a connected SRG is nothing
more than a DRG of diameter d = 2.

The complement ∆ of an SRG ∆ is also an SRG, in fact its parameters (v̄, k̄, l̄, λ̄, µ̄)
are readily described in terms of the parameters of ∆, namely

v̄ = v, k̄ = l, l̄ = v − l − 1, λ̄ = v − 2− 2k + µ, µ̄ = v − 2k + λ.

We call ∆ primitive if both ∆ and ∆ are connected.
The parameters of a DRG are frequently depicted with the aid of an intersection

diagram, e.g., see [24]. We indicate this diagram for a connected SRG as follows:

1 k

λ k−µ

l
k 1 k−1 µ

There are certain conditions that the parameters of an SRG must satisfy. We cite
k(k − 1) = lµ as just one example, although many others are far more sophisticated
in nature and depend on spectral techniques. These conditions were investigated by
contemporaries of DM, who was already employing them in his 1956 thesis [159]. We
call a sequence feasible if it satisfies these necessary conditions.

Example 1. Consider the permutation group (F 4
5 , [0, 4]) where F 4

5 is the Frobenius
group of degree 5 and order 20, and [0, 4] = {0, 1, 2, 3, 4}. Using the fact that (F 4

5 , [0, 4])
is generated by the two permutations (0, 1, 2, 3, 4) and (1, 2, 4, 3), we see at once that
(F 4

5 , [0, 4]) may be realized as the automorphism group of the pair {C5, C5}, where C5 is
the suitably labeled pentagon in Fig. 1. (Note that here automorphisms may interchange
the two graphs in the unordered pair, cf. our definition of CAut(X) below.)

0

14

3 2

0

4 1

3 2

Figure 1. The pentagon and its complement

Let Ω denote the set of 2-element subsets of [0, 4]. It then follows from 2-transitivity
of (F 4

5 , [0, 4]) that (F 4
5 ,Ω) is a transitive permutation group. With the aid of a computer

we determined the centralizer algebra V = V(F 4
5 ,Ω), from which it followed that X =

(Ω, 2-orb(F 4
5 ,Ω)) is a rank 6 AS with “color" adjacency matrix A = A(X) given as follows.
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A =



0 1 2 3 4 5 1 3 2 5
1 0 2 1 5 2 3 3 5 4
5 5 0 2 1 3 2 4 3 1
3 1 5 0 2 2 3 1 4 5
4 2 1 5 0 3 2 5 1 3
2 5 3 5 3 0 4 2 1 1
1 3 5 3 5 4 0 1 2 2
3 3 4 1 2 5 1 0 5 2
5 2 3 4 1 1 5 2 0 3
2 4 1 2 3 1 5 5 3 0


Here, matrix A delineates an arc-coloring of the complete digraph on 10 vertices with
color set {0, 1, 2, 3, 4, 5}. The reader will further observe that A(X) =

∑5
i=0 iAi where

Ai is the usual adjacency matrix of the basis graph (Ω, Ri), 0 ≤ i ≤ 5.
In fact, X is one of the smallest nontrivial examples of a non-commutative AS. To see

this, simply observe that there is a 2-path from vertex 0 to vertex 2 along arcs colored 1
then 2, but no such path exists along arcs colored 2 then 1.

There are two primitive fusions of X corresponding to the following mergings of basis
relations: R′ = {R0, R1 ∪R4, R2 ∪R3 ∪R5} and R′′ = {R0, R3 ∪R4, R1 ∪R2 ∪R5}. The
resulting schemes are isomorphic; graphs (Ω, R1∪R4) and (Ω, R3∪R4) both yield copies
of the Petersen graph, as shown in Fig. 2.

0

16

37

4

25

98

0

16

37

4

25

98

Figure 2. Two copies of the Petersen graph via merged relations

The point of Example 1 is to convince the reader that even for a relatively simple AS
on 10 points, manipulation of computer data is a far from trivial task. Indeed, human
ingenuity and intermediation are key to the process.

To each CC X = (Ω,R) we may associate three groups.

1. The (usual) automorphism group Aut(X) =
r⋂
i=1

Aut(Γi) is that subgroup of S(Ω)

which preserves each color graph Γi = (Ω, Ri), 1 ≤ i ≤ r.
2. The color automorphism group CAut(X) is a less restrictive subgroup of S(Ω) in

the sense that it allows colors to be permuted in a uniform manner:

CAut(X) = {g ∈ S(Ω) | Rgi ∈ R for all Ri ∈ R}.
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3. The algebraic automorphism group AAut(X) preserves the tensor of structure con-
stants of X:

AAut(X) = {σ ∈ S({1, 2, . . . , r}) | pk
σ

iσjσ = pkij}.

It is the only type of automorphism of X that need not arise from a permutation
of the set Ω.

It is routine to verify that Aut(X) is a normal subgroup of CAut(X), and that the
quotient group CAut(X)/Aut(X) embeds in AAut(X). Groups Aut(X) and CAut(X) are
very helpful in cases in which X has a limited number of fusion schemes.

Let ∆ = (Ω, E) be an (undirected) graph, and let V = {Ω1,Ω2, . . . ,Ωs} be a partition
of its vertex set Ω. For every i, j ∈ {1, 2, . . . , s} let eij = eij(x) denote the number of
neighbors in Ωj of a fixed x ∈ Ωi. We call V an equitable partition (briefly, EP) of ∆ if
eij does not depend on the particular vertex x ∈ Ωi chosen.

Observe that for each subgroup H ≤ Aut(∆), the orbits of (H,Ω) form an EP . We
refer to such an EP as automorphic. Clearly, non-automorphic EP ’s are a special source
of interest.

To each EP there corresponds a collapsed s× s matrix E = (eij). Note that if ∆ is
regular of valency k, then each row sum of E is equal to k.

Example 2. It is well known that the Petersen graph is hypohamiltonian, see Fig. 3(a).
Consider the partition of its vertices into two parts (the 9 black vertices comprising the
outer cycle, and single white vertex at its center). This partition is not an EP simply
because the subgraph induced on the vertices of the 9-cycle is not regular.

In Fig. 3(b), we depict a partition π = {black, white} of the vertex set V of the
octahedron. Here π is an EP with collapsed matrix E given by

E =
[

0 4
2 2

]
.

In fact π is automorphic, as its cells are orbits of the permutation group (Z2 ×D4, V ).
Finally, in Fig. 3(c) we depict the partition π = {black, white} of the cuneane graph

(i.e., graph of the cuneane molecule, see [213] for details). The partition π is again an
EP with collapsed matrix

E =
[

1 2
2 1

]
.

However in this case π is not automorphic. Indeed, there are two orbits of white vertices
under the action of Z2×Z2, which is the full automorphism group of the cuneane graph.

Example 3. Here we provide a classical example of a non-Schurian AS. It is generated
by the Shrikhande graph Sh of order 16, one of two SRG’s with parameters (16, 6, 2, 2).

There are a few well known constructions of this graph, for example as the complement
of a Latin square graph over Z4, e.g., see [96]. However, we shall deliberately approach
its construction in a more sophisticated way, starting from a CC with two fibers of size
4 and 12. A candidate for the collapsed matrix here is

E =
[

0 6
2 4

]
,

as it satisfies some simple necessary combinatorial conditions as well as one strong spec-
tral condition, see [83, Theorem 9.3.3]. The (1, 1)-entry of E indicates the existence of
a coclique of size 4 in Sh. Hence if the resulting EP is to be automorphic one would
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(a) (b)

(c)

Figure 3. Vertex partitions (black and white vertices) for three graphs

expect to encounter a natural action of the group S4 on the cell of size 4. Of the two
faithful transitive degree 12 actions of S4, we chose the more natural one: the set

(
X
2
)
of

all ordered pairs of distinct elements of X = {0, 1, 2, 3}.
Using the computer package COCO we constructed the centralizer algebra V =

V(S4,Ω) where Ω = X ∪
(
X
2
)
. The CC X corresponding to V turned out to be of

rank 15, comprised of two reflexive, five symmetric, and four pair of antisymmetric 2-
orbits of (S4,Ω). COCO subsequently returned 18 nontrivial fusion schemes of X, the
most interesting of which were five mergings corresponding to SRG’s with parameters
(16, 6, 2, 2). Of these, three had automorphism groups of order 1152, while the remaining
two had automorphism groups of order 192. One of these latter two, “Merging #17” (the
name so assigned by COCO), is explained in detail below. As usual, different letters are
meant to indicate different elements of X.

One basis graph ∆ = (Ω, R) comes by way of merging R = R3∪R7∪R12∪R13, where
R3 = {a, (b, c)}, R7 = {(b, c), a}, R12 = {(a, b), (a, c)}, R13 = {(b, c), (c, a)}. Clearly R12
and R13 are symmetric relations, while R3 = RT7 . It is fairly straightforward to see that
∆ is a regular graph of valency 6 with collapsed matrix E. In fact, ∆ is the Shrikhande
graph Sh, see Fig. 4.

Our next step is to understand the structure of Aut(Sh). At the moment, all that
we know for certain is that S4 ≤ Aut(Sh). However one can show that the stabilizer
Aut(Sh)(0,1) of vertex (0, 1) is the dihedral group D6 of order 12. Indeed, using Fig. 5 as
a partial aid, the reader is encouraged to verify this directly by showing that Aut(Sh)(0,1)
is generated by the following two involutions s, t, whose product st has order 6:

s =
(
2, 3
)(

(0, 2), (0, 3)
)(

(2, 1), (3, 1)
)(

(2, 0), (3, 0)
)(

(1, 2), (1, 3)
)(

(2, 3), (3, 2)
)
,

t =
(
3, (0, 3)

)(
2, (2, 1)

)(
0, (3, 0)

)(
1, (1, 2)

)(
(2, 3), (1, 0)

)(
(2, 0), (1, 3)

)
.

From this one concludes that Aut(Sh) is a transitive group of degree 16 and order 16·12 =
192.
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0

1

2

3(0,3)

(3,0)

Figure 4. The Shrikhande graph Sh. Points along the main diagonal (white dots) correspond
to elements of X = {0, 1, 2, 3} while all remaining points correspond to elements of

(
X
2

)
.

While Aut(Sh) acts transitively on edges, its action on non-edges is intransitive.
This can be seen by considering the 7-vertex subgraph ∆′ of Sh induced on (0, 1) and
its neighbor set, as depicted in Fig. 5. Transitivity on non-edges would require that
Aut(∆′) = Aut(Sh)(0,1) act transitively on the non-neighbors of (0, 1) which is clearly
not the case. In fact, Aut(Sh) is a rank 4 group with subdegrees 1, 6, 6, 3. This may be
verified by establishing that (0, 1), 2, 0, (2, 3) are distinct orbit representatives under the
action of Aut(∆′) ∼= D6.

At the next stage we wish to show, without the aid of a computer, that the graph Sh
is indeed an SRG. For this purpose it suffices to count the number of 2-paths from (0, 1)
to 2 (since {(0, 1), 2} represents the single orbit of edges in Sh), as well as the number of
2-paths from (0, 1) to each of 0 and (2, 3) (since {(0, 1), 0} and {(0, 1), (2, 3)} represent
the two orbits of non-edges in Sh). In all cases this number is 2, whence it is confirmed
that Sh is an SRG with parameters (16, 6, 2, 2). We conclude that Merging #17 is a
non-Schurian AS with two classes, Sh and Sh, of valencies 6 and 9.

We end our example with an observation on the automorphism groups of the initial
rank 15 CC X with two fibers of size 4 and 12. Using COCO in conjunction with GAP,
we were able to confirm that AAut(X) ∼= Z2 ∼= CAut(X)/Aut(X), and that a generating
involution of AAut(X) interchanges four pairs of the 18 fusion schemes of X, one pair of
which consists of two rank 3 mergings with group of order 1152. (Later we shall compare
this information with the situation arising in DM’s construction of NL2(10).)

It is interesting to compare the fusion scheme Merging #17 of this example with
another fusion scheme of X, assigned the name Merging #14 by COCO. This latter
merging is a rank 3 AS generated by the lattice square graph L2(4). Like Sh, this graph
also has a natural “grid-like” construction, namely here the neighbors of a vertex (a, b)
in L2(4) are precisely those vertices that lie either in the same row or column as (a, b)
(hence of the form (a, y) where y 6= b, or (x, b) where x 6= a). The key observation here
is that Sh may be obtained from L2(4) by the process of “switching” with respect to a
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(0,1)

3 (0,2)

(3,1) 2

(2,1) (0,3)

Figure 5. Subgraph ∆′ of the Shrikhande graph, induced on (0, 1) and its neighbors

4-vertex coclique in L2(4). This procedure goes back to J. J. Seidel, e.g., see [26].
Finally, we wish to pay credit to S. S. Shrikhande [196], the discoverer of this remark-

able graph.

For more details regarding the methodology of CC’s and AS’s, we refer the reader to
the texts [24, 41, 83] and to our papers [73, 134, 135, 136, 142]. The latter two papers
provide information about helpful computer tools for research in AGT, particularly the
packages COCO, GAP, GRAPE, and nauty. These tools were exploited in the current
paper in both visible and hidden form.

Details on the coherent closure of a set of matrices, including a very efficient algorithm
for computing it, may be found in the seminal paper [219] of B. Ju. Weisfeiler and A.
A. Leman. A reasonably elementary treatment of these ideas, plus an historical review,
appears in [138].

Lastly, we mention that in various places in the text we employ a number of different
kinds of incidence structures without further explanation. Among these are (partially)
balanced incomplete block designs, biplanes, Steiner systems, etc. The texts [11, 109]
should provide the reader with sufficient background material regarding these structures.

We also wish to remark that the ingredients of the language of AGT introduced
in this section will not be fully exploited in our forthcoming exposition. Nevertheless,
the reader who is familiar with these concepts will definitely benefit from his/her wider
proficiency, being able to better comprehend many of the discussed links between modern
state-of-the-art AGT and its initial seeds from the latter half of the XX-th Century.

3 Overview

An SRG Γ with the parameters (100, 22, 0, 6) was first described in the 1956 thesis [159]
of Dale M. Mesner in terms of its adjacency matrix A1. This matrix was presented
in block form with two of its blocks C1 and CT1 interpreted as incidence matrices of
an auxiliary BIBD and its dual design. From here, properties of such a BIBD were
postulated. DM proved that there was at least one such design, thereby establishing
existence of Γ. Uniqueness of Γ would have followed from an examination of the three
remaining putative designs mentioned by DM, however this was not persued.

This graph was later considered by DM in [160], where the initial arguments from
[159] were presented in a more transparent and rigorous form. The notion of a negative
Latin square association scheme with two classes, already coined in [159], was developed
here to its full extent. The considered schemes were denoted NLg(n) with g, n free



Acta Univ. M. Belii, ser. Math. 25 (2017), 5–62 15

parameters. Special attention was paid to the case p1
11 = 0 (whereby n = g2 +3g), which

led DM to feasible parameters of a putative infinite family of such schemes, denoted
NLg(g2 + 3g). For each given g ≥ 1, existence of said scheme on n2 vertices (and so, of
the corresponding SRG) was reduced to the existence of a BIBD C on v̂ = g(g2 + 3g+ 1)
points satisfying the properties earlier postulated by DM. For g = 1 uniqueness ofNL1(4)
was proved as an immediate illustration of DM’s methods.

In contrast to [159], DM’s investigation of the case g = 2 in [160] was more complete.
Here design C was shown to be unique by analyzing the block decomposition of its puta-
tive incidence matrix C1 (recall, a submatrix of A1) and investigating certain auxiliary
structures naturally appearing in this context.

In comparison to [160], which took the form of mimeographed notes, DM’s later paper
[162] enjoyed a quite wider distribution. Covering just a portion of the material from
[160], it contains only a brief mention of the existence of Γ = NL2(10), and it does so
without any supporting evidence or explanation.

Over the next few years, the results from [160, 162] would become known to only
a narrow community of experts in design of experiments. Although this knowledge
would stimulate further clarification and development of DM’s approach, it is unfortunate
that for many decades DM’s results would remain unknown to virtually all experts in
group theory and finite geometries. Indeed, during this period the community of experts
specializing in design of statistical experiments was relatively isolated from the main
body of mathematics, and the links that are fairly commonplace nowadays simply did
not exist at that time.

The second appearance of the graph Γ is well known. It was discovered independently
in 1967 by D. G. Higman and C. C. Sims. The result became known almost immediately,
quite before its formal appearance in [101], and strongly influenced further investigation
of Γ and Aut(Γ). No doubt, interest in Aut(Γ) stemmed from the fact that it contained
a new sporadic simple group, nowadays denoted HS in honor of its discoverers. In
particular, new proofs of the uniqueness of Γ and diverse characterizations of HS would
be accomplished in the next few years by several authors.

The results in [101] were obtained by a clever combination of combinatorial arguments
with elementary group theoretic observations. A construction of Γ was there given, based
on the existence of an auxiliary design previously considered by E. Witt in [224]. (In
subsequent papers one finds a proof of the uniqueness of Γ.) Although one now recognizes
this design to be isomorphic to the design C of DM, its more common realization is the
Steiner system S(3, 6, 22) (also denoted W22).

The graph Γ contains another SRG with parameters (77, 16, 0, 4), which was also
presented by DM. It follows from his construction that such an SRG is unique up to iso-
morphism. Again, this discovery was an immediate consequence of [101]. The pioneering
paper here was due to by A. Gewirtz [80], establishing uniqueness not only of Γ but of
several of its substructures.

More careful analysis soon revealed the 3-design C to be quasi-symmetric (i.e., having
two allowable cardinalities for the intersection of distinct blocks). Moreover, it became
clear that a quasi-symmetric design with suitable parameters yields an SRG by natural
extension [86].

Very quickly, results about the Higman-Sims graph and its automorphism group
inspired an explosion of fruitful activity in group theory and the newly developing AGT.
Thus the main ideas of DM’s discovery became known and influential to two generations
of mathematicians, though without any attribution to his early pioneering work.

This concludes a summary of the main content of our paper. A comprehensive treat-
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ment begins in the next section.

4 Ph.D. thesis of Dale Mesner: a brief outline

The thesis of DM consists of 291+ix pages, is signed by adviser Leo Katz, with acknowl-
edgments to the adviser and W. S. Connor, Jr.

Chapter I discusses general properties of partially balanced incomplete block designs
(PBIBDs) and association schemes.

Chapter II provides a nice comprehensive discussion of the properties of 2-class as-
sociation schemes and corresponding PBIBDs. In particular, DM derives results (with
credits to [51]) on feasible spectral conditions for the existence of such schemes. (Later
on a similar result appears independently as Lemma 6 in [98].)

In Chapter III, DM introduces the new notion of a “negative Latin square type”
scheme. He establishes elements for a general theory of such schemes, and provides
infinite series of examples with the aid of finite fields. This includes implicit consideration
of the concept of a dual strongly regular graph (cf. Section 2.6.3 in [62]).1 The content
of Section 3.3 is discussed in more detail below.

Chapter IV is devoted to the investigation of Latin square type schemes, with special
attention to the uniqueness of such schemes with two classes. The results are surprisingly
strong, a real precursor to the more general approach developed later in [196] and [30].
Note that DM is not aware at this time of [29].

Chapter V is a summary of obtained results.
A comprehensive appendix consists of five parts, occupies more than 50 pages and

provides a lot of interesting numerical data, in particular tables of parameter values for
association schemes of small size.

The bibliography consists of 40 items.
Section 3.3 of the thesis is central to our presentation. In Section 3.1, DM suggests to

consider graphs of negative Latin square type, denoted by him as L∗g(n). These are SRGs
with the parameters v = n2, k = g(n+1), l = (n+1−g)(n+1), λ = (g+1)(g+2)−n−2,
µ = g(g+1). For n a prime-power, some families of such graphs are constructed in Section
3.2 using the notion of a Singer cycle [201].

In Section 3.3, DM faces the question of constructing an SRG of L∗2(10)-type, desig-
nated #94 in his Table II (‘Supplement’ to thesis). He considers the adjacency matrix
A1 of a putative such graph, which by virtue of his Theorem 2.6 may be presented in the
form

A1 =



0 1 · · · 1 0 · · · 0
1
... 0 C1
1
0
... C T

1 T
0


.

Here C1 is the incidence matrix of a BIBD with the parameters v = 22, r = 21, k = 6,
b = 77, λ = 5. Let us denote this BIBD as C. Using simple combinatorial arguments
in conjunction with variance counting, DM immediately concludes that each block of
C is disjoint from 16 other blocks, and has exactly 2 common elements with any of the

1Of course, the term strongly regular graph does not appear explicitly in DM’s thesis. It would later be
coined in [18].
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remaining 60 blocks. (In modern terminology, DM has proved that C is a quasi-symmetric
BIBD with the intersection numbers x = 0, y = 2.)

Using his Lemmas 2.1 and 2.2, DM concludes that matrix T is the adjacency matrix
of an SRG Γ1, designated #64 in his Table II, which has the parameters v = 77, k = 16,
l = 60, λ = 0, µ = 4. It is implicit from DM’s arguments that Γ1 may be regarded as
the complement of the block graph of the design C. Together with the existence of C,
existence of graph #64 is another necessary condition for the existence of graph #94.
For evident reasons, we denote this latter graph by Γ.

At the next stage the goal is to prove that the existence of C is sufficient, as well as
necessary, to establish existence of the graph Γ. A series of brilliant ad hoc arguments
and computations on pp. 134-137 allow DM to arrive at this conclusion.

The problem is now reduced to the construction of the design C. (Of course, DM at
this time is not aware of the existence of the Witt design on 22 points.) Without the
aid of a computer, DM bravely attacks this problem. He claims in advance that he will
show the existence of at most four possible solutions for C, and that he will use the first
solution encountered, neglecting consideration of other possibilities. Thus he starts his
“systematic trials of possible solutions” (a very clever rigorous backtracking procedure
in modern terms). The protocol of this computational procedure occupies pp. 137-145,
while on p. 146 the result is presented: an explicit listing of the 77 blocks that make up his
BIBD C. Concluding his construction on p. 147, DM stresses the fact that he has arrived
to at least one solution for the graph Γ, not concerning himself with other solutions. In
DM’s words: “It is not known whether any of the four solutions are equivalent under
some permutation of treatments.”

In actuality, a proof of the uniqueness of Γ is nearly achieved in the course of DM’s
presentation in [159]. He further pays consideration to the graph Γ1, and to some other
interesting combinatorial byproducts which still today are awaiting a proper interpreta-
tion.

5 Mimeographed notes of Dale Mesner: 1964 and beyond

Our main interest in this section focuses upon a comprehensive set of notes [160] published
in the Mimeo Series of the Institute of Statistics of UNC-Chapel Hill. Many hundreds of
texts published in this series form a scientific treasure, however they were not available
to a wide audience for a very long while. All our attempts to gain access to [160] proved
futile until we learned from Earl Kramer in February 2010 of the possibility of online
access to most texts from this series.

Surprisingly, we were not able to secure a copy of [160] from Dale himself. He men-
tioned that he had lost his own personal copy, and that regardless, in Dale’s own words,
“it doesn’t contain anything new.” According to Dale, everything in [160] could be re-
covered from [159] in conjunction with [162].

To the modern reader the picture is quite the opposite: DM’s mimeographed notes
immediately became a personal source of great inspiration to us. We liken our impressions
upon examining it to the emotions of an archeologist who has just uncovered a rare and
priceless artifact.

The entire text [160] consists of 11 sections (100 pages + cover page) and is dated
November 1964. Acknowledgment is paid to the NSF for support, as well as to Purdue
University for the use of their computer facilities. No doubt, the latter figured promi-
nently in the construction of DM’s many tables.

Section 1 of [160] contains a brief general outline of designs and association schemes.
Already by Section 2, we find ourselves in new territory, being exposed to the notion of an
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NL-square design. The presented graphs2 NL2(8), NL2(9), NL3(9) and NL2(10) are all
new. Sections 3-4 introduce elements of a general theory of NL-graphs, while Section 5
gives some finite field constructions. Some more advanced geometric constructions form
the content of Sections 6-7. All of these sections merit close examination, especially as a
means of comparison to what are, nowadays, known results.

The real surprise, however, occurs in Section 8. Specifically, this is an introduction to
the new theory of NLg-graphs with λ = 0. In particular, Theorems 8.6 and 8.7 establish
the existence and uniqueness of Γ = NL2(10).

Section 9 provides a proper treatment of PBIB designs, and is replete with many
tables of feasible parameters. More or less, Section 10 coincides with Sec. 4 of [162].
Section 11 contains acknowledgments, followed by a list of 25 references including one to
the 1963 notes of R. C. Bose from the same Chapel Hill Mimeo Series.3

DM’s mimeographed notes comprise just one of three publications that grew out of
his Ph.D. thesis, the other two being [161, 162] each of which was also submitted in 1964.

The short note [161] was received by the editors on March 16, 1964 and revised on
September 10, 1964. Although DM is still not using the term graph, the subject of
[161] is the investigation of necessary conditions for the existence of an SRG with given
parameters in conjunction with conditions for the existence of a PBIB design. Here
DM follows closely the spirit of [20, 21]. In particular, he investigates a few concrete
putative families of parameters (citing [51] as an initial source of information) and coins
the term “pseudo-cyclic” for one such family (with credit for its suggested usage to R.
H. Bruck). Ultimately, DM proves that any SRG with a prime number of vertices must
be pseudo-cyclic.

A number of diverse numerical conditions (some are new, one is attributed to J. S.
Frame) are presented and exploited in [161] for consideration of particular parameter sets.
As a simple exercise, one may readily obtain the result in [105] on putative parameters
of Moore SRGs.

The more comprehensive article [162] (received July 20, 1964, revised August 12,
1966) is the most known and frequently cited of DM’s three 1964 submissions. This is
the text in which L∗ is officially replaced by NL as a designation for schemes of negative
Latin square type.

The main body of [162] deals with concrete methods for describing SRGs and BIBDs
of NL-type based on the use of geometries over finite fields (in some cases just the field
itself suffices). In this text, DM introduces the notation NLg(n) to refer to an SRG with
the parameters v = n2, k = g(n+ 1), λ = (g + 1)(g + 2)− n− 2, µ = g(g + 1).

At the close of Section 1 in [162] the author writes: “Methods to be presented in later
papers give solutions for some of the foregoing as well as for NL2(9) and NL2(10). The
schemes NL2(6), NL2(7), NL3(10) and NL4(10) are still unknown.”

There is but one way to decode DM’s message about NL2(10) above:
An SRG with the parameters (100, 22, 0, 6) does exist!

It is bewildering that generations of experts (including the authors) were unaware of this
accomplishment of DM until its formal disclosure in [117].
Remark 4. (a) We provide the current status of the schemes mentioned in DM’s quote:
Nonexistence of NL2(7) was proved in 1989 [34], existence of NL4(10) was proved in
2Here we are taking the liberty of extending DM’s original notation and terminology for schemes (also
used by him for designs) to apply as well to the corresponding SRGs. We shall uphold this convention
in what follows.

3Despite much concerted effort we were unable to locate these notes of Bose. At present we have some
doubts as to their actual existence.
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2003 [123], existence of NL3(10) remains an open problem, and there are many graphs
of type NL2(6), e.g., see [206, 133].

(b) In Section 4 of [162], DM gives feasible parameters for two families of association
schemes. In modern terminology, such schemes are referred to as “amorphic”, cf. [60].

6 The Clebsch graph: The DM-approach in miniature

By the Clebsch graph we refer to the graph NL1(4) in DM’s notation. The name was
coined by J. J. Seidel in [191], though more accurately he applied it to the complemen-
tary graph. Seidel in turn refers to Coxeter [56], who points out the relation of the
corresponding polytope to the 16 lines on the Clebsch quartic surface [47].

An alternate notation for this graph is �5, reflecting its membership to an infinite
series �n of folded n-cubes, e.g., see [24]. In fact, �5 is an SRG with the parameters
(16, 5, 0, 2). It was rediscovered a few times in diverse contexts, see [45, 88, 124]. Our
own vision of this graph is reflected in [137, 135]; in particular Fig. 6 is basically borrowed
from [137]. Also see [83] for a proof of existence and uniqueness.
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The graph NL1(4) was already a striking example in the thesis of DM [159]. On pp.
102–105 one finds a detailed construction which uses the finite field GF (16) in the spirit
of [201]. At this stage DM believed the example to be new, however in the text [160] he
attributes it to Clatworthy [45]. In fact the graph NL1(4) plays a crucial role in [160],
where it is constructed no fewer than four times, each time elaborating a different method



20 Mikhail H. Klin, Andrew J. Woldar

for procuring a negative Latin square graph. Below we describe these four constructions
in brief (Models 1–4), although we make no attempt to dogmatically preserve the original
notation and terminology.

Model 1 ([160, Sec. 4]). Theorems 4.1 and 4.8 justify how to construct a 2-class
association scheme from a suitable abelian group H and its partition into three sets:
S0 = {0}, S1, S2. DM introduces NL1(4) as an example on pp. 25-26; specifically,
he works with the vector space V = GF (2)4 (binary strings of length 4) and defines
S1 = {0001, 0010, 0100, 1000, 1111}. The graph �5 appears as the Cayley graph over V
with connection set S1 (see the binary labels in Fig. 6). In modern terminology, what
DM has accomplished is a “merging of classes” in the Hamming scheme H(4, 2). His
work in this section also touches upon elementary concepts in S-ring theory.

Model 2 ([160, Sec. 5]). Here NL1(4) appears in the guise of a cyclotomic association
scheme (see [24, Sec. 2.10]). The presentation is similar to the one in [159], though more
compact. On pp. 31-32 the field GF (16) is described in such a way that the set S1 of
Model 1 appears as the subgroup of order 5 in the multiplicative group of GF (16).

Model 3 ([160, Sec. 7]). In his previous Section 6, DM works with the k-dimensional
Euclidean geometry over the field GF (n) (so here n is a prime-power), in particular with
the Desarguesian affine plane EG(2, n) and the projective plane PG(2, n). He explains
how to derive association schemes from non-degenerate conics in PG(2, n). In DM’s
presentation, he gives credit to B. Segre, R. C. Bose and R. H. Bruck. These techniques
are more deeply exploited in Sec. 7, where DM starts by discussing a construction by D.
K. Ray-Chaudhuri on v = 23t points [177]. He asserts that this construction can never
produce NLg-graphs, and subsequently generalizes it to one that leads to infinitely many
such graphs, as well as other association schemes. In his typical modest style, DM writes,
“This generalization seems to have gone unnoticed until now.”

Finally, NL1(4) appears in this context as one of a few illustrations of DM’s developed
techniques, together with such new objects asNL3(8) andNL2(9). Not aiming to provide
precise formulations, we refer to [24, Sec. 9.5.C], where NL1(4) appears as the Hermitian
forms graph over GF (16). This latter family of graphs, along with many other classical
families, was systematically considered in the early 1980s in the works of E. Bannai, A.
M. Cohen and D. Stanton, see [9] for further details and references.

A detailed account of DM’s new method refers to [178, 18] for necessary background.
In fact, it is exactly this portion of [160] that is presented in [162] in a more rigorous
manner. The latter article, which is highly readable and accessible to a wide audience,
greatly influenced further development in AGT. Clearly, such implicit and explicit traces
of DM’s influence deserve a renewed attention.

Model 4 ([160, Sec. 8]). This model appears on p. 72 of [160] as a degenerate case of
the introduced family NLg(g2 +3g), see our Section 7 below. Here DM writes, “Design C
is trivial in the case g = 1, giving a fourth method of construction of the NL1(4) scheme.
This construction gives an easy proof of the uniqueness of the scheme.”

In our presentation we intentionally start with this simplest case, hoping to create a
useful visual image for the reader.

Consider the vertex set V = S0 ∪S1 ∪S2, where S0 = ∅, S1 = [1, 5], and S2 = { [1,5]
2 }.

(Here we adopt the notations [i, j] = {i, i + 1, . . . , j} and {Sk } = {T ⊆ S | |T | = k}).
Clearly, the pair C = (S1, S2) defines the trivial 2-(5, 2, 1) design. We now define the
graph NL1(4) with vertex set V , however we use the terminology of designs referring to
vertices in S1 as points and to those in S2 as blocks. The vertex ∅ (called “initial vertex”
by DM) is adjacent to all points of C, each point is adjacent to those blocks of C which
contain it, and two blocks are adjacent if and only if they have empty intersection.
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Model 4 is also depicted in Fig. 6 if one focuses this time on the vertex labels given by
k-element subsets of [1, 5] with k ≤ 2. This of course gives a visual isomorphism between
Models 1 and 4. However, there is another isomorphism lurking about which we feel is
more natural and esthetic. Namely, Let T be a k-element subset of [1, 5], k ≤ 2, and let
T ′ = T ∩ [1, 4]. Let ξT ′ be the characteristic vector of T ′, and ξT ′ its bit complement.
We define θ : T 7→ ξT ′ if 5 6∈ T and θ : T 7→ ξT ′ if 5 ∈ T . It is straightforward to check
that θ is indeed an isomorphism between the two models.

The uniqueness of NL1(4) as an SRG with the parameters (16, 5, 0, 2) follows imme-
diately from elements of DM-theory, see Section 8.

Although DM didn’t at all explore the structure of the automorphism group G =
Aut(NL1(4)), such information may be readily obtained from his constructions. In
particular, three subgroups of G are quite visible from Models 1, 2 and 4. We denote by
Hi the subgroup arising naturally from consideration of Model i.

From Model 1, we observe that G contains the automorphism group H1 = Aut(Q4)
of the 4-dimensional cube Q4. Group H1 is the exponentiation S2 ↑ S4 (see [131] for
details). In particular, it is easy to see that G acts transitively on V .

From Model 2, we easily identify H2 ∼= E16 o Z5 as a subgroup of G.
Model 4 clearly depicts H4 ∼= S5 as the stabilizer of the vertex ∅. Indeed, the graph

Γ2(∅) (that is, the subgraph of Γ induced on the vertices at distance 2 from ∅) is the
famous Petersen graph which has automorphism group S5.

Having already established that Models 1 and 4 are isomorphic, we may now deduce
|G| = |V | · |H4| = 1920, which gives our desired structure G ∼= E16 o S5. (Alternatively,
one may deduce |G| = 1

2 |Aut(Q5)| = 1920 directly from Aut(Q5) ∼= E32 o S5 and the
fact that �5 is the folded 5-cube.)

Last but not least, we wish to elaborate one more model which, although not explicitly
appearing in [160], still has visible traces to DM’s work.

Model 5 (“Non-edge model”). We wish to start from a non-edge, so let a, b be two
nonadjacent vertices. Now let Sij denote the set of vertices simultaneously at distance
i from vertex a and distance j from vertex b, 1 ≤ i, j ≤ 2. We now define our vertex
set as V = {a, b} ∪ S11 ∪ (S12 ∪ S21) ∪ S22. Taking into account that our objective is to
construct a (16, 5, 0, 2)-SRG, the cardinalities |Sij | are uniquely determined: |S11| = µ =
2, |S12| = |S21| = k−µ = 3, |S22| = v− 2k+µ− 2 = 6. (Note that in our model S12 and
S21 are merged together.) Moreover, one may deduce the compact intersection diagram
of our graph Γ which is depicted in Fig. 7. We again refer to [24] for a precise discussion
of such types of diagrams.

One easily identifies subgraphs of Γ induced on S22 and S12 ∪ S21 as 6-cycles; the
remaining edges of Γ are also quite evident. Model 5 thus makes visible a subgroup H5
of G, namely the stabilizer of our non-edge {a, b}. Clearly H5 can only preserve the
mentioned 6-cycles, and its action on one determines its action on both. Likewise, the
involution interchanging a with b (the “ends” of our non-edge) preserves each of these
two 6-cycles. Thus H5 ∼= S2×D6, where D6 is the automorphism group of a 6-cycle (i.e.,
the dihedral group of order 12).

Finally, we obtain that G = 〈H4, H5〉 is an amalgam of groups of order 120 and 24
intersecting in a group S2×S3 ∼= D6 of order 12. This stresses the significance of the extra
involution in G which interchanges a and b. Thus Model 5, together with borrowed group
theoretic information from Model 4, gives an independent proof that G acts transitively
on V .

There is one more “amalgam” we wish to discuss but it is not one of mathematical
formalism. It is the amalgam of two ingenious approaches which greatly shaped the
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Figure 7. Intersection diagram of the Clebsch graph

future landscape of AGT, namely the approaches of DM and Higman & Sims. This will
be accomplished in Section 13.

7 Graphs NLg(g2 + 3g): A putative DM-series

We start now a proper consideration of one of the greatest scientific achievements of DM.
As usual, our goal is to preserve the spirit of the text if not the literal word. We follow
DM’s more detailed presentation in [160, Sec. 8, pp. 58-72], though we point to [159] as
a precursory source.

Stated in modern terminology, the problem is to describe all possible parameter sets
of triangle-free SRGs (that is, SRGs with λ = 0) that are simultaneously NL-graphs. A
nice introduction to this branch of AGT may be found in Sec. 8 of [42].

Aiming to construct Γ = NLg(n) with λ = 0, DM again starts from an initial vertex
α and splits the vertex set V = S0 ∪ S1 ∪ S2, where S0 = {α}, S1 = Γ1(α), S2 = Γ2(α).
He next considers the block decomposition of the adjacency matrix A1 = A(Γ) inherited
from this partition.

Let C1 denote the submatrix of A1 whose rows and columns are indexed by S1 and
S2, respectively. DM’s Theorem 8.1 asserts that (i) C1 is the incidence matrix of a BIBD
C with the parameters v̂ = k, b̂ = l, r̂ = k − λ− 1, k̂ = µ, λ̂ = µ− 1, and (ii) each block
of C is disjoint from at least k − µ other blocks. (Here the symbol ̂ is used by DM to
distinguish BIBD parameters from those of an SRG.)

The proof of Theorem 8.1 boils down to analyzing submatrix products in the matrix
formulation of an SRG: A2

1 = kI + λA1 + µ(J − I −A1). The product C1C
T
1 suffices for

part (i) but the proof of part (ii) is quite more subtle. From the perspective of a BIBD,
it is convenient to refer to vertices in S1 as points and those in S2 as blocks.

It follows from the definition of the graph NLg(n) that λ = g2 + 3g − n. Thus the
proposed absence of triangles yields n = g2 + 3g. In particular, this implies v = n2 =
(g2 + 3g)2, k = g(g2 + 3g + 1), l = (g2 + 2g − 1)(g2 + 3g + 1), µ = g(g + 1).

As a corollary to part (i) of Theorem 8.1, the parameters of design C are presented:
v̂ = g(g2 + 3g+ 1), b̂ = (g2 + 2g− 1)(g2 + 3g+ 1), r̂ = (g+ 1)(g2 + 2g− 1), k̂ = g(g+ 1),
λ̂ = g2 + g − 1. Moreover, part (ii) now asserts that each block of C is disjoint from at
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least g2(g + 2) other blocks.
The next portion of DM’s text is aimed at proving that the existence of a design C

with properties (i), (ii) of Theorem 8.1 is not only necessary but sufficient, to establish
existence of NLg(g2 + 3g). For this task it is necessary to refine the partition of V
still further. We choose a block γ ∈ S2 and, as in Model 5, define the sets Sij relative
to initial vertex α and block γ. Here the cells of the previous partition split further
as S1 = S11 ∪ S12 and S2 = S20 ∪ S21 ∪ S22, where S20 is evidently {γ}. Note that
the cardinalities of sets in this case yield suitable intersection numbers of the 2-class
association scheme for which graph NLg(g2 + 3g) is the first class, namely |Sij | = p2

ij .
(Note that {α, γ} is a non-edge in this graph.)

DM’s next Lemma 8.2 establishes that, in fact, each block of design C is disjoint
from exactly p2

12 = k − µ = g2(g + 2) other blocks, and moreover that it intersects each
remaining block in exactly g points. The proof is just an easy application of the now
classical method of variance counting in designs, which is attributed to Hussain [111].

Next come Theorems 8.3 and 8.4, which together prove that a BIBD C satisfying
the conditions of Lemma 8.2 completely determines a NLg(g2 + 3g) graph. The proofs
here involve skillful manipulation of matrix products conjoined with simple combinatorial
arguments. Corollary 8.4.1 now formulates these findings in natural combinatorial terms.
Let C = (S1, S2) be a BIBD that fulfills Lemma 8.2 and define the graph Γ with vertex
set V = {α} ∪ S1 ∪ S2 as follows:

(i) α is adjacent to every vertex from S1 but to none from S2,

(ii) x ∈ S1 is adjacent to y ∈ S2 provided x and y are incident in C,

(iii) x ∈ S2 is adjacent to y ∈ S2 provided x and y are disjoint in C.

Then Γ is a NLg(g2 + 3g) graph.

Corollary 8.4.1 is followed by a table of parameters for Γ and C for the first four values
of g, leading to putative SRGs on 16, 100, 324, 784 vertices. In addition, DM considers a
few auxiliary incidence structures defined in terms of the sets Sij . Next comes Theorem
8.5, which identifies these incidence structures as BIBDs and gives their parameters. The
proof here involves a combination of clever combinatorial arguments and matrix calculus.
Finally, DM gets “for free” a proof of the existence and uniqueness of NL1(4) because
in this case, as noted earlier, C is the trivial design. He next considers the cases g ≥ 2,
which are, in DM’s words, “far from trivial”.

Some interesting byproducts are considered by DM toward the end of this central
section. In the general case, he describes the subgraph ∆ of Γ induced on S2, which
turns out to also be an SRG. Later we will elaborate on ∆ in the particular case g = 2.

Remark 5. (a) The elements of an ingenious theory developed by DM in Section 8 of
[160] are already visible in his thesis [159], though in somewhat rudimentary form. For
example, the case g = 2 is treated there.

(b) It is more than once stressed in [160] that if the BIBD C is uniquely determined by
its properties in the sense of Lemma 8.2, then the corresponding graph Γ is also unique.
Careful analysis of DM’s arguments shows also that in such case Aut(Γ) acts transitively
on V though this is never explicitly stated. (Groups were not the subject of DM’s explicit
interest at this stage, see Section 13.)

(c) Unfortunately, DM appears to have missed (both in [159] and [160]) that C is
a 3-design, despite the fact that his arguments are sufficient to articulate a proof. In
evident form, such observations will be formulated by his followers.
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8 Graph NL2(10) via the DM-approach

Consideration of the new SRG on 100 vertices occupies pp. 131–149 of [159], while in [160]
fulfillment of this task is quite more brief, viz. pp. 72–83. The reason for this reduction
is clear: the preliminary job in [159] was transformed into an elegant general DM-theory
in [160], the digest of which was provided above. Moreover, note that while in [159] DM
remains with four possible solutions, in [160] he establishes uniqueness of NL2(10).

The genre of [160] is close to lecture notes, which allows DM the freedom to reveal his
feelings and share his pedagogical views. Two striking examples follow (the first refers
to the case g = 2, the second to his Theorem 8.6):

“The author conjectured that the design did not exist in this case, undertook
an empirical search in hopes of proving its nonexistence, and in the course of
the search inadvertently constructed it.” – p. 72

“This method of proof is reminiscent of Bhaskhara whose 1150 A.D. treatise
on mathematics presented a sketch of a particularly lucid construction for the
Pythagorean theorem, accompanied by the brief written proof, ‘Behold!’ ” –
p. 74

Construction of the desired NL2(10) according to DM-theory is reduced to the con-
struction of a design C with the parameters v = 22, b = 77, r = 21, k = 6, λ = 5 (the
case g = 2). DM provides a solution simply by listing all 77 blocks (see Table 8.2, which
occupies the entire p. 73), and asks that the reader verify all required properties. (Note
that the order in which these 77 blocks are listed carries a special significance, serving
as a brief “guide” to a forthcoming analysis performed by DM.) Such detailed inspection
implies DM’s Theorem 8.6, thus asserting the existence of an NL2(10) graph. It is indeed
a proof in the style of Bhaskhara.

This is followed by Theorem 8.7, which asserts the uniqueness of NL2(10). In a prefa-
tory remark, DM discusses the obstacles involved in attempting to establish nonexistence
or uniqueness empirically, as well as his own attempt to precariously “steer between te-
dium and non-proof.”

For the proof, DM first explains why it is sufficient to establish uniqueness of the
underlying design C. Recall that in addition to the established parameters for such a
design, we further know that each of its blocks is disjoint from 16 other blocks, while
intersecting the remaining 60 blocks in two points apiece.

Let V = [1, 22] be the point set of C, and assume γ = [1, 6] to be a block. DM
now splits V into S11 ∪ S12, where S11 = [1, 6]. Similarly, he splits the block set into
{γ} ∪ S21 ∪ S22, where S21 consists of those blocks disjoint from γ. He is next able to
reveal some auxiliary designs:

(a) a symmetric BIBD F = (S12, S21) with 16 blocks of size 6,

(b) a design E with repeated blocks that is uniquely determined by the parameters
v = 6, b = 60, r = 20, k = 2, λ = 4,

(c) a (hidden) design N with point set S12 and blocks of size 4.

Now a clever backtracking search, combined with some tedious technical arguments,
establishes that the only possibility for C is the design depicted in Table 8.2. The reader
will become more acquainted with the hidden idea behind DM’s vision of C in Section
11 below.
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Having completed the proof of Theorem 8.7, DM discusses the subgraph of NL2(10)
induced on the block set of C (non-neighbors of the initial vertex α), a new SRG with
parameters (77, 16, 0, 4), and other substructures. One such substructure (recorded in
Table 8.3 on p. 82) is a beautiful symmetric square of size 6 with empty diagonal. Each
entry of this square is itself a square of size 4, filled by the same four elements. This
substructure, which also appeared in [159], possesses some nice orthogonality properties.
We feel it is certainly deserving of special attention, however its careful consideration is
beyond the scope of our text.

Perhaps the most surprising observation by DM is that NL2(10) contains 7700 sub-
graphs, which are incidence graphs of a symmetric BIBD with v̂ = 16, k̂ = 6, λ̂ = 2.

Although DM freely uses quasi-symmetric properties of C, he never makes the formal
observation that C is a 3-design. Fortunately this alternative DM-approach, though
of a more sophisticated nature, provides the modern reader with new perspectives on
attacking existence of NLg(g2 + 3g) for larger values of g.

9 History of the design S(3, 6, 22)

We come now to 1967, the year in which DM’s article [162] finally appears. This is the
first “official” announcement of DM’s discovery of NL2(10), though quite unpredictably
it is also the last. This was not DM’s intention, e.g., see [162, p. 574] where he speculates
that his discovery will be presented in future papers. What then, are the events that
could have mitigated this change?

As previously mentioned, DM was unfamiliar at this time with the notion of a 3-
design. He constructed his design C using very clever ad hoc arguments, and proved
its uniqueness by a sophisticated brute force attack without the aid of a computer. In
contrast, at the same moment a rather wide mathematical audience was already well
acquainted with this notion, and even with the actual construction. We now attempt to
provide an historical perspective on the object in question, the Steiner design S(3, 6, 22).

The story properly begins in the mid-19th century with E. Mathieu, a mathematician
who was nearly a century ahead of his time. Even today the mystery is not completely
solved as to how he was able to discover five highly unusual groups that now bear his
name, the Mathieu groups M11, M12, M22, M23, M24. A brief, though very nice, historic
account of this great accomplishment may be found in [2].

It is the group M22 that occupies center stage for us, as its automorphism group
(viz. Aut(M22) ∼= M22.Z2) coincides with Aut(C). Nevertheless, all five groups have
some relevance to our discussion, especially M23 and M24 as they correspond to 4- and
5-designs that are successive one-point extensions of S(3, 6, 22). Indeed, anyone who is
already aware of the design S(5, 8, 24) well understands all aspects of the design C on 22
points.

Though one may find early attributions to T. Skolem, we may only refer to p. 42 of
[71] as being the first (to our knowledge) prior announcement of a result by Carmichael
[43] relating a similar design construction to M11. Actual consideration of S(5, 8, 24)
appears in [43], as well as later on in the book [44] where Carmichael in fact alludes to
the existence of S(3, 6, 22), though without giving explicit parameters or a construction.

Remark 6. The authors hold the book [44] in very high regard, a feeling that is shared
by several of our colleagues. In a definite sense it was ahead of its time. The text
contains a plethora of perfect exercises that challenge the reader to work with many
concrete combinatorial and geometric structures, as well as their symmetries. (Note
that the term automorphism was not in use at that time.) One explicit feature of the
exercises in [44] is their vast range of difficulty. Many problems are trivial while others
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are reasonably sophisticated. However, occasionally there is a pearl. Only the strongest
and most committed reader, working independently, will be rewarded with its solution,
which in turn will reveal some deeply hidden treasures. It seems that Carmichael’s failure
to stratify his exercises was not an oversight but a brilliant strategy on his part.

One additional text essential to our presentation is the article [229] of H. Zassenhaus.
This is a landmark paper in the development of the method of transitive extension, e.g.,
see [132]. An actual construction of M22 appears as Satz 7 in [229] with a clear group
theoretic proof. In [223], E. Witt refers to [229] as the origin of this newly created method.
In turn [223] serves as motivation for [224], which is written in a purely combinatorial
spirit. In particular, Satz 4 in [224] outlines a proof of the existence and uniqueness of
the Steiner system S(3, 6, 22).

Unfortunately, the latter paper [224] of Witt went virtually unnoticed for over a
decade, until R. G. Stanton, a Ph.D. student of Richard Brouwer, prepared his 1948
thesis at the University of Toronto. In Stanton’s subsequent publication [208] one finds
reference to S(3, 6, 22) with credits to the two papers of Witt. As a result of this,
Witt designs and their groups would come to gain deserved acceptance; in fact W22
serves as a modern alternative to the more traditional notation S(3, 6, 22). We cite
[168, 215, 76, 214, 107, 3, 216] as only a sample of publications from that era that were
already recognizing the results of Witt, and which today are gaining a lot of traction.

This was also a time when links between groups and geometries were becoming trans-
parent, e.g., Tits in [214] was already citing Segre [189]. Nevertheless, some nice con-
siderations of finite geometries were still living on a separate island. A bright example
of this is the article [69], in which W. L. Edge prepared in a beautiful and surprisingly
translucent manner an analysis of the geometry PG(2, 4) and its symmetry group, prob-
ably never anticipating that in a few years his results would have special significance for
group theorists.

However, this bucolic picture of the mathematical world would drastically change
due to the events of one single evening in 1967. The results achieved over the course
of this evening would form the content of [101], a publication that would have profound
influence on the fields of group theory, combinatorics, geometry and computer algebra,
and which would stimulate fruitful interdisciplinary links that nowadays look traditional
and longstanding.

The propagation of waves from this breakthrough was surprisingly quick. To illus-
trate, we mention the book [63] of P. Dembowski, which nowadays is viewed by many as
forming an unbreakable bond between finite geometries and group theory. At the time
of preparation of [63], the result of Higman-Sims was still in preprint form; yet the tele-
scopic eyes of Dembowski had already witnessed existence of the breakthrough, see his
footnote 2 on p. 91 with credits to C. Hering. (In fact, one also finds in [63] references to
a few papers of DM, although it appears Dembowski was not aware of [162].) Similarly,
[150, 151] were also influenced by [101], either implicitly or explicitly, with Hering again
receiving acknowledgment.

We close this section with a discussion of the uniqueness of the Witt design W22.
Nowadays, most authors follow the same basic mode of proof: use of the projective plane
PG(2, 4) and its hyperovals. The first clear exposition in this mode was formulated in
[151] by H. Lüneburg, who exploited the approach of Edge [69] who in turn was influenced
by Segre. Nice expositions of this method in English appear in [17, 13, 42]. However,
we prefer to follow Theorem 6.6.D on p. 200 of [64], which we outline below. First we
paraphrase the theorem statement as follows:

Up to isomorphism, there exists a unique Steiner system S(3, 6, 22) ∼= W22.
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Moreover, Aut(W22) acts 3-transitively on the point set of W22.

For the proof, we start with Π = (P,L) = PG(2, 4). Note that Π has 168 (hyper)ovals
each consisting of six points. Define an equivalence relation on the set O of ovals as
follows: O1 ≡ O2 ⇐⇒ |O1 ∩ O2| is even. Next show that there are precisely three
equivalence classes of ovals, each of size 56, preserved by the transitive action of PSL(3, 4)
on O. Fix one such equivalence class H. Now for α 6∈ P, form the sets P∗ = P ∪ {α}
and B∗ = L∗ ∪H, where L∗ = {l ∪ {α} | l ∈ L}. Finally, check that (P∗,B∗) is a Steiner
S(3, 6, 22)-design with incidence defined by inclusion.

The proof of uniqueness depends on the uniqueness of Π plus some nice properties of
hyperovals. (We still believe [69] is the best source for such information.) Uniqueness of
W22 implies the transitivity portion of the theorem: H = Aut(W22) acts 3-transitively on
P∗ because PSL(3, 4) acts 2-transitively on P. This also proves |H| ≥ 22 · |PSL(3, 4)| =
443520, which is the precise order of the group M22.

Remark 7. (a) In fact |H| = 2 · |M22|, as H is a transitive extension of the group
PΣL(3, 4) ∼= PSL(3, 4).Z2 acting on P. Such vision becomes absolutely clear if we
consider the group M24 = Aut(W24), where W24 is the unique S(5, 8, 24)-design. Indeed,
in the action of M24 on the point set of W24, the stabilizer of two points β, ζ yields a
copy of M22 while the stabilizer of the set {β, ζ} yields H.

(b) Note that the modern way to view this entire picture is to interpret W24 as the
set of octads of the Golay code of length 24. The reader is strongly encouraged to consult
[113] for a comprehensive treatment that follows this approach.

10 Higman-Sims graph and the sporadic simple group HS

The discovery of the sporadic simple group HS by D. G. Higman and C. C. Sims stands
as one of the most fascinating stories in modern group theory. Details of this historic
event are well documented, e.g., see [104, 10].

The story begins at a 1967 conference in Oxford, where Marshall Hall has just deliv-
ered his talk, “A search for simple groups of order less than one million”. Higman and
Sims are two of the many in attendance. Hall has just described the construction of a
new sporadic simple group (Hall-Janko group) as a rank 3 permutation group of degree
100. Higman and Sims are immediately inspired to think along the lines delineated in
Hall’s talk. Crucial observations are made during the night of Saturday, September 2
through the morning of Sunday, September 3, 1967. The end result is a new sporadic
simple group HS. A manuscript is submitted fairly quickly (received by the editors on
November 20, 1967, published as [101] in 1968), yet news of their discovery spreads even
faster.

The group HS was discovered via the procedure of “rank 3 extension”. A graph Γ was
constructed from an initial vertex ∗ in such a way that the stabilizer of ∗ in the proposed
group would have orbit sizes 1, 22, 77, and would contain the Mathieu group M22. The
role of the unique Witt designW22 became crucial in this construction, particularly since
Aut(W22) contains M22 as a subgroup of index 2. In the end, the construction of Γ is in
every detail identical to the construction of NL2(10) performed by DM. Of course neither
Higman nor Sims was aware of this accomplishment by DM. Their great advantage was
a formidable knowledge of the diverse properties of W22. (Relevant attributions in [101]
are given to [224, 216].)

Higman and Sims denote by G the full automorphism group of the constructed graph
Γ. To now obtain their group HS, they note that G is transitive, contains odd permuta-
tions, and that the stabilizer of ∗ in G is Aut(M22). This alone allows them to conclude
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that G contains a simple group of index 2. They select a vertex α adjacent to ∗ in Γ and
show that its stabilizer too is isomorphic to Aut(M22). Finally they are able to explicitly
construct HS as a subgroup of G generated by two permutations of respective orders 2
and 7. It is fair to say that at many critical junctures in their proof they rely on purely
combinatorial arguments.

There are amazing numerological coincidences at work here. Sims recalls (see [104]),
“If it were not the case that we use the decimal system and that 100 = 102, I am not sure
we would have asked this question.” DM’s notion of NLg(n) results in a graph with n2

vertices. Many pages of [159] are devoted to the cases 4 ≤ n ≤ 9, including a discussion
of the exceptional case n = 6 (there is no field with six elements). In Sec. 3.3 of [159],
where the graph NL2(10) is presented for the first time, DM’s opening remark is, “Since
no Galois field of order 100 exists, the method of Section 3.2 cannot be applied here.
The scheme would seem to have some special interest because of its possible connection
with the unsolved question of the existence of orthogonal 10× 10 Latin squares.” (Keep
in mind that DM’s remark is more than a half-century old.)

There is an interesting spin-off to our main story of the group HS. In late 1967,
Graham Higman described at the Urbana Group Theory Symposium a certain geometry
on 176 points, having a simple doubly-transitive group of automorphisms (momentarily,
we denote this group as GH). The results were published in [102]. Originally, G. Higman
worked with 176 points and 1100 conics as his objects, but at the suggestion of D. R.
Hughes he realized the existence of a symmetric BIBD with blocks of size 50 (called
quadrics). The paper [102] is filled with beautiful combinatorial arguments relying on
exceptional properties of the symmetric groups Sn, n ∈ {6, 7, 8}.

Almost immediately, Sims realized that the groups GH and HS were in fact iso-
morphic. Sims’ proof [200] was published in the legendary collection of papers of the
Symposium on Theory of Finite Groups at Harvard, 1968. During the same short pe-
riod, proofs of this isomorphism were also obtained by J. H. Conway [53], and D. Parrott
& S. K. Wong [169]. (The latter of these papers relies essentially on the uniqueness the-
orem of D. Wales [218] characterizing rank 3 graphs with the parameters (100, 22, 0, 6).)
A new proof of this same fact was later presented in [203, 204], with again the uniqueness
of W22 as a key ingredient.

Since its discovery, the group HS has continued to be the subject of special attention,
e.g., see [119, 153, 75]. The same is true of the Higman-Sims graph Γ; over the past four
decades diverse investigations related to the geometry and symmetry of Γ have resulted
in numerous publications. Of these we mention only a handful [23, 27, 58, 94, 95] that
correlate strongly with the spirit of our presentation.

We return once more to DM. It is 1968, and by now he has learned of the result of
Higman & Sims. (Dale has discussed with us his conversations with J. J. Seidel from
around this time period, see [117, 118].) One can speculate, probably with great accuracy,
the myriad of emotions he is experiencing over this news. For the next seven years DM
would not publish even a single paper. Over the course of his long career, never again
would he undergo such a prolonged period of silence.

His current state of inactivity is broken in 1974 with his joint paper [144] with E.
Kramer, where one observes DM as a mathematician with revitalized energy and renewed
confidence. A deep familiarity with Steiner systems, acquaintance with the papers of
Witt, references to papers of Frobenius and Wielandt — these are the ingredients of his
research interests. From a pure statistician with a penchant for matrix multiplication
to a mature expert in AGT and design theory, he is now cognizant of the treasures
available through group theory and finite geometries. The world of mathematics is forever
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remaining bright and attractive in his eyes, yet still he is not receiving the recognition
he deserves for the discovery he made 12 years prior to his contemporaries.

11 Mesner’s vision of the case g = 2 revisited

We are now in a position to introduce the main ideas of the initial construction ofNL2(10)
as it originally appeared in [159], and later, in more polished form, in [160]. No attempt
is made to preserve the original terminology or notation. Indeed, our motivation is to
present the construction in a manner that is readily accessible to modern researchers.

Throughout, we rely heavily on the use of the computer packages GAP [186] and
COCO [72]. (To provide full credits, we also mention the GRAPE subpackage of GAP
[205], which in turn relies on the use of nauty [158].)

We begin by introducing certain relevant auxiliary structures.

11.1 Generalized quadrangle of order 2
This famous configuration goes back to J. J. Sylvester (1844), who used the language of
duads and synthemes for its description. Starting from a 6-element set Ω1, the duads are
the 15 2-element subsets of Ω1, and the synthemes are the 15 partitions of Ω1 each into
three duads. Incidence is containment. It is convenient to think of this configuration
in terms of the complete graph K6 with vertex set Ω1, in which duads are edges and
synthemes are 1-factors.

One can readily check that the resulting incidence geometry S satisfies all axioms
of GQ(2), e.g., see [174]. This geometry is self-dual; letting ΓS denote its incidence
graph, we have Aut(S) ∼= S6 while Aut(ΓS) ∼= Aut(S6). Thus ΓS gives a natural way
to visualize the exceptional outer automorphisms of S6.

Now the concept of a spread becomes essential, that is, a subset of lines of a geometry
that partitions its point set. Clearly, each spread of S corresponds to a 1-factorization
of the graph K6. There are six such pairwise isomorphic structures, see [42] for details.
Denote by Ω2 the set of such structures.

In such manner, we obtain an action (S6,Ω2) which differs fundamentally from the
natural action (S6,Ω1). Indeed, while (S6,Ω1) and (S6,Ω2) are equivalent with the aid
of outer automorphisms of S6, the stabilizers in these actions are not conjugate in S6.
Namely, in the case of (S6,Ω1) a stabilizer is a copy of S5 acting 5-transitively of degree
5, while a stabilizer arising from (S6,Ω2) is an S5 acting 2-transitively of degree 6. (Note
that in both cases, we are regarding S5 as a subgroup of the natural action of (S6,Ω1).)

A philosophical discussion of this unusual occurrence (due to Tarski) goes back to
[165]. We also refer to [175, 103] for additional details in two extrema: nice and convincing
visual images in the first cited article, and rigorous considerations on the border of groups
and geometries in the second. One additional reference of significance here is [167], where
both actions of S6 are investigated with detailed attention to their geometric origins.

We have introduced (S6,Ω2) in terms of spreads of S, but hasten to point out that
(S6,Ω1) has a similar such realization. A spread in the dual geometry ST is a collection
of five duads each of which contains a common element a ∈ Ω1. Clearly the action
of S6 on the six spreads of ST is equivalent to the natural action (S6,Ω1). Thus our
two discussed actions both arise in a natural way in terms of spreads of generalized
quadrangles of order 2.

11.2 The exceptional isomorphism A8 ∼= P SL(4, 2)
Of the many presentations of this classical result, we again prefer the one by Edge
[68], which in turn discusses an old paper [55] by G. M. Conwell. This result proceeds
in conjunction with another exceptional isomorphism: S6 ∼= PSp(4, 2). In fact, the
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structure S introduced above is the smallest case of an infinite family of symplectic
generalized quadrangles.

Note that S6 naturally embeds in A8 as the subgroup (S6 × S2)pos of all even per-
mutations in S6 × S2. Concurrently, one has an embedding of U = E24 o S6 into
NS16(V ) ∼= E24 o A8, where NS16(V ) is the normalizer in S16 of a 4-dimensional vector
space V ∼= E24 over GF (2) acting regularly on 16 points. Our aim is to become more
familiar with the geometry of group U , especially with regard to how to recognize its
homomorphic image U/V ∼= S6 in these same geometric terms.

11.3 The nicest biplane on 16 points
We are interested in BIBDs with the parameters v = b = 16, k = r = 6, λ = 2, a
particular case of biplanes. According to the classical result of Hussain [110] there are
exactly three such designs.

A very friendly and quite elementary exposition on the result of Hussain may be
found in [109]. Note that while DM’s thesis [159] does not refer to [110], his later paper
[160] does so, and quite essentially.

Of these three BIBDs, we denote by D the one with the highest degree of symmetry.
Indeed, Aut(D) is a 2-transitive group of order 11520. The history of D can be traced
back to the 19th Century during which time it acquired such diverse names as the Jordan
design and Kummer’s quartic surface (see Section 13 for historic details). Thus we concur
with [179] in calling D the “nicest biplane on 16 points”.

Our path to D relies on the reader’s familiarity with the Clebsch graph �5, see Section
6. Recall that �5 is a Cayley graph over E24 with connection set of size 5. We also know
that Aut(�5) ∼= E24 oS5. We shall again refer to the Clebsch graph �5 depicted in Fig.
6, only this time with one slight modification: Each binary sequence serving as a vertex
label will be substituted by its decimal equivalent i, 0 ≤ i ≤ 15.

The following simple device is well known and goes back to [183]. It applies to any
SRG for which λ = µ− 2, in particular to �5:

Let Γ be an SRG with parameters (v, k, µ − 2, µ) defined on the vertex set Ω. For
each x ∈ Ω, form Bx = {x} ∪ Γ1(x) where Γ1(x) is the set of neighbors of x. Set
B = {Bx | x ∈ Ω}. Then (Ω,B) is a BIBD with parameters (v, k + 1, µ).

Taking into account that Aut(�5) contains a subgroup E24 acting regularly on points,
we observe that D may be additionally obtained with the aid of a difference set over E24 ,
for example B = {0, 1, 2, 4, 8, 15} fulfills this role. Thus we get D = (P,B), where
P = [0, 15] and B consists of the following blocks (6-element subsets of [0, 15]):

{0, 1, 2, 4, 8, 15} {0, 1, 3, 5, 9, 14} {0, 2, 3, 6, 10, 13} {1, 6, 10, 12, 14, 15}
{0, 4, 5, 6, 11, 12} {0, 7, 8, 9, 10, 12} {2, 5, 9, 12, 13, 15} {1, 6, 8, 9, 11, 13}
{1, 4, 5, 7, 10, 13} {0, 7, 11, 13, 14, 15} {3, 4, 8, 12, 13, 14} {3, 4, 9, 10, 11, 15}
{2, 5, 8, 10, 11, 14} {1, 2, 3, 7, 11, 12} {2, 4, 6, 7, 9, 14} {3, 5, 6, 7, 8, 15}

Clearly D has the parameters v = b = 16, k = r = 6, λ = 2. We omit simple arguments
that show that U := Aut(D) acts 2-transitively on P and that U ∼= E24 o S6.

11.4 Anatomy of the design D
Recall that an oval O is a subset of points of a design such that |O ∩ B| ∈ {0, 2} for
every block B of the design. According to the theory presented in [42], ovals in our nicest
biplane D should all have size 4.

We can describe the ovals of D with the aid of the following simple procedure applied
to our canonical copy of �5:
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Fix any edge {a, b} of ∆ = �5, and consider the set ∆(a) ∩ ∆(b) (mutual non-
neighbors of a and b). The subgraph of ∆ induced on the six vertices of this set is
a 1-factor consisting of three edges, say {c, d}, {e, f}, {g, h}. In this case one obtains
{a, b, c, d}, {a, b, e, f}, {a, b, g, h} as ovals in D. Varying our choice of initial edge, we
obtain 16·5·3

2·2 = 60 distinct ovals in this manner, thus exhausting the entire set O of ovals
in D. Moreover, the incidence structure (P,O) is another BIBD invariant under G.

Recall that Aut(�5) is a subgroup of index 6 in Aut(D). This implies that there are
exactly six different copies of the Clebsch graph that produce design D via the procedure
outlined in Subsection 11.3. Denote by Ω̃1 the collection of these six Clebsch graphs.

The easiest way to observe the members of Ω̃1 is to consider the six blocks of D that
contain the point 0. Each such block (with the point 0 excluded) serves as a connection
set for a Cayley graph over E24 , and the six Cayley graphs so obtained are none other
than our six Clebsch graphs forming Ω̃1.

Furthermore, as D is a symmetric design (in fact, self-dual), we know that any two
blocks of D intersect in exactly two points. This means that each pair of connection sets
above have exactly one point x 6= 0 in common, and consequently each pair of Clebsch
graphs from Ω̃1 intersect in precisely a 1-factor of E24 , namely the Cayley graph over
E24 with connection set {x}. In this manner we obtain

(6
2
)

= 15 such 1-factors, each
yielding a graphical representation of an involution from E24 . Thus it will be convenient
to identify 1-factors with involutions as follows: the 1-factor arising from the involution
x ∈ E24 will be denoted by m = mx, where m ∈ [1, 15] is the decimal equivalent of x,
regarding x as a binary number. Let us denote by Σ1 the set of all such 1-factors.

At this stage we are interested in spreads of the new design (P,O), that is partitions
of O into four ovals. GAP now informs us that there are two orbits of such spreads of
respective sizes 15 and 90. Clearly the smaller orbit is preferable because it corresponds
to a resolution R of (P,O) into 15 parallel spreads. In principle, one would like to arrive
at this resolution without the aid of computer-generated data. Indeed this can be done,
however not within the framework of our current presentation. At present, suffice it to
say that the 15 + 90 = 105 spreads of (P,O) correspond in a natural way to the 105
Klein-4 subgroups of E24 , and below we exhibit this correspondence explicitly for the 15
spreads in our chosen resolution R.

One relevant Klein-4 subgroup of E24 here is 〈0001〉 × 〈1010〉, which contains the
three involutions 1, 10, 11 (in decimal). The Cayley graph over E24 with connection set
{1, 10, 11} is 4 ◦ K4 (four disjoint copies of the complete graph K4), and the resulting
partition of the vertex set is given by {0, 1, 10, 11}, {2, 3, 8, 9}, {4, 5, 14, 15}, {6, 7, 12, 13}.
To see that this yields a spread in (P,O), one need only verify that each 4-element subset
in this partition is indeed an oval of D.

We denote by Σ2 the set of 15 spreads comprising R. Just as we earlier identified
1-factors with involutions, we here find it convenient to identify spreads with triples of
involutions (again, the underlying connection sets). We may now list the members of Σ2
in a most compact form:

{1, 10, 11} {2, 9, 11} {1, 12, 13} {1, 6, 7} {5, 10, 15}
{3, 8, 11} {4, 10, 14} {4, 9, 13} {2, 5, 7} {2, 12, 14}
{6, 9, 15} {3, 12, 15} {5, 8, 13} {3, 4, 7} {6, 8, 14}

11.5 GQ(2) by way of the nicest biplane
We are now ready to introduce a new incidence structure M = (Σ1,Σ2) with point set
Σ1 and line set Σ2. This configuration may be viewed simultaneously at several levels.
For example, incidence in M is easiest described in terms of the group E24 : points are
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involutions, lines are triples of involutions (coming from the 15 aforementioned “special”
Klein 4 subgroups of E24), and incidence is containment.

Simple routine inspection allows us to conclude thatM is the same GQ(2) (cf. Subsec.
11.1) in new clothing. To see this it is convenient to interpret points once more as 1-
factors, that is, pairwise intersections of Clebsch graphs from Ω̃1. Thus each point is a
duad of Clebsch graphs, and each line is a triple of disjoint duads, that is, a syntheme of
Ω̃1. Thus one sees the evident relationship betweenM and the model S of Sylvester.

Moreover, Ω̃1 is nothing more than a spread in the dual geometryMT ofM. Indeed,
the action (S6, Ω̃1) coincides with the natural action (S6,Ω1) encountered in the context
of the dual geometry ST .

It remains for us to identify six more objects that are for the moment quite hidden
from view, and revealed to us only through the use of GAP.

Recall that the elements of Σ2 comprise a resolution R in (P,O). As it turns out, the
data generated by GAP facilitate a description of these six hidden objects in terms of six
sub-resolutions Si of R, 1 ≤ i ≤ 6, each consisting of five spreads. These sub-resolutions
are easiest represented in terms of connection sets, that is to say, we represent each Si
as a collection of five triples of involutions, where each such triple is the connection set
of a spread that occurs in Si. Specifically, we get

S1 : {{1, 10, 11}, {2, 5, 7}, {3, 12, 15}, {4, 9, 13}, {6, 8, 14}}
S2 : {{1, 10, 11}, {2, 12, 14}, {3, 4, 7}, {5, 8, 13}, {6, 9, 15}}
S3 : {{1, 6, 7}, {2, 9, 11}, {3, 12, 15}, {4, 10, 14}, {5, 8, 13}}
S4 : {{1, 12, 13}, {2, 9, 11}, {3, 4, 7}, {5, 10, 15}, {6, 8, 14}}
S5 : {{1, 12, 13}, {2, 5, 7}, {3, 8, 11}, {4, 10, 14}, {6, 9, 15}}
S6 : {{1, 6, 7}, {2, 12, 14}, {3, 8, 11}, {4, 9, 13}, {5, 10, 15}}

This representation of six hidden objects turns out to be much more than a notational
convenience. Indeed, from it we readily observe that each Si is a set of five elements from
Σ2 (viewed as triples of involutions) that partitions Σ1 (viewed as a set of involutions).
That is to say, each Si is nothing else but a spread in the design M. Let Ω̃2 denote
the set of these six spreads Si, 1 ≤ i ≤ 6. Clearly, (S6, Ω̃2) and (S6,Ω2) are equivalent
actions, as may be observed directly.

The fact that our six hidden objects turn out to be nothing more than spreads in
M helps to remove some of their mystique. However, it is still a mystery as to why
these specific sub-resolutions are the ones that appear. It seems that there are just two
obstacles to a computer-free interpretation of the results thus far presented in this section:
the one alluded to above, and the earlier choice of resolution of (P,O). No doubt, all
clues required to solve this conundrum are living in the nicest biplane on 16 points.

11.6 Assembling the pieces
In modern terms, the initial construction of DM can be compactly expressed by the
intersection diagram in Fig. 8. The monicker of “non-edge model” refers to the fact
that the construction is starting from an initial pair P ∗, B∗ of objects that are to be
nonadjacent vertices in the graph NL2(10). Note that including P ∗ and B∗ there are

2 + |P|+ |B|+ |O|+ |Ω̃2| = 2 + 16 + 16 + 60 + 6 = 100

available objects, which evidently will comprise the vertex set Ω of the forthcoming graph.
There are two especially important observations to be made here. First, all indicated

sets of objects are manifestly connected to the nicest biplane on 16 points (viz. points,
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Figure 8. DM intersection diagram

blocks, ovals, sub-resolutions). Second, each set of objects admits a natural action by
the group G := Aut(D) ∼= E24 o S6.

The final task is performed by the computer package COCO. Generators are first
obtained for the intransitive action (G,Ω) having six orbits of respective lengths 1, 1, 6,
16, 16 and 60. Next, COCO constructs the coherent configuration A = (Ω, 2-orb(G,Ω))
in the sense of D. G. Higman. It turns out that A has rank 51 (i.e., |2-orb(G,Ω))| = 51).
At the next stage, COCO computes all intersection numbers of A, mergings of A that yield
associations schemes, and automorphism groups of these resulting association schemes.
In the present case we get two copies of the graph NL2(10) (compare this with the
situation of the Shrikhande graph in Sec. 2). Note that the two obtained copies of
NL2(10) are interchanged by a suitable involution in AAut(A) ∼= E22 , a fact revealed to
us by GAP. Below we provide a description of one such copy.

11.7 Adjacencies revealed
As indicated by the intersection diagram in Fig. 8, vertex P ∗ is adjacent to every vertex
in P. Similarly, B∗ is adjacent to every vertex in B.

The link adjoining P to B is simply the incidence graph of the design D. Likewise,
the link adjoining P to O is the incidence graph of the design (P,O).

A vertex B ∈ B is adjacent to a vertex O ∈ O provided B and O are disjoint.
Two vertices from O are adjacent provided they are disjoint and do not occur in any

common sub-resolution Si ∈ Ω̃2.
Finally, a vertex O ∈ O is adjacent to Si ∈ Ω̃2 provided O occurs in Si.
Note that the full list of 60 ovals remains hidden from the reader. Only those 15

which contain 0 are listed explicitly at the end of Subsec. 11.4.

11.8 Additional remarks
The reconstruction of DM’s ideas as presented in this section requires special discussion.

Literally speaking, the texts [159, 160] of DM are focusing on a description of the
incidence structure C, whereas we are presenting the entire graph Γ. Nevertheless, DM
paid great attention to explaining how the global structure of Γ could be derived from
a knowledge of C. In our eyes, the manner in which Γ is finally assembled from its
component pieces truly reflects the spirit of DM’s vision, although it does not strictly
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coincide with his presentation.
Further texts that helped shape our ideas and insights in arriving at our interpretation

of DM’s vision are [81, 122, 4, 22, 179]. Indeed, these strongly influenced the direction
of our arranged computer algebra experimentation.

Last but not least, we mention a goal of the authors (together with M. Ziv-Av) to
arrive at a new interpretation of DM’s original proof of the uniqueness of Γ, which will
be computer-free and rely strictly on knowledge of the design C, its symmetries, and its
substructures.

12 Further developments

In this section, we endeavor to explain how the crucial discovery by DM of a putative
infinite series of parameters for NLg(g2 + 3g) was recognized, interpreted and developed
by his followers. Though most of what we here present may be substantiated factually,
there are also a few occurrences of speculation on our part in order to fill gaps in the
literature.

Recall the starting point in the construction suggested by DM, namely a 2-design C
with parameters as given in Section 7, with the property that each block of C is disjoint
from g2(g + 2) other blocks while intersecting each remaining block in exactly g points.
The kernel of our narrative will be to trace the evolution of this set of properties.

12.1 Concept of a quasi-symmetric design
We adopt the definition appearing in Sec. 48 of [49], as formulated by M. S. Shrikhande: A
t-(v, k, λ)-design D is quasi-symmetric (or a QSD) with intersection numbers x, y (x < y)
if any two blocks of D intersect in either x or y points.

Given a QSD D, we define the block graph Γ = Γ(D) to have vertex set the set of
blocks of D, with two vertices Bi, Bj adjacent if |Bi ∩Bj | = y. Of central importance to
us is the fact that Γ is an SRG in this case, its parameters being readily expressible in
terms of the parameters of D. The origin of this concept goes back to S. S. Shrikhande
[195] (the father of M. S. Shrikhande), but the term “quasi-symmetric” does not appear
until [210] where it is coined by R. G. Stanton and J. C. Kalbfleisch. Prior to this point,
the concept was further discussed in [209, 198], see also Thm. 10.3.4 of [176] and related
references.

12.2 Emergence of J. J. Seidel
As was the case with Bose, J. J. Seidel started out as an expert in geometry. He submitted
his first AGT-related paper [149] on December 18, 1965, however it is in Seidel’s next
publication [190] where one witnesses his “seduction” to AGT. (Indeed, 14 of the 15
references in [190] are linked to the notion of an SRG.) It is also apparent from [190] the
degree to which Seidel was influenced by the seminal paper [18] of Bose.

The first formal link between Seidel and DM may be found in [84], where reference
is made to [161] (specifically to the term “pseudo-cyclic”, which would later become the
subject of careful investigations by Seidel and others, cf. our discussion of [161] in Sec.
5). From this moment on, the name of DM would be imprinted on Seidel’s mathematical
consciousness. (Recall that a year later they would meet for the first time in Lincoln
NE.)

The first proper and systematic investigation of QSDs was initiated by Seidel et al
at approximately the dawn of the Higman-Sims era in AGT. In evident form this was
accomplished in the extended abstract [85] with a much more comprehensive presentation
being reached in [86]. Both texts refer to SRG(100, 22, 0, 6) as being “first constructed
by Higman and Sims, while discovering the simple group which carries their name.”
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Reference is made to [101] here. (Credits in [86] are also given to two papers of Gewirtz,
in particular to [81] for the proof of the uniqueness of the Higman-Sims graph. Finally,
we mention [192], where once more construction is attributed to Higman and Sims and
uniqueness to Gewirtz.)

Curiously, in the very same paper [86] in which Seidel accords priority to Higman
and Sims for the discovery of SRG(100, 22, 0, 6), he cites [162] and accredits DM with
construction of the graphs NLg(n) for prime powers n.

Remark 8. We are forced here to speculate on two puzzles. First, we are guessing
that Seidel, upon first exposure to the remark in [162] on the existence of NL2(10), “did
not believe his own eyes” and so intentionally decided to give priority for the discovery
to Higman and Sims. However, there is concrete evidence that after his first personal
meeting with DM during the following year his mind was forever changed: in all sub-
sequent publications Seidel conspicuously omitted the word “first” when referencing the
construction of Higman and Sims. Regardless, we can offer no insight into our second,
more perplexing puzzle: why Seidel never took the opportunity in any of his future ar-
ticles or public presentations to disseminate DM’s discovery to the mathematical world.
We fear this second puzzle may never be given a satisfactory explanation.

12.3 Influence of DM
Here we digress ever so briefly, to emphasize DM’s growing influence at this time on his
colleagues in the field of statistics.

In [50] W. S. Connor cites [159] as one of the motivational sources for his studies.
In [196] S. S. Shrikhande provides new proofs of certain results from [159], in addition

establishing that all L2-type graphs on 16 vertices are known.
In his seminal paper [18] R. C. Bose accredits DM [159], along with Shrikhande and

Bruck, as laying the foundations for the theory of Latin square type SRGs, which strongly
influenced his techniques.

In [14] one finds reference to [160, 162], as well as specific mention (pp. 365-366) of
DM’s main result regarding the existence of an NLg(g2 + 3g)-graph given the existence
of a QSD with suitable parameters. As an example, uniqueness of the case of NL1(4) is
demonstrated. In addition, further exploiting DM’s techniques from [160], the authors
prove nonexistence of any SRG(28, 9, 0, 4).

In retrospect, one would have to consider [14] to have been a very natural place to
mention the result in [160] about the existence of NL2(10). Indeed, it is a pity that this
was not the case. (Note that [101] was clearly out of the scope of the authors at the time
their paper [14] was written.)

Finally, we draw attention to the paper [193] of Mohan S. Shrikhande, which we
believe to be the earliest text in which attribution is paid to the work of DM surrounding
the graph Γ. In his paper Shrikhande refers to the graphs NLg(g2 + 3g) introduced in
[160, 162], and provides a complete proof of his Theorem 2.1 in which a construction
of NLg(g2 + 3g) is described in terms of a suitable quasisymmetric design D. More
specifically, this theorem asserts that the existence of design D is both necessary and
sufficient for the existence of NLg(g2 + 3g).

In his concluding remarks, M. S. Shrikhande mentions only that a suitable design D
for the case g = 2 had been discovered by Witt in [224] and that the resulting graph is
exactly the one obtained by Higman and Sims in [101]. It is a somewhat delicate issue
that while credits are given to DM for his discovery of the family NLg(g2 + 3g) there is
still no evident wording in [193] that reflects the construction of NL2(10) by DM himself.
Thus, although the author MK has been carrying a copy of [193] since 1977, for the great
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majority of this time it was not possible for us, nor for our contemporaries, to understand
from [193] a clear message about the priority of DM.

12.4 Two significant lemmas
The first lemma we wish to discuss is due to K. N. Majindar (= K. N. Majumdar), a
statistician by training.

Lemma 1 (Majindar [156]). A given block in a BIBD with parameters v, b, k, r, λ
can never have more than b − 1 − (r−1)2k

r−λ−k+kλ blocks disjoint from it. If some block has
that many, then r−λ−k+kλ

r−1 is a positive integer and each of the non-disjoint blocks has
r−λ−k+kλ

r−1 varieties common with it.

The proof is a brilliant half-page exercise in the art of variance counting, a main
tool among statisticians. Starting from the design C used by DM (for which one has the
parameters (22, 77, 6, 21, 5)), the reader may easily verify that we are getting an extremal
case in the sense of Lemma 1, namely b− 1− (r−1)2k

r−λ−k+kλ = 16 and r−λ−k+kλ
r−1 = 2. (This

latter equation is expressed as y = 2 in the language of QSDs.)
This property was first observed on an empirical level by DM in his thesis [159], which

predated [156] by several years. In contrast DM’s Lemma 8.2 of [160] (a special case of
Majindar’s Lemma stated above) appeared after [156]. Yet DM makes no mention of
[156] in [160]. While we may safely presume that Majindar was unaware of DM’s thesis,
the presumption that DM was unaware of [156] is tenuous at best. The only explanation
we can offer is speculative yet entirely consistent with DM’s character. We believe that
DM may have felt that by referencing [156] in such close proximity to his own earlier
work [159], his actions might be construed as a challenge to priority, something that DM
by his very nature would never abide.

Still, it is unfortunate that only a modest number of scholars recognize the depth of
Majindar’s contributions (e.g., see [63, 13, 94, 112]). It is indeed a pity that for the vast
majority of modern day design theorists his name remains in relative obscurity.

With or without the aid of Lemma 1, we may now better understand what was
outlined in Section 7: the crucial design C should be a QSD with the parameters x = 0
and y = g. It is still not clear, however, why this QSD should be a 3-design. We need
one more auxiliary result for this.

Lemma 2 (Cameron [39]). For a 2-design D, any two of the following imply the third:

(i) D is a 3-design;
(ii) D is a QSD with x = 0;

(iii) D has v(v−1)
k blocks.

Surprisingly, there is no proof of this result nor any attribution given in [39]. This
causes us to speculate that at the time the paper was written the author regarded this
result as folklore. In fact, many proofs will appear much later in diverse formulations
and contexts, e.g., see [5, 155, 194, 42]. Nonetheless, our own attempts to detect in the
literature any hint of Lemma 2 prior to 1973 (the year that [39] was submitted) met with
utter failure. Hopefully, active players in AGT will help to shed some light on this small
but intriguing puzzle.

Application of Lemma 2 gives the reader a clear picture of the critical fact that
escaped DM’s awareness at the time: that design C is a 3-design. Had DM realized this
fact at any time prior to 1968 his fate might have been changed dramatically.
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12.5 Extensions of designs
We discussed in Section 11 the DM-approach used in the construction of the design C
responsible for the existence of NLg(g2+3g). Unlike DM, Higman and Sims were granted
this design for free by Witt, who obtained it from the projective plane of order 4 via the
method of transitive extension. This explains why an understanding of the result of
Higman and Sims promoted immediate strong interest in the direction of extensions of
designs.

The main driving force in this area was P. J. Cameron, who relied on significant input
from Hughes (see [107]) and Lüneburg [151]. In the short span of 2-3 years, Cameron
removed all traces of mystery (at least at the level of feasible parameters) in his series of
papers [36, 38, 39]. Indeed, the classical theorem of Cameron [36] describes all possible
parameters for a symmetric design to admit a transitive extension, namely those which
are occurring in (i) Hadamard designs, (ii) two sporadic cases on 111 and 495 points,
and (iii) an infinite series of designs with v = (λ+ 2)(λ2 + 4λ+ 2) points.

The first sporadic case (projective plane of order 10) was disposed of with the aid
of a computer [145], while the second sporadic case has yet to be resolved. Hadamard
designs form their own classical branch of combinatorics. The remaining infinite family
leads, via extension, to the 3-designs necessary for obtaining an NLg(g2 + 3g)-graph. If
λ = 1, we start with a projective plane of order 4, and hence obtain the Witt design W22
upon extending. (The case λ = 0 may be regarded here as degenerate, with the extended
design being the trivial design on five points.)

In fact Cameron’s results may be considered in the broader context of SRGs with no
triangles. (See [42] which provides a bright self-contained introduction to the subject.)
The preprint [16] attempts to revive interest in this most appealing, albeit difficult, area
of AGT (see also our Subsec. 13.7 below).

Finally, we mention ongoing efforts to prove nonexistence of 3-QSDs with suitable
parameters, see [172, 173] as samples of this activity.

12.6 The case g = 3
As was mentioned by S. S. Shrikhande in [197], the case g = 3 provides the next possibility
to construct an SRG of NLg-type from the DM-family. Here one needs a biplane on 56
points (i.e., k = 11) which extends to a 57-point 3-design. We refer the reader to [109, 37]
for a helpful introduction to biplanes.

For the longest time only four biplanes on 56 points were known (e.g., see [184]) until
a fifth one was discovered in [120]. About three years later, it was asserted that no
biplane on 56 points could be extended to a 3-design (see [6], as well as the corrigendum
in [7] by the same author). The amended proof was believed to be correct, e.g., see [42],
until a fatal flaw was detected by A. E. Brouwer, see [128] for details. Finally, all matters
were put to rest by an exhaustive computer search (316 machines running in parallel for
two months), and the results established in [127] as follows: The five known biplanes on
56 points comprise a complete listing of such objects, and none admits an extension. In
particular, there is no NL3(18) making g = 4 the smallest unresolved case.

It is quite surprising that the particular result about nonexistence of the graph
NL3(18) on 324 points was obtained by A. Gavrilyuk and A. Makhnev in [79] on a
purely theoretical level, prior to the appearance of [127]. Both texts are using a different
terminology, and neither refers to the work of DM.

The reader is welcome to approach the case NL4(28) by starting from a suitable
symmetric BIBD on 115 points.
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13 A more wide panorama

The initial goal of this project was to provide a reasonably self-contained historic narrative
that focused on the origins of SRG(100, 22, 0, 6) and emphasized the important “hidden”
contributions of Dale Marsh Mesner within these frames. It was only upon extensive
investigation of the literature that we came to realize, and appreciate, the true scope of
the task we were undertaking. Many surprises slowly revealed themselves to us, and due
to their depth and sheer number we were forced many times to redefine our objectives.
All the while, we felt a strong obligation to provide the reader with a full panoramic view
of those events which were to play such an important role in the future development of
AGT.

As a consequence, the purpose of this final section is to house all extra material
that in our judgment may have created too burdensome a load on our earlier exposi-
tion. Of course, the reader has complete freedom to decide what will be his/her level
of comprehension in pursuing various portions of this surplus material. Any attempt to
synthesize new scientific leads, based on an appreciation of the ideas of our accomplished
predecessors, will be sufficient reward for the authors.

13.1 Scientific ingredients
All facets of research relevant to the discovery of NL2(10) and its related structures,
including investigations, interpretations and consequent applications, can only be ade-
quately described in a broad interdisciplinary framework. In this fashion we distinguish
eight different branches, which, although clearly not existing in full isolation, may be
characterized separately. To each such branch we devote a few sentences, and suggest
a couple of noteworthy texts that will hopefully allow the interested reader to make a
few independent steps in a new direction. In each case the texts have been chosen to
complement one another in terms of style, time of publication, intended audience, and
presumed background.

• Design of experiments. The initial sentences of [11] explain the role of combinatorial
designs in helping statisticians to answer two questions:
(i) What is the best way of choosing subsets of treatments to allocate to the blocks,
given the resource constraints?
(ii) How should the data from the experiment be analyzed?
R. C. Bose and his collaborators at the Calcutta Institute of Statistics were a
driving force in this area. The book [176] remains today a valuable comprehen-
sive source of diverse examples accumulated over decades of development of the
subject. In contrast, [11] offers a more fresh approach from an author with great
pedagogical skills. Its aim is successfully reached: to give the reader a quicker and
more accessible entrance into the subject.

• Permutation group theory. We were fortunate to witness that DM was fond of
permutation groups, though he claimed to be an amateur in this area. Oppositely,
Higman and Sims belonged to a handful of experts who creatively shaped this part
of group theory. The texts [64, 41] reflect the views of evident leaders in this area,
although their target audiences and expository styles are quite different. Of course
one should also keep in mind the short pioneering book [220] of Wielandt.

• Finite geometries. The reader has already been made aware of the classic text
[63]. A trilogy by Hirschfeld and Thas (covering projective geometries, projective
spaces and general Galois geometries) is an unusually robust work housing the
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accumulated treasures of thousands of researchers. Here we refer to the particular
volume [103] of the trilogy that treats the Mathieu groups and Witt designs.
• Algebraic graph theory. The name AGT was coined by Biggs [15] in 1974. In fact,
the techniques exploited in AGT are so wide that one could justifiably consider AGT
to be a collection of diverse tools, ideas, and even philosophy encompassing many
adjacent mathematical areas with the common goal of enumerating and classifying
graphs with symmetry-related properties. Our own experience suggests that the
text [83] may be enjoyed by a wide spectrum of audiences ranging from university
students to specialists. Recently published introductory lecture notes [130] might
also be helpful for the beginning reader.
• Design theory. The text [109] is a friendly place to start, although by no means
is it trivial or easy. Of a more comprehensive nature is [13], especially the section
entitled “The Higman-Sims group” (pp. 230-236), which is an absolute gem in our
eyes.

• Combinatorial matrix and spectral graph theory. Variations in the name reflect
variations of tools mobilized from linear algebra to investigate symmetry of graphs.
Clearly DM was very strong in this area, belonging to the cohort of statisticians
who created its modern theory and applications. Links of Higman and Sims to
this area were of a more exotic nature, via that branch of representation theory
treating centralizer algebras of permutation groups. The brief introduction to SRGs
found in Sec. 5.2 of [28], as well as the attention paid to Higman in [59], should
immediately convince the reader of the relevance of both sources. Finally, we again
mention [26].

• Coherent configurations and association schemes. This branch is commonly referred
to as “algebraic combinatorics” as coined by E. Bannai and T. Ito in [9]. However,
in more recent times the term has grown to incorporate a much wider range of
combinatorial areas. Nonetheless, our attention is dogmatically restricted to the
line pursued in [9], reflecting those objects (association schemes) developed by R.
C. Bose et al for the purpose of experimental design. The more general notion of a
coherent configuration was developed mainly through the efforts of D. G. Higman,
although a similar concept carrying the name of “cellular algebra” can be traced
to an even earlier period in Moscow (B. Weisfeiler and A. Leman). At present, a
comprehensive treatment of coherent configurations has yet to be written. (Indeed,
among widely accepted textbooks it seems that only [41, Chapter 3] attempts such
a treatment.) Nevertheless, the lecture notes [100] of Higman serve as one of the
most serious introductions to the subject.

• Diagram geometries. Of all branches related to our paper either explicitly or implic-
itly, this is clearly the most modern. Early publications of F. Buekenhout served as
an initial impetus. Presentations in [170, 113] provide a wide background in which
our central designW22 is just one of hundreds of illuminating examples. To give the
reader just a small taste of the exposition, we refer to [113, Lemma 4.10.17 (p.189)]
which simultaneously serves as a definition of the Higman-Sims group. Specifically,
it appears as the stabilizer of a suitable induced subgraph of Λ3, which in turn is
defined in terms of the famous Leech lattice Λ.

13.2 More on historical origins
In their initial role, association schemes served as auxiliary objects, subsidiary to the
investigation of PBIBDs. The latter were a natural generalization of BIBDs, formulated
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as applicative tools for the study of statistical design of experiments. At exactly this
time the creation of catalogues such as [46] emerged, starting what would become a well
established tradition in modern combinatorics. This flavor is already observed in [159],
which focuses much of its attention on PBIBDs. In contrast, the seminal paper [19] is
the first to treat association schemes as objects of independent interest, a vision that
would be supported and strengthened in each successive publication of DM.

As previously mentioned, two influential creators of the theory of SRGs, Bose and
Seidel, both entered into combinatorics by way of geometry. In fact, attention to certain
types of combinatorial structures was already an established tradition in 19th Century
algebraic geometry; indeed, our favorite example of the Clebsch graph was just one of
many attractive objects inherited from this “old-fashioned” field. The ability to analyze
such structures by means of their coordinate presentations, and to describe their internal
symmetries in strict group theoretic terminology, was a clear advantage at the dawn of
modern combinatorics and AGT.

Seeing great potential in this geometric–combinatorial synergy, more and more ex-
perts in algebraic geometry shifted their attention to finite geometries, simultaneously
honing their skills in group theory. (We cite J. A. Todd and W. L. Edge as two striking
examples.) By the 1960s, especially due to the efforts of Reinhold Baer and his followers,
the marriage between group theory and geometry was already well established. This was
a great advantage to experts like Higman and Sims, however its impact on DM would
not be felt for many years.

Starting from the 1950s, permutation group theory was enjoying a revival through
the efforts of H. Wielandt and other followers of Issai Schur. This approach was enthusi-
astically picked up by a younger generation of researchers, with Higman and Sims serving
as bright leaders. The publications [98, 99, 199] served to strongly fertilize the ground on
the edge between combinatorics and group theory. This explains how, miraculously, an
exotic flower came to bloom on September 3, 1967 from the seeds sown by two colleagues
on just the previous evening.

13.3 Kummer’s quartic surface
This is in fact the title of a book [106] written at the turn of the century and reprinted
in 1990. The main subject is Kummer’s 166 configuration (having today a few alternate
names), which had already attracted the attention of Camille Jordan who viewed it as
an incidence structure, enjoying the 2-transitive action of its automorphism group on 16
points.

Needless to say, the “nicest biplane on 16 points” discussed in Sec. 11 is none other
than 166. Correspondingly, the substructures forming our sets Ω̃1, Ω̃2 in Subsec. 11.5
were known to algebraic geometers already at the time of Ronald W. H. T. Hudson.

Despite the fact that algebraic geometry has experienced a couple of revolutionary
changes in paradigms throughout the years, one may still observe how the 166 configura-
tion serves as an inspiration to each new generation of algebraic geometers. Occasionally,
it even stimulates the modern researcher to take a trip into an unfamiliar past in order
to observe the beauty and symmetry of the structure in its more natural historic habi-
tat. However, we recognize the hazards of such a journey, particularly when a deeper
comprehension is desired. Thus we just supply the reader with some guidelines. For an
initial exposure to the language of linear complexes, associated congruences, and apolar
pentagons we refer to [122] with credits to [68] and [55]. Some additional papers of Edge
may also be helpful, viz. [65, 66, 67, 70], however the main ingredient will be perseverance
on the part of the individual who decides to brave the journey.
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13.4 Six levels of description of NL2(10)
The graph Γ = NL2(10) is a rank 3 graph, in other words, its automorphism group
acts transitively on three naturally defined sets (vertices, oriented edges, and oriented
non-edges). Nowadays, with the aid of the classification of finite simple groups (CFSG),
all rank 3 graphs are characterized, e.g., see the references in [42].

Clearly all rank 3 graphs are SRGs but not conversely. The smallest SRG that is not a
rank 3 graph occurs on 16 vertices and is commonly called the Shrikhande graph. (In fact,
this is exactly the graph appearing in our Example 3 of Section 2.) The Shrikhande graph
already shows up in DM’s thesis [159]. See also a very nice depiction of the Shrikhande
graph on the cover of the text [28].

Based on CFSG, one splits all rank 3 graphs into two categories: classical and spo-
radic. The classical ones may be described in terms of geometries over finite fields. All
requisite information in this case may be found in the framework of geometric alge-
bra, see [1, 212, 90] which collectively reflect the evolution of this subject over the last
half-century.

The situation for sporadic rank 3 graphs is more sophisticated. Such objects generally
arise via ad hoc constructions, and consequently they may be viewed at many different
levels. Unlike the case for classical graphs, a complete comprehension is truly achieved
only by constantly adjusting our looking glass, striving to uncover hidden secrets at each
successive stage. We illustrate this phenomenon below for the graph Γ, imagining that
we are honing in on its “dwelling” with the aid of a very powerful telescopic lens.

• Leech lattice (cosmic view). There are a lot of diverse texts to help one become
acquainted with this object. For example, [181] is intended for a wide audience while
[54] is a comprehensive source. The short note [222] provides a fresh elementary
perspective.
The Leech lattice was constructed by John Leech in 1965 (see [147]), and although
he is often given credit for its discovery much earlier traces may be observed. Here,
we again refer to Ernst Witt, this time to [225, p. 328], splitting our feelings about
this monumental mathematician between deep admiration and bitter confusion
(e.g., see [181, pp. 131-133]).
The Leech lattice Λ arises in connection with the sphere-packing problem, admitting
the densest packing of non-overlapping identical spheres in 24-space with centers
at lattice points, see [48]. Its importance is also felt in group theory: Aut(Λ) is the
double cover of Conway’s largest sporadic simple group Co1 [53], and it contains
many other sporadics, including the Higman-Sims group, occurring as stabilizers
of various configurations of its vectors. Moreover, the Griess algebra, which has
the Monster group as its automorphism group [89], can be constructed by means
of compactifying a certain vertex algebra (that describing bosonic string theory)
on the 24-dimensional quotient torus R24/Λ.
The aforementioned induced subgraph of Λ3 in Subsection 13.1 is none other than
our graph Γ. Note as well that Conway in his classic paper [52] provides an em-
bedding of Γ into Λ.
At this point, the Witt design W22 is barely visible to us. Thus we must increase
its clarity in order to render more revealing views of Γ:
• Binary Golay code (view from a mountain). Binary and ternary Golay codes are
related to Witt designs as well as the Mathieu groups. The codes were described
in the one-page note [87] of M. J. E. Golay. We are here interested in the extended
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binary [24, 12, 8]-code G24, e.g., see [42]. The group Aut(G24) ∼= M24 acts transi-
tively on codewords of weight 8, with corresponding orbit the block set of the Witt
design W24. Note that in a certain natural sense G24 lives inside the Leech lattice
Λ, while M24 lives inside Co1.

• Witt designW24 (view from a hill). The largest Witt designW24 is none other than
the Steiner system S(5, 8, 24) with automorphism group M24. As was discussed,
its discovery (along with that of W12) is generally accredited to Witt [223] but can
be traced to the quite earlier little known paper [43] of Carmichael.
The literature on these objects is very rich, e.g., see the legendary text [57] of R.
Curtis, as well as a more recent self-contained elementary treatment [115] due to
S. Iwasaki.

• Witt design W22 (street-level view). We have reached the point of absolute clarity,
that of the natural embedding of W22 in W24. It is little wonder that this is the
view that fueled two independent approaches to Γ, one by Higman and Sims the
other by DM. See the expository paper [12] which pays special attention to the
nature of this embedding.
However, we wish an even closer look, so we enter the dwelling:

• Projective plane (view from the basement). For most authors, the most natural
way to arrive at W22 is to add a point to the projective plane PG(2, 4) and use
the extension procedure. This was a paradigm most clear to Higman and Sims,
inherited from Witt. It was by no means the approach taken by DM.

• The nicest biplane (ascending the staircase). The entirety of Section 11 was de-
voted to this methodological device. Below we will compare it to its underground
alternative, the projective plane PG(2, 4) as a possible starting point. Our ultimate
desire is to synthesize these two approaches.

Remark 9. There are some very interesting alternate views of Γ = NL2(10) and its
substructures not touched upon in our treatment. A non-standard construction of Γ
may be found in [154]. In [185] one encounters relevance of the non-edge decomposition
of Γ in a fresh context. In [217] an embedding of W22 into a symmetric design on 78
points is examined. A characterization of W22 in terms of QSDs is given in [35]. Finally
each of [129, 31] provides a construction of the Gewirtz graph; the first focuses as well
on the underlying BIBD, while the second is of a decidedly more geometric flavor.

13.5 A methodological amalgam of two approaches
In this section we share with the reader our vision of the pros and cons of two independent
approaches to the graph Γ = NL2(10), namely that of Higman-Sims and the one of DM.
We next “glue” them together to form a methodological amalgam which is based quite
literally on the notion of amalgam from group theory.

Transitivity is the central concept that underlies the notion of a rank 3 graph. It was
a main driving force behind interest in SRGs at the dawn of CFSG. Indeed, each new
rank 3 graph had the potential to lead to the discovery of a new sporadic simple group,
or to at least produce a new action of a known group, thereby providing the possibility
of a new computer-free construction.

The transitivity paradigm was exploited in [101] wherein the authors were building
none other than a rank 3 graph. This approach was also followed by DM, however it was
done so in the absence of adequate descriptive terminology. As was previously mentioned,
the proof of uniqueness in [160] implies vertex transitivity of Γ (at the time DM did not
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know of such a term, nor did he care to use it anyway). In addition, DM’s observation on
p. 81 of [160] about “7700 incidence matrices of the symmetric design with r = 6, λ = 2”
can be interpreted in only one way: Aut(Γ) acts transitively on all oriented non-edges.

Recall that in [101] generators of Aut(Γ) were obtained by adjoining a fixed-point-
free involution t to the generators of a point stabilizer, aka Aut(W22). This is a familiar
setting in permutation group theory. On a naive level, its roots can be traced back
to W. A. Manning (1921). Namely, let ∆ be a connected vertex-transitive graph, G its
automorphism group, {a, b} an edge of ∆,H = Ga the stabilizer inG of a, t a permutation
that reverses orientation of {a, b}, e.g., see [82]. Note that this setting applies equally
well to non-edges of ∆ provided its complementary graph ∆ is assumed to be connected.
(Indeed, non-edges of ∆ are edges of ∆, and one has Aut(∆) = Aut(∆).)

A more refined formulation of the above is the following: G = 〈Ga, G{a,b}〉 and
Ga ∩ G{a,b} = Ga,b. Here one speaks of a triple of subgroups of G which forms an
amalgam, more specifically the amalgam of Ga with G{a,b} over Ga,b.

Nowadays, the notion of an amalgam plays a crucial role on the edge between group
theory and diagram geometries. The above defined amalgam of the vertex stabilizer and
edge stabilizer of a connected vertex transitive graph is one of the simplest illustrations
of this fruitful concept. The interested reader is referred to [114], which additionally
provides interesting information about amalgams related to M22.

Returning to Section 6, we apply the notion of amalgam to the Clebsch graph �5 (the
simplest example among allNLg-graphs). In this case we have: G = Aut(�5) ∼= E16oS5,
{a, b} a non-edge of �5 (hence an edge of the complementary graph �5), Ga ∼= S5,
G{a,b} ∼= S2 ×D6, and Ga,b ∼= D6.

The next simplest case of an NLg-graph, and the one most relevant to our exposition,
is Γ = NL2(10). In the language of amalgams we obtain: G = Aut(Γ) = Aut(HS) ∼=
HS o 2, Ga ∼= Aut(M22) = Aut(W22), G{a,b} ∼= E32 o S6, and Ga,b ∼= E16 o S6.

In the presentation of Higman and Sims [101] only parts of this amalgam are visible,
namely the entire group G, the stabilizer Ga and an involution t ∈ G{a,b} \Ga,b. What
can be said about DM’s presentation in [160]?

At first sight groups are not even visible in [160]. However, let us switch to relational
language, which was adopted by DM before his counterparts. A correct formulation
here is provided by the use of a Galois correspondence between relational structures
and permutation groups, as described in [73]. In this context, the role of Galois-closed
objects is fulfilled by so-called “Schurian configurations” (i.e., coherent configurations the
relations of which are the 2-orbits of a suitable permutation group).

We now get a dual incarnation of the above amalgam. Starting with the Schurian
configuration W = (Ω, 2-orb(Ga,b,Ω)), we merge its two subconfigurations

W1 = (Ω, 2-orb(G{a,b},Ω)) and W2 = (Ω, 2-orb(Ga,Ω)).

Then M = W1 ∩W2 is none other than the NL2(10)-association scheme the classes of
which are the graphs Γ and Γ. To get a closer picture, let us refer to the intersection
diagram in Fig. 8 of Subsection 11.6, which is just a compact way of viewing W. Here,
in the role of a, b we have P ∗, B∗ respectively. Loosely speaking, DM establishes that
W corresponds to the nicest biplane D, W1 reflects the fact that D is self-dual, W2 is
providing incidence of points and blocks in C = W22, and M is giving the entire graph
Γ = NL2(10). This embodies the concept of an amalgam in pure relational language.

To summarize, in [101] one sees groups without an amalgam, while in [160] one sees
an amalgam without groups. This perfectly explains what we mean by “methodological
amalgam” of two approaches. We are here witnessing a real impact of the ideas of
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DM with those of Higman and Sims, which converge to the notion of a mathematical
amalgam.

Indeed, in Higman and Sims we have two established experts in the use of groups.
Higman was, in fact, the creator of the language of coherent configurations, On the
other hand, DM was one of the first experts who established new standards in the use
of association schemes, a particular case of coherent configurations. Though in 1964 DM
was still not aware of the notion of a coherent configuration, he was actually operating
with its matrix theoretic analogue: a stable color graph. In fact, this latter terminology
would not be coined for a few more years, see [219].

A rigorous analogue of the dual amalgam described above may be reflected in the
procedure of transitive extension formulated in pure relational terms. One of the evident
advantages of this approach is that unlike what occurs in the group case, the resulting
object need not be a rank 3 graph. This of course opens the door for new discoveries.
Different roots of such a procedure were developed and analyzed by DM and the present
authors in [132], though work at the final stages of this paper was sadly interrupted by
Dale’s untimely death.

We conclude the established virtual posthumous handshake between Mesner and Hig-
man with mixed feelings: regret that it never happened in real life but satisfaction that
they are forever bonded by the threads of their collective genius.

13.6 Beyond the Higman-Sims graph
The graph Γ = NL2(10), also commonly denoted SRG(100, 22, 0, 6), is forever historically
linked to the names Higman and Sims. For the balance of this subsection we adopt this
established tradition.

The Higman-Sims graph has many exceptional properties which stress its unique
features as well as those of its substructures. Below we present four of what we consider
to be the most striking examples.

• Two copies of the Hoffman-Singleton graph as an induced subgraph of Γ. We
denote by HoSi the unique SRG(50, 7, 0, 1) discovered in [105]. As well, it is a
rank 3 graph and in fact the largest known Moore graph.

It turns out that the vertex set of Γ may be partitioned into two halves such that
the subgraph induced on each half is HoSi. This occurrence is closely related to the
existence of the unique bipartite distance-regular graph ∆ on 100 vertices having
diameter 4 and valency 15. Merging classes of valency 15 and 7 in the metric
association scheme generated by ∆ yields Γ. The idea of such a decomposition was
suggested by Sims in [200]. See also [27, 24, 94] for more details.

• Highly transitive finite geometric lattices. In [61], A. Delandtsheer was investigat-
ing geometric lattices of dimension n ≥ 3 such that the automorphism group of the
lattice acts transitively on unordered pairs of secant hyperplanes. With the excep-
tion of the evident classes (Boolean lattices, affine planes, and projective spaces)
there appears only one real surprise: the planar space obtained in a natural way
from the Steiner system S(3, 6, 22). This generalizes an earlier result of W. M.
Kantor with stronger assumptions [126].

• Spin models. Roughly two decades ago, the (late) mathematician F. Jaeger made
a breakthrough in the theory of link invariants (see the classic paper [121] of V. R.
F. Jones for definitions) by demonstrating how one could produce spin models from
the Bose-Mesner algebras of formally self-dual association schemes. In particular,
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Jaeger constructed a new spin model from the Higman-Sims graph, see [116].4

• Energy minimizing point configurations. Over the past decade, there has been
an explosion of interest in spherical point configurations that minimize potential
energy. Motivation here stems from physics, discrete geometry and combinatorics.
Once again the graph Γ appears, this time as a naturally defined object on 100
points of the 22-dimensional sphere, see [8].

13.7 SRGs with no triangles
Investigations of DM touched upon two families of SRGs: those of NLg-type and those
without triangles. Graph NL2(10) appears in the intersection of these two families.
While there are known infinite series of NLg-graphs, very few primitive triangle-free
SRGs (briefly, tf-SRGs) have ever been constructed.

One of the impressive achievements of [159] is the construction of Table II (pp. 257-
259), which gives feasible parameters for all putative SRGs on 100 or fewer vertices.
Among the 101 listed parameter sets, only 9 satisfy λ = 0 (the triangle-free condition
for SRGs). The first crucial input of DM was the construction of tf-SRGs on 77 and 100
vertices. In addition, two parameter sets on 28 and 64 vertices were excluded. (Note
that the existence of tf-SRGs on 50 and 56 vertices was totally unknown to DM at this
time, as well as to all other experts.) Such exclusion was achieved by first establishing
necessary conditions for the existence of a tf-SRG based on the existence of two related
BIBDs with certain properties (Theorem 2.6 of [159]), and next proving nonexistence
of said designs. To do this DM used ad hoc tricks in variance counting to show that
the value of variance should be negative. Recall that the modern way to exclude such
parameter sets (e.g., see Sec. VII.11 of [49] by Brouwer) is to show that one or more
Krein parameters must be negative. An interesting enterprise would be to compare the
power of old and new techniques on a wider sample of feasible sets, cf. [16].

In fact, a wider family of graphs to which Γ belongs is based on a consideration of
Krein parameters. We speak now of Smith graphs, which are primitive SRGs that meet
the Krein bound, see [42]. The name refers to M. Smith, who in [202] established a
two-parameter family of putative rank 3 graphs with extremal properties.

A characteristic feature of Smith graphs is that for each vertex x their first subcon-
stituent (i.e., subgraph induced on the neighbors of x) and second subconstituent (i.e.,
subgraph induced on the non-neighbors of x) are both SRGs. These remarkable graphs
are called 3-tuple regular in [42]; an alternate terminology used by the present authors
is 3-isoregular, see [180]. In turn, the concept generalizes to k-isoregular graphs, k ≥ 2.
All 5-isoregular graphs have been classified, e.g., see [42]. A highly nontrivial result is
the characterization of all feasible parameters for putative 4-isoregular graphs. In the
primitive case, we get only the pentagon, the line graph L2(3), or an extremal Smith
graph, see [32, 40, 42, 137].

Returning to our main discussion, we refer to [42] as a comprehensive source of
information for tf-SRGs. Valuable new input is provided in [16], where Biggs gives a
list of surviving feasible sets for tf-SRGs on at most 1000 vertices (there are 21 such
sets), as well as a larger list of possibilities on at most 6025 vertices.

Regarding constructed tf-SRGs, our current state of knowledge surprisingly coincides
with what was known in 1968, nothing more. There are just seven known tf-SRGs,
each uniquely determined by its parameters. We list these as (v, k) = (5, 2), (10, 3),
(16, 5), (50, 7), (56, 10), (77, 16), (100, 22) where, as usual, v is number of vertices and k
is valency.
4Note that DM was already aware of this self-dual property of the NL2(10)-association scheme at the
time of his thesis; see [24, pp. 68-71] for a self-contained treatment of this concept.
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The tf-SRG with parameters (56, 10, 0, 2) is known as the Sims-Gewirtz graph. Tradi-
tionally, credits are given to [200, 80], see also [81], though the most accurate attribution
would be to an unpublished text of Sims. There are many nice descriptions of this graph
(see [23]), in particular it is a subgraph of Γ = NL2(10). To observe this, one need only
consider the edge decomposition of Γ, exactly like the non-edge decomposition described
in Section 11. The Sims-Gewirtz graph then appears as the induced graph on the set of
vertices nonadjacent to both vertices of a selected edge.

As a result, we may now make a rather striking observation:

Every known tf-SRG is a subgraph of Γ.

This raises an intriguing question: Can a tf-SRG exist independent of Γ? In our eyes,
this is one of the more important and challenging open problems in modern AGT. (Note
that the existence of a putative Moore graph of valency 57 would resolve this issue since
such a graph would not embed in Γ.)

A local approach to triangle free NLg-graphs was, as far as we know, first developed
by DM. Here, we refer to a way of describing the entire graph in terms of its local
structure with respect to an arbitrary vertex x. The first and second subconstituents
of x, and all remaining adjacencies, may be described with the aid of an auxiliary QSD
which turns out to be a 3-design. Such an approach does not require that the resulting
graph be vertex transitive.

Further “localization” was also outlined by DM in terms of a non-edge decomposi-
tion, as was interpreted by us in Section 11. It is open to speculation as to why DM
was so insistent upon preferring a non-edge decomposition to an edge decomposition.
Indeed, one can even point to a small forfeiture of this behavior: DM failed to discover
SRG(56, 10, 0, 2) (#39 in his table of feasible parameter sets) which is immediately visible
from the perspective of an edge decomposition.

A modern scholar may find an intriguing interpretation of DM’s preference. A brief
but striking outline of what could legitimately be called “local theory of suitable SRGs”
(the Clebsch graph being one of these) is provided in Sec. 10.6 of [83], entitled “Local
eigenvalues”. There one finds links between the eigenspaces of a putative SRG with
those of its subconstituents. The origins of this local theory go back to [77, 78, 92, 74].
In particular, it is known that for certain SRGs the second subconstituent should be
distance-regular. This is fulfilled for every tf-SRG, moreover the distance-regular graph
in this case has diameter at most 3, see [16]. This modern extension of the original local
DM-theory opens new horizons for research in this area.

The first open case is SRG(162, 21, 0, 3). Interesting information about such potential
graphs, related to possible order and structure of their automorphism groups, is provided
in [157]. In our eyes, existence of SRG(162, 21, 0, 3) is a difficult though far from hopeless
problem. A more ambitious stream of hope and challenge stems from the paper [152].

13.8 Maturation of ideas
This section contains a blend of material with one unifying feature: all presented notions
and ideas, alterations to language and terminology, shifts in perspectives and paradigms
can be in some way traced to seeds planted by DM, Higman and Sims, and their math-
ematical predecessors. As mentioned earlier in the context of algebraic geometry, there
are periods when a field undergoes dramatic change due to turbulent forces both internal
and external. The same sentiment applies to modern combinatorics and group theory.
We here focus on the relative historic positioning of DM and Higman and Sims in the
midst of such changes.



Acta Univ. M. Belii, ser. Math. 25 (2017), 5–62 47

• Graphs. As already mentioned, DM never used the notion of a graph in his texts
[159, 160] as an analogue of a class of an association scheme. Instead he operated
strictly within the confines and terminology of association schemes, its classes and
related PBIBDs. What is somewhat surprising is that one finds on p. 213 of [159]
evidence of his familiarity with the term; indeed DM there lists all 11 graphs on
four vertices, referring, in particular, to [182].
A similar remark applies to the initial papers of Higman. Nowhere in [98], which
establishes a theory of rank 3 permutation groups, does the explicit notion of a
graph appear. Instead Higman operates at the level of incidence structures at-
tributed to a permutation group (G,Ω): points are elements of Ω, while blocks are
suborbits of G (i.e., orbits with respect to a stabilizer Ga, a ∈ Ω). The seminal
paper [18] of Bose marks a definite change in paradigm. From this moment on,
graphs (and SRGs in particular) begin to gain acceptance in design of experiments,
finite geometries and group theory, though the process is still gradual.
• Orbitals. Given a transitive permutation group (G,Ω) one can consider all directed
graphs on Ω (without loops) on which G is acting both vertex transitively and arc
transitively. Such graphs (more correctly, their arc sets) are traditionally called
orbitals. Note that the number of orbitals will be r − 1 where r is the rank of
(G,Ω). The term orbital was suggested by Sims [199], and is commonly used in
modern literature, e.g., see [26, 146].
The authors usually prefer the more universal terminology of k-orbits suggested
by H. Wielandt in [221]. It is applicable to arbitrary permutation groups (G,Ω)
acting on Ωk (not just transitive permutation groups (G,Ω) acting on Ω2). The
texts [125, 73, 131, 132] adequately demonstrate the advantages of such terminology.

• Schur rings. Also called S-rings in the literature, this is a concept that goes back
to I. Schur [187], its name attributed to Wielandt. The texts [220, 188, 143, 211]
provide classical foundations for S-rings and their applications to group theory, see
also [166] for combinatorial applications. In the terminology of association schemes,
S-rings are sometimes called translation schemes (see [24]), that is, association
schemes which admit a regular (transitive) subgroup of the full automorphism
group.
A thoughtful acquaintance with the early work of DM [159, 160] extends our un-
derstanding of combinatorial applications of S-rings. Indeed, in [160, Sec. 4] one
finds evident seeds of a theory that is equivalent to the elementary use of such
objects. Credits are given there to [20, 207]. These links warrant a more careful
and thorough examination.

• Diagram geometries. A number of results in this area are based on the exceptional
properties of the graph Γ and the Higman-Sims group HS, and likewise for the
design-group tandem W22 and M22. Examples of such geometries are provided in
[228, 171, 148]. In particular, the diagram discussed in [148, Sec. 2] is closely related
to DM’s non-edge decomposition of Γ. Earlier discussions of this same diagram can
be traced to [33, 108].

• Negative Latin square graphs. This was a favorite topic of DM, dating back to his
1956 thesis. DM’s work on NLg-graphs with λ = 0 has already been discussed in
the context of triangle-free SRGs, so here we may speak less restrictively.
Construction of an SRG(81, 20, 1, 6) was presented in Sec. 3.2 of [159] (#68, in
DM’s table of feasible parameters). Later this graph was rediscovered a few times
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in diverse settings. A proof of its uniqueness and detailed information about its
structure may be found in [25].
The case NL2(6) with corresponding parameters (36, 14, 4, 6) marks the smallest
NLg-graph the existence of which DM was unable to settle. Nowadays, all such
graphs have been classified with the aid of a computer. There are an astonishing
180 NL2(6)-graphs in total, of which only one is a rank 3 graph. Of the remaining
179 graphs, only three additional ones satisfy the 4-vertex condition in the sense
of Hestenes and Higman [97]. These four graphs were the subject of careful inves-
tigation in [133], where edge decompositions for all graphs were described. Some
similarities to the DM-approach, though unknown to the authors at the time, sup-
port hope that further investigations of these and larger NLg-graphs satisfying the
4-vertex condition may provide new insights into SRGs with high combinatorial
symmetry.

Motivated by chemistry, I. Gutman formulated in [91] a notion of “energy of a graph”.
It turns out that the parameters of certain NLg-graphs form a concrete family of putative
SRGs of maximal energy. At the level of parameters, such graphs are characterized in
[93] and are seen to be equivalent to a certain class of Hadamard matrices. In particular,
this is relevant to the case NL4(10) (#100 in DM’s table). The first five examples of
100-vertex graphs with maximal energy were constructed in [123] via the technique of
switching in SRGs.

13.9 DM as a mathematician
For the first part of his career, DM should definitely be regarded as a statistician whose
main area of expertise was design of experiments with clever use of association schemes.
Formally, DM was never a student of Bose, however the Bose school (regarded in a
very wide sense) created for DM an environment conducive to scientific exploration and
collaboration through a healthy exchange of ideas. DM’s famous contribution [19], which
is one of the frequently cited texts in modern AGT, is in fact the product of such fruitful
collaboration.

The fact that by its very definition an association scheme appears in conjunction
with a suitable PBIBD created a permanent geometric vision for leading experts in
experimental design. The approach to SRGs suggested in [18] had a heavily geometric
flavor from the very beginning: the most interesting and significant SRGs are those
arising as point graphs of incidence structures. This point of view was adopted by
DM to the fullest extent. Each SRG considered by him was the subject of immediate
geometric interpretation. As a consequence, DM’s thesis [159] is filled with consideration
of PBIBDs. As a typical example, the lattice square graph L2(6) on 36 vertices is
accompanied by a list of 16 feasible parameter sets for its corresponding PBIBD, 10 of
which are supported by actual constructions.

By 1964, the concept of isomorphism of combinatorial structures was available to DM
but only on a rather empirical level. For example, in the formulation of Theorem 8.7
in [160] DM writes that the NL2(10) scheme is unique up to “permutation of objects”.
The concept of an automorphism group is never discussed by him explicitly, although, as
previously mentioned, there is evidence that he understood in naive terms that Aut(Γ)
is acting transitively on the vertex set. In our eyes, this is the main reason why the
Higman-Sims group was not discovered in either of [159, 160]. One can indeed agree
with the remark on p. 139 of [181] that DM “laboured for years” to discover his graph
Γ. However this discovery came at a time when the scientific community was not yet
prepared for the rapidly approaching explosion of attention to sporadic simple groups.
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No doubt, in a practical sense DM made the best of what was available to him at the
time.

At the next stages of his career DM became quite comfortable with the concept of
a group. For example, the notion of Kramer-Mesner matrices has no meaning if not
preceded by a group.

Below we share with the reader an excerpt from one of Dale’s letters to us, dated
August 25, 2007. It was written during the preparation of our paper [131], and fairly
well describes his vision of the extension procedure:

“If such a group was available I was happy to use it to construct the [associa-
tion scheme on triples] but to me the group action was only a means, not an
end. Bhattacharya had a stronger background in group theory ... and may
have given more thoughts to transitive groups, but I don’t think it showed
up in our 1990 or 1994 papers ...”

Here DM is referring to the two joint papers [163, 164] with P. Bhattacharya.
This is a confession of great significance. The process outlined by DM in [159], and

rigorously described in [160], is the typical procedure of combinatorial extension. In
principle, it doesn’t depend at all on the knowledge of a group, although the use of a
known group would drastically reduce the size of the search space.

At a time when all rank 3 graphs are known courtesy of CFSG, the real challenge for
new discoveries starts when transitivity assumptions are dropped. In this fashion the DM-
approach, as it resurfaces after 50 years in the shadows, still remains fresh, significant, and
well arranged algorithmically. Of course a modern researcher may derive even stronger
benefits by interpreting the DM-approach in the frames of coherent configurations, thus
enriching DM’s vision with Higman’s formalism.

Last but not least, we come to DM’s prophetic understanding of a dual association
scheme. This concept was formalized in the 1973 thesis of Delsarte [62], yet its practical
use requires only an acquaintance with spectral invariants of commutative association
schemes, a favorite ingredient of DM’s methodology as far back as 1956 [159]. As a
consequence, many traces of duality appear in his text both implicitly and explicitly. In
particular, connections and distinctions between variance counting and the Krein bound
are still awaiting careful clarification by modern researchers.

14 About our project

14.1 Evolution of the project
Both authors were actively working with the graph Γ = NL2(10) before realizing its
evident relevance to DM, e.g., see [123, 140, 227] as a representative sample.

Beginning in 2005 we were fortunate to have the opportunity to collaborate with DM
on an extended project that resulted in the papers [131, 132].

In December 2008, the author MK prepared a short note as a private communication
to R. Griess, who at the time was working on [10] and had an interest in clarifying some
of the history surrounding DM’s discovery of Γ. The original note was never intended
for publication, however it conveyed the definite hope that many more details could be
clarified in a future project. This was to be accomplished jointly with DM, who expressed
a desire to continue our collaboration.

After the sudden death of DM these hopes were forever dashed. Our focus at this
point became singularly aimed at making the mathematical community aware of DM’s
contributions, some of which had been almost completely hidden from view.



50 Mikhail H. Klin, Andrew J. Woldar

Quite soon it became evident that we had to restart the project virtually from scratch
in order to give it its due justice. Moreover, we both realized that the entire story could
be traced to a very specific date, namely Friday, October 21, 2005.

Both authors were visiting the mathematics department at the University of Nebraska
at Lincoln, awaiting their participation in the Special Session Association Schemes and
Related Topics at the 1011th Meeting of the AMS. (Thanks go out to coorganizer Sung-
Yell Song for extending them the invitation to speak.) The talks were scheduled to begin
on Saturday, October 22. Having arrived one day early, we met Dale in his office and
arranged to have dinner with him.

Our meeting with Dale was precipitated by a prior correspondence with the author
MK, who had requested a copy of the DM’s thesis [159]. This request was literally
fulfilled by 200%, as Dale had prepared in advance two copies of his thesis, distributing
one to each of us.

There was something very special, even a bit ceremonial, in this first meeting of all
three parties. (The author AW had met Dale many years earlier while still a graduate
student at The Ohio State University.)

Dale was a quite shy and reserved individual. However, on this particular evening
one could detect definite traces of pleasure and satisfaction in his facial expressions. This
was the satisfaction of an elderly scholar who, after spending much time in the shadows,
had come to realize the deep admiration had for him by two of his younger colleagues.
Clearly, they would read his thesis with heightened care and interest, conspicuously aware
of the treasure newly provided to them.

In the development of further events, the influence of Robert Jajcay would be critical.
There is something symbolic in the fact that he appeared as a coauthor of the text [117]
where DM’s discovery would be announced for the first time, as well as serving as witness
to the authors’ personal acquaintance with Dale. The initial note of MK was shared
with a few colleagues, Jajcay among them, and it was he who encouraged the authors to
expand their starting note to its present form.

This process took a lot of time. A preliminary version [139] was published in BICA,
the same journal in which [118] had earlier appeared.

In fact, the full story is quite more complicated. In 2010 a rough draft of the current
text, regarded as a privately distributed preprint, was prepared and sent to a number of
colleagues. The job over this draft involved, in particular, several months of intensive
investigation of the relevant literature. After that, the task we had chosen to follow
further required our reaction to several obtained responses. In addition, wishing to
conform to the format and style of BICA, we prepared a version of the preprint that was
greatly reduced in size and mathematical content. This was exactly the aforementioned
[139].

At some moment another draft was prepared, jointly with Matan Ziv-Av. This version
was strongly influenced by [141], a report urgently published in a collection that is not
even reflected in MathSciNet. This huge draft (85 pp.) was rather artificially conceived
by gluing together the current story about DM and his discovery of NL2(10) with the
known primitive triangle-free SRGs, their properties and mutual embeddings.

Fortunately, we soon realized that this attempt was counterproductive to our goals,
and decided to concentrate more concretely on the careful extension and polishing of our
preprint as it existed in 2010. As it turns out, the amount of time devoted to this task
was comparable to that of the preparation of the preprint itself. The end result is the
text here provided.

In a strong sense, the genre of this article is simultaneously an essay and an expository
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survey, paying equal attention to the psychology of scientific discovery and to historic
events that helped to shape the current mathematical landscape. However, within these
frames lies a deeper intended purpose: to expose the reader to a plethora of interesting
perspectives and useful ideas that have remained in the underground for a good half-
century yet have emerged in modern mathematics in various elaborate forms and guises.

Moreover, it is an article about DM, about his mathematics, about NLg-graphs, and
their special subclass of tf-SRGs. The main objects of our presentation are the graph
Γ = N2(10), its related substructures, and the Higman-Sims group.

14.2 Possible updates
By our initial assumptions, everything essentially linked to the first and second appear-
ances of Γ, its origins, development, and further advancement of relevant ideas, is of
potential interest to the reader. However, by no means do we pretend that our presen-
tation exhaustively touches all that is known about this graph. Indeed such an attempt
would result in a volume of encyclopedic size, with hundreds if not thousands of refer-
ences. Nevertheless, should such an ambitious task ever come to fruition we would be
delighted to learn that in some small way our current text played an initial influential
role.

Speaking about less ambitious tasks, we recall that this article is also regarded by
us as a kind of dynamic survey. In our eyes this genre does not mandate that each
forthcoming update should become a physical extension of a previous version. Rather,
there are realistic chances that over time, new and deeper perspectives may become
visible which would warrant a fresher, expanded view of the material. One possibility
may be based on the aforementioned draft with Ziv-Av, carefully fashioned into a more
refined and thoughtful treatment of the subject matter.

During Fall of 2016, the author MK immersed himself in the study of certain concepts
related to algebraic geometry (AG) in order to understand potential links between AG
and AGT. As he was basically a novice in this area, one could argue that this was not
the best decision. (In fact, it delayed the appearance of this paper for about a year.)

Nevertheless, one of the pleasant byproducts of this extended activity is the fruitful
collaboration with a few younger colleagues — S. Balagopalan and E. Shamovich, to name
a couple — whose interests are quite close to AG. In fact, in a talk recently delivered at
the conference ACA 2017 in Jerusalem (joint with Eli Shamovich) some definite potential
is demonstrated at the crossroads of AG and AGT, expressed via a fresh discussion of
the famous Clebsch graph.

Of course it is foolish to make concrete promises about what lies ahead. However, after
roughly 12 years of deep reflection on DM’s sundry contributions, the authors cannot
help but look to the future with great optimism and high expectations.

14.3 Epilogue: On every branch there are many twigs
Sometimes it is difficult to set a precise line of demarcation, and then resist all tempta-
tions to cross it. The present article is no exception.

Under the general heading of “objects related to the graph NL2(10)” we encountered
numerous observations, remarks and clarifications that could have easily made their way
into our paper had we so desired. However, we also recognized the need to not lead the
reader (and ourselves) too far astray. Facing a hard and fast deadline to submit our
paper to the editors of Acta UMB also contributed to our restraint. In brief, we confined
our efforts to the main branches but not to all of the twigs.

Nevertheless, we describe below a portion of material that didn’t make its way into
our text yet occupied an area very close to our defined boundary. Although we do not



52 Mikhail H. Klin, Andrew J. Woldar

give precise references in every case, we provide the appropriate attributions.

• Breaking the silence of DM’s discovery: The text [117] was definitely the first one.
Short remarks are made in [11, p. 351] and [94]. One finds a delicate discussion
in [118]. Further references are found at Wikipedia and the homepage of A. E.
Brouwer [23]. Recent citations are made by S. S. Magliveras, M. S. Shrikhande, J.
Moori, W. Knapp and their coauthors, and so on.

• Some constructions and nice decompositions of the graph Γ: A beautiful inter-
pretation of Γ is made by I. Shimada (2014) in terms of AG. A nice preprint of
T. Vis (2007) emphasizes certain subgraphs of Γ. Decompositions of Γ and the
Hoffman-Singleton graph HoSi are provided by Magliveras et al (2012).

• Attention of peers of AGT: A very interesting account can be found on the well
known blog of Peter Cameron (dated 23.11.2011). This was influenced by [117] and
an earlier draft of the present text, as well as the initial version [139]. Two further
preprints of N. L. Biggs (2010, 2011) report on a failed attempt to construct new
triangle-free SRG’s with λ = 0, µ = 2, with moving credits to W. Edge [69].

• On the edge between AGT and EGT: A pioneering paper of H. Nozaki (2015)
presents the known primitive triangle-free SRG’s as exceptional objects from the
perspective of EGT (Extremal Graph Theory). Further results in this direction
were obtained by S. Cioabă, W. Li and others at the University of Delaware.

• Codes related to the Higman-Sims group HS: Early origins of this work can be
traced back to R. Calderbank and D. Wales (1982), who relied on the 2-transitive
action of HS of degree 176. Among other texts on this topic, the one by A.
Cossidente and A. Sonnino (2012) is a nice combination of generous credit to DM
and a beautiful computer-aided investigation of the quadric Q−(9, 2).

• Other relevant objects: These include generating sets and regular maps of the group
HS (initiated by the author AW and subsequently investigated by M. Conder, G.
Jones and others), a triality rank 5 AS on 150 points (E. van Dam et al, 2013),
pentagonal geometries, on the edge between incidence geometries and AG (S. Ball
et al, 2013; K. Stokes et al, 2016), and group theoretical extensions of HS in new
clothes (S. Koshitaki et al, 2013; Y. Yang and S. Lin, 2014).

We shall stop here, reiterating our hope and optimism for the future.
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