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V. Jiménez López, Universidad de Murcia, Murcia, Spain
A. Sergyeyev, Silesian University in Opava, Czech republic
L’. Snoha, Matej Bel University, B. Bystrica, Slovakia

Editorial office: Acta Universitatis Matthiae Belii, ser. Mathematics
Department of Mathematics, Faculty of Natural Sciences
Matej Bel University
Tajovského 40
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Abstract
This article provides approximate solutions to some linear and nonlinear Volterra-Integral equations of
the second kind by using the Variational Iteration Method (VIM). Conversion Volterra’s integral equation
to an initial value problem or Volterra integro-differential equation is considered. The convergence of the
method is also considered to provide rapidly convergent successive approximations to the exact solution
if such a closed form solution exists. A comparison of the approximate solutions of this method with the
Adomian decomposition method and an exact solution will be demonstrated through numerical examples
to shows that the method is reliable, accurate and readily implemented.
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1 Introduction

Several authors in engineering and physical sciences have studied and used different nu-
merical methods to solve Volterra Integral equations. In recent years, many of these
numerical methods gave reliable and accurate solutions. [9] applied the two-step Laplace
decomposition method for solving nonlinear Volterra integral equations. [8] used the
homotopy analysis method for solving linear integral equations. [11] implemented a new
modified of Adomian decomposition method by the Taylor expansion of the components
apart from the zeroth of the Adomian series solution for Volterra integral equation of
the second kind. [10] employed the Taylor collocation method to approximate solutions
and convergence analysis for the Volterra-Fredholm integral equations, and [1] combined
Laplace transform with analytical methods for solving Volterra integral equations with a
convolution kernel. [6] studied the reliable modified of Laplace Adomian decomposition
method to solve nonlinear interval Volterra-Fredholm integral equations. [7] constructed
the numerical solution of nonlinear Volterra-Fredholm integral equations by variational
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iteration method.[12] used modified variational iteration method for the numerical so-
lutions of some non-linear Fredholm integro-differential equations of the second kind.
[5] studied recent advances in reliable methods for solving Volterra-Fredholm integral
and integro-differential equations. [3] implemented the usage of the homotopy analysis
method for solving fractional Volterra-Fredholm integro-differential equation of the sec-
ond kind. [2] introduced the approximate solutions using the Adomian decomposition
method and its modification for solving Fredholm integral equations. [4] employed modi-
fied the Adomian decomposition method to solve fuzzy Volterra-Fredholm integral equa-
tions. [14] used iterative methods to solve two-dimensional nonlinear Volterra-Fredholm
integro-differential equations.

In this article, we consider linear Volterra integral equation of the second kind of the
form

y(x) = f(x) + λ

∫ x)

a

k(x, t)y(t)dt, (1.1)

and nonlinear Volterra integral equation of the second kind is represented by the form

y(x) = f(x) +
∫ x

a

k(x, t)F (y(t))dt, (1.2)

where the kernel K(x, t) and the function f(x) are given real valued functions, λ is a
parameter and F (y(x)) is a nonlinear function of y(x) and the unknown function y(x)
appears inside and outside the integral sign.

The structure of this article is organized as follows: In the second section we present
linear and nonlinear Volterra integral equations of the second kind were solved by vari-
ational iteration method which uses a few numbers of iterations. Section 3 presents our
numerical examples and graphical results will demonstrate the efficiency of the method
and will be shown that the method is accurate and readily implemented compared to
some exact solutions. Finally, the conclusion will be in Section 4.

2 VIM for solving Volterra integral equations

To use the variational iteration method for solving Volterra integral equations, it is
necessary to convert the integral equation to an equivalent initial value problem or to an
equivalent integro-differential equation.

To convert Equation (1.1) to equivalent initial value problems [13] we achieved simply
by differentiating both sides of Volterra equation with respect to x as many times as we
need to get rid of the integral sign and come out with a differential equation. The
conversion of Volterra equations requires the use of Leibnitz rule for differentiating the
integral at the right hand side. The initial conditions can be obtained by substituting
x = 0 into y(x) and its derivatives.

2.1 Linear Volterra integral equations:
For the purpose of illustration of the methodology to the variational iteration method,
we begin by considering a nonlinear differential equation of the formal form

L(y) +N(y) = g(x), (2.1)

where L and N are linear and nonlinear operators respectively, g(x) is a known
analytical function and y is an unknown function to be determined. He [13] introduced
method where a correction function for Equation (2.1) can be written as

yn+1(x) = yn(x) +
∫ x

0
λ(ξ)(Lyn(ξ) +Nỹ(ξ) − g(ξ))dξ, (2.2)
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Where λ is a general Lagrange’s multiplier, noting that in this method λ may be a
constant or a function, and ỹn is a restricted value that means it behaves like a constant,
hence δỹn = 0, where δ is the variational derivative.

For the complete use of the variational iteration method, we should follow two steps,
first, we determine the Lagrange multiplier λ(ξ) that will be identified optimally, second,
we substitute the result into Equation (2.2) where the restrictions should be omitted.

Taking the variation of Equation (2.2) with respect to the independent variable y we
find

δyn+1
δyn

= 1 + δ

δyn

(∫ x

0
λ(ξ)(Lyn(ξ) +N ˜yn(ξ) − g(ξ))dξ

)
, (2.3)

integration by parts is usually used for the determination of the Lagrange multiplier λ(ξ).
In other words, we can use

∫ x

0
λ(ξ)y′n(ξ)dξ = λ(ξ)yn(ξ) −

∫ x

0
λ′(ξ)yn(ξ)dξ

∫ x

0
λ(ξ)y′′n(ξ)dξ = λ(ξ)y′n(ξ) − λ′(ξ)yn(ξ) +

∫ x

0
λ′′(ξ)yn(ξ)dξ

∫ x

0
λ(ξ)y′′′n (ξ)dξ = λ(ξ)y′′n(ξ) − λ′(ξ)y′n(ξ) + λ′′(ξ)yn(ξ) −

∫ x

0
λ′′′(ξ)yn(ξ)dξ (2.4)

∫ x

0
λ(ξ)yivn (ξ)dξ = λ(ξ)y′′′n (ξ) − λ′(ξ)y′′n(ξ) + λ′′(ξ)y′n(ξ) − λ′′′(ξ)yn(ξ) +

∫ x

0
λiv(ξ)yn(ξ)dξ

and so on.
Having determined the Lagrange multiplier λ(ξ), the successive approximations yn+1,

n ≥ 0, of the solution y(x) will be readily obtained upon using selective function y0(x).
However, for fast convergence, the function y(x) should be selected by using the initial
conditions as follows:

y0(x) = y(0), for first order y′n,
y0(x) = y(0) + xy′0, for second order y′′n,

y0(x) = y(0) + xy′n + 1
2!x

2y′′0 , for third order y′′′n ,

and so on. Consequently, the solution

y(x) = lim
n−→∞

yn(x). (2.5)

The determination of the Lagrange multiplier plays a major role in the determination
of the solution of the problem. In what follows, we write generally iteration formu-
lae that show ODE, its corresponding Lagrange multiplier,and its correction functional
respectively:

y(n) + f(y(ξ), y′(ξ), . . . , y(n)(ξ)) = 0, λ = (−1)n 1
(n− 1)! (ξ − x)n−1

yn+1 = yn + (−1)n
∫ x

0

1
(n− 1)! (ξ − x)n−1[y′′′n + f(yn, . . . , y(n)

n )]dξ, (2.6)

for n ≥ 1
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2.2 Nonlinear Volterra integral equation:
For solving Equation (1.2) by variational iteration method [15], first we differentiate once
from both sides of Equation (1.2), with respect to x:

y′(x) = f ′(x) + k(x, x)F (y(x)) +
∫ x

0

∂k(x, t)
∂x

F (y(t))dt, (2.7)

now we apply variational iteration method to Equation (2.7). According to this method
correction functional can be written in the following form:

yn+1(x) = yn(x) +
∫ x

0
λ

(
y′n(s) − f ′(s) − k(s, s)F (ỹn(s)) −

∫ s

0

∂k(s, t)
∂s

F (ỹn(t)dt)
)
ds,

(2.8)
to make the above correction functional stationary with respect to yn, we have:

δyn+1(x) = δyn(x) + δ

∫ x

0
λ

(
y′n(s) − f ′(s) − k(s, s)F (ỹn(s)) −

∫ s

0

∂k(s, t)
∂s

F (ỹn(t)dt)
)

= δyn(x) +
∫ x

0
λ, (s)δ(y′n(s))ds = δyn(x) + λ(x)δyn(x) +

∫ x

0
λ′(s)δyn(s)ds = 0,(2.9)

from the above relation for any δyn, we obtain the Euler-Lagrange equation:

λ′(s) = 0, (2.10)

with the following natural boundary condition:

λ(x) + 1 = 0, (2.11)

using equations (2.10) and (2.11), Lagrange multiplier can be identified optimally as
follows:

λ(s) = 1, (2.12)

substituting the identified Lagrange multiplier into Equation (2.8) we obtain the following
iterative relation:

yn+1(x) = yn(x) +
∫ x

0

(
y′n(s) − f ′(s) − k(s, s)F (yn(s)) −

∫ s

0

∂k(s, t)
∂s

F (yn(t)dt)
)
ds,

(2.13)
we can obtain the exact solution or an approximate solution to the Equation (1.2) by
starting from y0(x). Also in some Volterra integral equations by differentiating from
integral equation, for example when the kernel is independent of x, we obtain a differential
equation then we solve it by using variational iteration method.

3 Illustrative examples

In this section we solve three examples of the linear and nonlinear of Volterra integral
equations which have solved in [13]. Numerical results show that our proposed method
has a high accuracy.

Example 1. Consider the following linear Volterra integral equation with the exact
solution y(x) = ex

y(x) = 1 + x+ x2

2 + 1
2

∫ x

0
(x− t)2y(t)dt, (3.1)
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differentiate both sides of Equation (3.1) with respect to x by using Leibnitz rule
gives the integro-differential equation

y′(x) = 1 + x+
∫ x

0
(x− t)y(t)dt, y(0) = 1, (3.2)

applyig the variational iteration method to Equation (3.2) we get the correction func-
tional

yn+1(x) = yn(x) +
∫ x

0
λ(ξ

(
y′n(ξ) − 1 − ξ −

∫ ξ

0
(ξ − s)ỹn(s)ds

)
dξ, (3.3)

we find the Lagrange multiplier
λ = −1, (3.4)

substituting this value of the Lagrange multiplier into the functional Equation (3.3) gives
the iteration formula

yn+1(x) = yn(x) +
∫ x

0
λ(ξ

(
y′n(ξ) − 1 − ξ −

∫ ξ

0
(ξ − s)yn(s)ds

)
dξ, (3.5)

using the initial conditions to select y0(x) = y(0) = 1 and use it into Equation 3.5 we get

y0(x) = 1,

y1(x) = 1 + x+ x2

2! + x3

3! ,

y2(x) = 1 + x+ x2

2! + x3

3! + x4

4! + x5

5! + x6

6! ,

yn(x) = 1 + x+ x2

2! + x3

3! + x4

4! + x5

5! + x6

6! + · · · + xn

n! , (3.6)

which converges to the exact solution y(x) = ex

Figure 1 shows the comparison between the exact solution and the approximate solution

Table 1. Numerical results of Example 1, N = 4.

x yExact(x) yAppr.(x) E4(y)
0.1 1.105170918 1.105170918
0.2 1.221402758 1.221402758
0.3 1.349858808 1.349858808
0.4 1.491824698 1.491824698
0.5 1.648721271 1.648721270 1 × 10−9

0.6 1.822118800 1.822118799 1 × 10−9

0.7 2.013752707 2.013752699 8 × 10−9

0.8 2.225540928 2.225540897 31 × 10−9

0.9 2.459603111 2.459603007 104 × 10−9

1.0 2.718281828 2.718281526 302 × 10−9

obtained by the VIM. It is seen from Fig.1 the solution obtained by the proposed method
nearly identical to the exact solution. In this example, the simplicity and accuracy of
the proposed method is illustrated by computing the absolute error E4(x).
The accuracy of the result can be improved by introducing more terms of the approx-
imate solutions. In Table 1, VIM solutions is compared with the exact solution of the
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Exact

VIM

Figure 1. Comparison between exact and approximate solutions for Example 1

Volterra integral Equation (3.1). There is good agreement between exact and approx-
imate solution obtained by proposed method. The table also shows the absolute error
between the exact and approximate solutions.

Example 2. Consider the following nonlinear Volterra integral equation with the exact
solution y(x) = tan(x)

y(x) = x+
∫ x

0
y2(t)dt, (3.7)

differentiate both sides of Equation (3.7) with respect to x by using Leibnitz rule gives
the integro-differential equation

y′(x) = 1 +
∫ x

0
y2(t), y(0) = x, (3.8)

applyig the variational iteration method VIM to Equation (3.7) we get the correction
functional

yn+1(x) = yn(x) +
∫ x

0
λ(ξ

(
y′n(ξ) − 1

∫ ξ

0
ỹ2
n(s)ds

)
dξ, (3.9)

we find the Lagrange multiplier
λ = −1, (3.10)

substituting this value of the Lagrange multiplier into the functional (3.9) gives the
iteration formula

yn+1(x) = yn(x) −
∫ x

0

(
y′n(ξ) − 1 −

∫ ξ

0
(y2
n(s)ds

)
dξ, (3.11)

using the initial conditions to select y0(x) = y(0) = 1 and use it into Equation (3.11) we
get

y0(x) = x,
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Exact

VIM

ADM

Figure 2. Comparison between exact and approximate solutions for Example 2

y1(x) = x+ x3

3 ,

y2(x) = x+ x3

3 + 2x5

15 + x7

63 ,

y3(x) = x+ x3

3 + 2x5

15 + 17x7

315 + 342x9

25515 + 1206x11

467775 + 4x13

12285 + x15

59535 , (3.12)

which converges to the exact solution y(x) = tan(x)

Table 2. Numerical results of Example 2, N = 4.

x yExact(x) VIM ADM E4(yV IM ) E4(yADM )
0.1 0.100334672 0.100334672 0.100334672
0.2 0.202710035 0.202710031 0.202710024 4 × 10−9 11 × 10−9

0.3 0.309336249 0.309336071 0.309335802 178 × 10−9 447 × 10−9

0.4 0.422793218 0.422790712 0.422787088 2.506 × 10−6 6.13 × 10−6

0.5 0.546302489 0.546282438 0.546254960 20.015 × 10−6 47.538 × 10−6

0.6 0.684136808 0.684023632 0.683878765 113.176 × 10−6 258.043 × 10−6

0.7 0.842288380 0.841782292 0.841187184 506.088 × 10−6 1.101196 × 10−3

0.8 1.029638557 1.027714288 1.025675297 1.924269 × 10−3 3.96326 × 10−3

0.9 1.260158218 1.253633063 1.247544849 6.525155 × 10−3 12.613369 × 10−3

1.0 1.557407725 1.536959360 1.520634921 20.448365 × 10−3 36.772804 × 10−3

Figure 2 shows the comparison between the exact solution and the approximate so-
lutions obtained by the VIM and ADM. It is seen from Figure 2 the solution obtained
by the proposed method nearly identical to the exact solution. In this example, the
simplicity and accuracy of the proposed method is illustrated by computing the absolute
error E4(x).
The accuracy of the result can be improved by introducing more terms of the approxi-
mate solutions. In Table 2, VIM solutions is compared with ADM and the exact solution
of the Volterra integral Equation (3.1). There is good agreement between exact and
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approximate solution obtained by proposed method. The table also shows the absolute
error between the exact and approximate solutions. VIM is better than ADM and it has
more accuracy.

Example 3. Consider the following linear Volterra integral equation with the exact
solution y(x) = x+ cos(x)

y(x) = 1 + x+ x3

3! −
∫ x

0
(x− t)y(t)dt, (3.13)

differentiate both sides of Equation (3.13) with respect to x by using Leibnitz rule gives
the integro-differential equation

y′(x) = 1 + x2

2 −
∫ x

0
y(t)dt, y(0) = 1, (3.14)

we obtain the initial value problem by differentiating Equation (3.14) again

y′′(x) = x− y(x), y(0) = 1, y′(0) = 1, (3.15)

(a) Applyig the variational iteration method to Equation (3.14) we get the correction
functional

yn+1(x) = yn(x) +
∫ x

0
λ(ξ)

(
y′n(ξ) − 1 − ξ2

2 −
∫ ξ

0
ỹn(s)ds

)
dξ, (3.16)

we find the Lagrange multiplier of the first order

λ = −1, (3.17)

substituting this value of the Lagrange multiplier into the functional Equation (3.15)
gives the iteration formula

yn+1(x) = yn(x) −
∫ x

0

(
y′n(ξ) − 1 − ξ2

2 −
∫ ξ

0
(yn(s)ds

)
dξ, (3.18)

using the initial conditions to select y0(x) = y(0) = 1 and use it into Equation (3.18)
we get

y0(x) = 1,

y1(x) = 1 + x− x2

2! + x3

3! ,

y2(x) = 1 + x− x2

2! + x4

4! − x5

5! ,

y3(x) = 1 + x− x2

2! + x4

4! − x6

6! + x7

7! ,

yn(x) = x+
(

1 − x2

2! + x4

4! − x6

6! + · · · + (−1)nx2n

(2n)!

)
, (3.19)

which gives the exact solution y(x) = x+ cos(x)
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(b) Applying the variational iteration method to Equation (3.14) we get the correction
functional

yn+1(x) = yn(x) +
∫ x

0
λ(ξ) (y′′n(ξ) + ỹn(ξ)) dξ, (3.20)

we find the Lagrange multiplier for second order

λ = ξ − x, (3.21)

substituting this value of the Lagrange multiplier into the functional (3.20) gives the
iteration formula

yn+1(x) = yn(x) +
∫ x

0
(ξ − x) (y′′n(ξ) + yn(ξ) − ξ) dξ, (3.22)

using the initial conditions to select y0(x) = y(0) + xy′0 = 1 + x and use it into
Equation (3.22) we get

y0(x) = 1 + x,

y1(x) = 1 + x− x2

2! ,

y2(x) = 1 + x− x2

2! + x4

4! ,

y3(x) = 1 + x− x2

2! + x4

4! − x6

6! ,

yn(x) = x+
(

1 − x2

2! + x4

4! − x6

6! + · · · + (−1)nx2n

(2n)!

)
, (3.23)

which gives the exact solution y(x) = x+ cos(x).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

Exact

VIM first order

VIM second order

Figure 3. Comparison between exact and approximate solutions for Example 3

Figure 3 shows the comparison between the exact solution and the approximate so-
lution obtained by the VIM of the first order and the second order respectively. It is
seen from Figure 3 the solution obtained by the proposed method nearly identical to the
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exact solution. In this example, the simplicity and accuracy of the proposed method
is illustrated by computing the absolute error E4(x) .The accuracy of the result can be
improved by introducing more terms of the approximate solutions. In Table 3, VIM
solutions are compared with the exact solution of the Volterra integral Equation (3.13).
There is good agreement between the exact and approximate solution obtained by the
proposed method. The table also shows the absolute error between the exact and ap-
proximate solutions and the approximate solution is obtained from the second order is
accuracy more than that is obtained from first order with the same iterations.

Table 3. Numerical results of Example 3, N = 4.

x yExact(x) VIM 1storder VIM 2nd order E4(y) 1storder E4(y) 2nd order
0.1 1.095004165 1.095004165 1.095004165
0.2 1.180066578 1.180066580 1.180066578 10 × 10−9

0.3 1.255336489 1.255336531 1.255336488 42 × 10−9 1 × 10−9

0.4 1.321060994 1.321061303 1.321060978 309 × 10−9 16 × 10−9

0.5 1.377582562 1.377584015 1.377582465 1.453 × 10−6 97 × 10−9

0.6 1.425335615 1.425340754 1.425335520 5.139 × 10−6 415 × 10−9

0.7 1.464842187 1.464857105 1.464840765 14.918 × 10−6 1.422 × 10−6

0.8 1.496706709 1.496744188 1.496702578 37.479 × 10−6 4.131 × 10−6

0.9 1.521609968 1.521694288 1.521599388 84.32 × 10−6 10.58 × 10−6

1.0 1.540302306 1.540277778 1.540277778 173.884 × 10−6 24.528 × 10−6

4 Conclusion

In this article, the variational iteration method has been successfully employed to obtain
the approximate and analytical solution of linear and nonlinear Volterra integral equation
of the second kind. The results showed that the convergence, powerful and efficient of this
technique was in a good agreement with the exact, analytical and approximate solutions
for wide classes of problems. The solution is obtained by the our proposed method
has high accuracy and also VIM better than Adomian decomposition method. The
computations associated with the examples in this work were performed using Maple 17.
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Abstract
Topological indices have a significant importance in the study of physicochemical properties of chemical
compounds. Among them, degree based topological indices have played a prominent role to study
the chemical properties of nanostructure materials. In this paper, we compute non-neighbor sum-
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1 Introduction

We consider a graph G to be a finite, undirected, simple graph having n vertices with
m edges. Let V (G) be the vertex set and E(G) be the edge set of G, dG(u) denotes
the degree of a vertex u, δ and ∆ be the minimum degree and the maximum degree of
a graph G respectively, d(u, v) is the distance between the vertices u and v. A vertex
v ∈ V (G) is called a full degree vertex, if dG(v) = n − 1. Also, uv represents an edge
between the two vertices u and v. For undefined terminologies we refer to [3].
∗corresponding author

Copyright © 2019 Matej Bel University
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A topological index is a numeric value mathematically derived from the graph repre-
senting a molecule. The mathematical and computational chemistry involving the com-
putation of topological indices is a trending research topic. Topological indices are of
two main categories, one depends on vertex distance and the other depends on vertex
degree.

Zagreb indices are the oldest among the topological indices, given by Gutman and
Trinajstic [2] defined as

M1(G) =
∑

uv∈E(G)

[dG(u) + dG(v)]

and
M2(G) =

∑

uv∈E(G)

[dG(u)× dG(v)].

As the years passed many degree based topological indices were introduced, among which
sum-connectivity index (SCI) and atom bond connectivity (ABC) index are two such
topological indices. Sum-connectivity index, which was introduced in 2009 [14], is defined
as

SCI(G) =
∑

uv∈E(G)

[dG(u) + dG(v)]−1/2.

Atom-bond connectivity (ABC) index, which was introduced in 1998 [1], is defined as

ABC(G) =
∑

uv∈E(G)

√
dG(u) + dG(v)− 2
dG(u)× dG(v) .

The first multiplicative topological index was introduced in 1984 by Narumi and Katayama
[6] and it is defined as

NK(G) =
∏

u∈V (G)

dG(u).

Some of the non-neighbor topological indices are studied in [8]. Also, some work on
Randic and multiplicative topological indices can be referred in [9, 10, 11].

Motivated by these works, we define non-neighbor sum-connectivity index, non-
neighbor ABC index and multiplicative non-neighbor sum-connectivity index, multi-
plicative non-neighbor ABC index. We define a set NG(u) of non-neighbors of a ver-
tex u as NG(u) = {v ∈ V (G) : d(u, v) 6= 1} and a non-neighbor degree dG(u) of u as
dG(u) = n − 1 − dG(u), where n is the order of the graph G. Let δ and ∆ denotes
the minimum non-neighbor degree and the maximum non-neighbor degree of a graph G,
respectively. Throughout this paper we use the notation NN for non-neighbor.

Definition 1. Non-neighbor SCI (NN-SCI):

SCI(G) =
∑

uv∈E(G)

[dG(u) + dG(v)]−1/2

Definition 2. Multiplicative non-neighbor SCI:

ΠSCI(G) =
∏

uv∈E(G)

[dG(u) + dG(v)]−1/2
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Definition 3. Non-neighbor ABC index (NN-ABC):

ABC(G) =
∑

uv∈E(G)

√
dG(u) + dG(v)− 2
dG(u)× dG(v)

Definition 4. Multiplicative non-neighbor ABC index:

ΠABC(G) =
∏

uv∈E(G)

√
dG(u) + dG(v)− 2
dG(u)× dG(v)

Boron nanotubes have been considered as excellent nanomaterial because of their
remarkable properties such as high chemical stability, high resistance to oxidation at
high temperatures and being a stable wide band-gap semiconductor, due to which they
can be used for applications at high temperatures or in corrosive environments such
as batteries, fuel cells, super capacitors, high speed machines as solid lubricants. The
stability, mechanical and electronic properties have been discussed in [7, 13]. In 2009,
Y. Liu et al. [12] predicted a new class of boron nanotubes, which are covered by hexagons
and triangles. Such a nanotube was called Tri-Hexagonal boron nanotube and its 3D
perception is shown in the Figure 1. Some of the degree based topological indices are
studied for Tri-Hexagonal boron nanotube in [5].

Figure 1. A 3D perception of Tri-Hexagonal boron nanotube.

In this article, NN-SCI, NN-ABC index and multiplicative NN-SCI, multiplicative
NN-ABC index are introduced. In Section 2, these new indices are obtained for some
classes of graphs. In Section 3, the indices are computed for some corona products of
graphs. Finally, in Section 4, the new indices are computed for some nano-structures.

Proposition 5. For a graph G of order n ≥ 3 with the diameter diam(G) ≥ 2,

(i) SCI(G), ΠSCI(G) exist and SCI(G), ΠSCI(G) > 0,
(ii) if ABC(G), ΠABC(G) exist, then there does not exist a full degree vertex in G.

Moreover, ABC(G), ΠABC(G) ≥ 0.

Proposition 6. Let G be a connected graph of order n ≥ 3. Then for each u ∈ V (G),
dG(u) ≥ 0.

Proposition 7. Let G be a connected graph of order n and size m. Then
∑

u∈V (G)

dG(u) = n(n− 1)− 2m.



18 S.B. Chandrakala et al.

2 NN-SCI, NN-ABC index and multiplicative NN-SCI, multiplicative NN-ABC index
for some classes of graphs

Here formulas for NN-SCI, NN-ABC index and multiplicative NN-SCI, multiplicative
NN-ABC index of a k-regular graph, a cycle, a path, a complete bipartite graph, a star
graph and a wheel graph are computed.

Theorem 8. For a k-regular graph G of order n ≥ 3 with 2 ≤ k ≤ n− 2,

SCI(G) = nk

2
√

2(n− 1− k)
and ABC(G) = nk

n− 1− k

√
n− 2− k

2 .

Proof. A k-regular graph of order n ≥ 3 has nk/2 number of edges. In these graphs
the NN-degree of each vertex is n− 1− k. Hence for a k-regular graph G,

SCI(G) = nk

2

[
1√

2(n− 1− k)

]
= nk

2
√

2(n− 1− k)

and

ABC(G) = nk

2

[√
2(n− 1− k)− 2

(n− 1− k)2

]
= nk

n− 1− k

√
n− 2− k

2 .

Corollary 9. For a k-regular graph G of order n ≥ 3 with 2 ≤ k ≤ n− 2,

ΠSCI(G) = [2(n− 1− k)]−nk
4 and ΠABC(G) =

[√
2(n− 2− k)
n− 1− k

]nk
2

.

Corollary 10. For a cycle Cn (n ≥ 4),

SCI(Cn) = n[2(n− 3)]− 1
2 ; ABC(Cn) = n

n− 3
√

2(n− 4)

and

ΠSCI(Cn) = [2(n− 3)]−n
2 ; ΠABC(Cn) =

[√
2(n− 4)
n− 3

]n

.

Remark 11. The diameter of a complete graph is 1 and hence NN-topological indices
are not defined for it.

Theorem 12. For a path Pn (n ≥ 4),

SCI(Pn) = 2√
2n− 5

+
√
n− 3

2 and ABC(Pn) = 2
√

2n− 7
(n− 2)(n− 3) +

√
2(n− 4).

Proof. Let u ∈ V (Pn). Then

dPn
(u) =

{
n− 2 if dPn

(u) = 1
n− 3 if dPn

(u) = 2 and |E(Pn)| = n− 1.
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By Definition 1 and 3,

SCI(Pn) = 2√
(n− 2) + (n− 3)

+ n− 3√
2(n− 3)

= 2√
2n− 5

+
√
n− 3

2

and

ABC(Pn) = 2

√
(n− 2) + (n− 3)− 2

(n− 2)(n− 3) + (n− 3)

√
2(n− 3)− 2

(n− 3)2

= 2
√

2n− 7
(n− 2)(n− 3) +

√
2(n− 4).

Corollary 13. For a path Pn (n ≥ 4),

ΠSCI(Pn) = 1
2n− 5 [2(n− 3)]−

n−3
2 ,

ΠABC(Pn) =
[

2n− 7
(n− 2)(n− 3)

] [
1

n− 3
√

2(n− 4)
]n−3

.

Proof.

ΠSCI(Pn) =
[

1√
(n− 2) + (n− 3)

]2

×
[

1√
2(n− 3)

]n−3

= 1
2n− 5 [2(n− 3)]−

n−3
2 ,

ΠABC(Pn) =
[√

(n− 2) + (n− 3)− 2
(n− 2)(n− 3)

]2

×
[√

2(n− 3)− 2
(n− 3)2

]n−3

= 2n− 7
(n− 2)(n− 3)

[
1

n− 3
√

2(n− 4)
]n−3

.

Remark 14. SCI(P3) = 2, ΠSCI(P3) = 1; indices ABC(P3) and ΠABC(P3) do not
exist.

Theorem 15. For a complete bipartite graph Kp,q,

(i) SCI(Kp,q) = pq√
p+ q − 2 , where p ≥ 1, q ≥ 2 (or reverse order),

(ii) ABC(Kp,q) = pq

√
p+ q − 4

(p− 1)(q − 1) , where p, q ≥ 2.

Proof. Let V1 and V2 be the bi-partitions of Kp,q with |V1| = p and |V2| = q. Then for
each u ∈ V (Kp,q), we have

dKp,q
(u) =

{
p− 1 if u ∈ V1
q − 1 if u ∈ V2

and |E(Kp,q)| = pq.
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So, by Definition 1 and 3,

SCI(Kp,q) = pq

[
1√

(p− 1) + (q − 1)

]
= pq√

p+ q − 2

and

ABC(Kp,q) = pq

√
(p− 1) + (q − 1)− 2

(p− 1)(q − 1) = pq

√
p+ q − 4

(p− 1)(q − 1) .

Corollary 16. For a complete bipartite graph Kp,q,

(i) ΠSCI(Kp,q) = [p+ q − 2]−
pq
2 , where p ≥ 1, q ≥ 2 (or reverse order),

(ii) ΠABC(Kp,q) =
[

p+ q − 4
(p− 1)(q − 1)

] pq
2

, where p, q ≥ 2.

Proof.

ΠSCI(Kp,q) =
[

1√
(p− 1) + (q − 1)

]pq

= [p+ q − 2]−
pq
2

and

ΠABC(Kp,q) =
[√

p+ q − 4
(p− 1)(q − 1)

]pq

=
[

p+ q − 4
(p− 1)(q − 1)

] pq
2

.

Corollary 17. For a star graph K1,n (n ≥ 2),

SCI(K1,n) = n√
n− 1

; ABC(K1,n) does not exist

and
ΠSCI(K1,n) = (n− 1)−n

2 ; ΠABC(K1,n) does not exist.

Theorem 18. For a wheel graph W1,n (n ≥ 4),

SCI(W1,n) = n

[ √
2 + 1√

2(n− 3)

]
and ABC(W1,n) does not exist.

Proof. For each vertex u ∈ V (W1,n), we have

dW1,n
(u) =

{
0 if u is a central vertex
n− 3 otherwise and |E(W1,n)| = 2n.

So, by Definition 1 and 3,

SCI(W1,n) = n√
n− 3

+ n√
2(n− 3)

= n

[ √
2 + 1√

2(n− 3)

]
.

As W1,n has a full degree vertex, ABC(W1,n) does not exist.
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Corollary 19. For a wheel graph W1,n (n ≥ 4),

ΠSCI(W1,n) = [
√

2(n− 3)]−n and ΠABC(W1,n) does not exist.

Proof.

ΠSCI(W1,n) =
(

1√
n− 3

)n
[

1√
2(n− 3)

]n

= [
√

2(n− 3)]−n

3 NN-SCI, NN-ABC index and multiplicative NN-SCI, multiplicative NN-ABC index
of corona products of graphs

In this section, we give formulas for NN-SCI, NN-ABC index and multiplicative NN-SCI,
multiplicative NN-ABC index of a comb graph, a sunlet graph, a helm graph, a fan graph
and a friendship graph.

The corona product G � H [4] of two graphs G and H, is the graph obtained by
taking one copy of G and |V (G)| copies of H, and by joining each vertex of the i-th copy
of H to the i-th vertex of G; where 1 ≤ i ≤ |V (G)|.
Theorem 20. For a comb graph G = Pn �K1 (n ≥ 3),

SCI(G) = 2
[
(4n− 5)− 1

2 + (4n− 7)− 1
2

]

+ (n− 2)
[
(4n− 6)− 1

2 + 2−1(n− 3)(n− 2)− 3
2

]
,

ABC(G) =
√

2
2n− 3

(√
4n− 7
n− 1 +

√
4n− 9
n− 2

)
+ (n− 2)

[
1√
n− 1

+ n− 3
(n− 2)2

√
2n− 5

2

]
.

Proof. Let u ∈ V (G). Then

dG(u) =





2n− 2 if dG(u) = 1
2n− 3 if dG(u) = 2
2(n− 2) if dG(u) = 3

and |E(G)| = 2n− 1.

So, by Definition 1 and 3,

SCI(G) = 2[(2n− 2) + (2n− 3)]− 1
2 + 2[(2n− 3) + (2n− 4)]− 1

2

+ (n− 2)[(2n− 2) + (2n− 4)]− 1
2 + (n− 3)

[
22(n− 2)

]− 1
2

= 2
[
(4n− 5)− 1

2 + (4n− 7)− 1
2

]
+ (n− 2)

[
(4n− 6)− 1

2 + 2−1(n− 3)(n− 2)− 3
2

]

and

ABC(G) = 2

√
(2n− 2) + (2n− 3)− 2

(2n− 2)(2n− 3) + 2

√
(2n− 4) + (2n− 3)− 2

(2n− 4)(2n− 3)

+ (n− 2)

√
(2n− 2) + (2n− 4)− 2

(2n− 2)(2n− 4) + (n− 3)

√
2(2n− 4)− 2

(2n− 4)2

=
√

2
2n− 3

(√
4n− 7
n− 1 +

√
4n− 9
n− 2

)
+ (n− 2)

[
1√
n− 1

+ n− 3
(n− 2)2

√
2n− 5

2

]
.
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Corollary 21. For a comb graph G = Pn �K1 (n ≥ 3),

ΠSCI(G) =
[
2

3n−8
2 (4n− 5)(4n− 7)(2n− 3)

n−2
2 (n− 2)

n−3
2

]−1
,

ΠABC(G) = 2−
n+1

2 (n− 1)−n
2 (4n− 7)(4n− 9)(2n− 5)

n−3
2 (2n− 3)−2(n− 2)−(n−2).

Proof. For G = Pn �K1,

ΠSCI(G) = [(2n− 2) + (2n− 3)]−1[(2n− 3) + (2n− 4)]−1[(2n− 2)

+ (2n− 4)]−
n−2

2
[
22(n− 2)

]−n−3
2

=
[
2

3n−8
2 (4n− 5)(4n− 7)(2n− 3)

n−2
2 (n− 2)

n−3
2

]−1

and

ΠABC(G) =
[√

(2n− 2) + (2n− 3)− 2
(2n− 2)(2n− 3)

]2 [√
(2n− 4) + (2n− 3)− 2

(2n− 4)(2n− 3)

]2

[√
(2n− 2) + (2n− 4)− 2

(2n− 2)(2n− 4)

]n−2 [√
2(2n− 4)− 2

(2n− 4)2

]n−3

= 2−
n+1

2 (n− 1)−n
2 (4n− 7)(4n− 9)(2n− 5)

n−3
2 (2n− 3)−2(n− 2)−(n−2).

Theorem 22. For a sunlet graph G = Cn �K1 (n ≥ 3)

SCI(G) = n

2

[
2 1

2 (2n− 3)− 1
2 + (n− 2)− 1

2

]
,

ABC(G) = n
[
(n− 1)− 1

2 + 2− 1
2 (n− 2)−1(2n− 5) 1

2

]
.

Proof. Let u ∈ V (G). Then

dG(u) =
{

2(n− 1) if dG(u) = 1
2(n− 2) if dG(u) = 3 and |E(G)| = 2n.

By Definition 1 and 3,

SCI(G) = n[(2n− 2) + (2n− 4)]− 1
2 + n[2(2n− 4)]− 1

2

= n

2

[
2 1

2 (2n− 3)− 1
2 + (n− 2)− 1

2

]

and

ABC(G) = n

√
(2n− 2) + (2n− 4)− 2

(2n− 2)(2n− 4) + n

√
2(2n− 4)− 2

(2n− 4)2

= n
[
(n− 1)− 1

2 + 2− 1
2 (n− 2)−1(2n− 5) 1

2

]
.
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Corollary 23. For a sunlet graph G = Cn �K1 (n ≥ 3),

ΠSCI(G) =
[
23(n− 2)(2n− 3)

]−n
2 and ΠABC(G) =

[
1

n− 2

√
2n− 5

2(n− 1)

]n

.

Proof.

ΠSCI(G) = [(2n− 2) + (2n− 4)]−n
2 [2(2n− 4)]−n

2 =
[
23(n− 2)(2n− 3)

]−n
2

and

ΠABC(G) =
[√

(2n− 2) + (2n− 4)− 2
(2n− 2)(2n− 4)

]n [√
2(2n− 4)− 2

(2n− 4)2

]n

=
[

1
n− 2

√
2n− 5

2(n− 1)

]n

.

Theorem 24. For a helm graph G = W1,n �K1 \ vov
′
o (n ≥ 3), where vo is the central

vertex of W1,n and v′o is the one and only vertex of K1,

SCI(G) = n[(4n− 5)− 1
2 + 2−1(n− 2)− 1

2 + (3n− 4)− 1
2 ] ,

ABC(G) = n√
2

[√
4n− 7

(2n− 1)(n− 2) +
√

2n− 5
n− 2 +

√
3
n

]
.

Proof. For any u ∈ V (G), we have

dG(u) =





2n− 1 if dG(u) = 1
2(n− 2) if dG(u) = 4
n if dG(u) = n

and |E(G)| = 3n.

By Definition 1 and 3,

SCI(G) = n
{

[(2n− 1) + (2n− 4)]− 1
2 + [2(2n− 4)]− 1

2 + [n+ (2n− 4)]− 1
2

}

= n
[
(4n− 5)− 1

2 + 2−1(n− 2)− 1
2 + (3n− 4)− 1

2

]

and

ABC(G) = n

[√
(2n− 1) + (2n− 4)− 2

(2n− 1)(2n− 4) +

√
2(2n− 4)− 2

(2n− 4)2 +

√
n+ (2n− 4)− 2

n(2n− 4)

]

= n√
2

[√
4n− 7

(2n− 1)(n− 2) +
√

2n− 5
n− 2 +

√
3
n

]
.

Corollary 25. For a helm graph G = W1,n �K1 \ vov
′
o (n ≥ 3), where vo is the central

vertex of W1,n and v′o is the one and only vertex of K1,

ΠSCI(G) = 2−n
[
(4n− 5)(n− 2)(3n− 4)

]−n
2 ,

ΠABC(G) =
[

3(4n− 7)(2n− 5)
n(2n− 1)(2n− 4)3

]n
2

.
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Proof.

ΠSCI(G) =
{

[(2n− 1) + (2n− 4)]−
1
2 × [2(2n− 4)]− 1

2 × [n+ (2n− 4)]− 1
2

}n

= 2−n
[
(4n− 5)(n− 2)(3n− 4)

]−n
2

and

ΠABC(G) =
[√

(2n− 1) + (2n− 4)− 2
(2n− 1)(2n− 4) ×

√
2(2n− 4)− 2

(2n− 4)2 ×
√
n+ (2n− 4)− 2

n(2n− 4)

]n

=
[

3(4n− 7)(2n− 5)
n(2n− 1)(2n− 4)3

]n
2

.

Theorem 26. For a fan graph fn = K1 � Pn (n ≥ 4),

SCI(fn) = 2
[
(n− 2)− 1

2 + (2n− 5)− 1
2 + 2− 3

2 (n− 3) 1
2

]
+ (n− 2)(n− 3)− 1

2 ,

ABC(fn) does not exist.

Proof. For any u ∈ V (fn), we have

dfn
(u) =





n− 2 if dfn
(u) = 2

n− 3 if dfn
(u) = 3

0 if dfn
(u) = n

and |E(fn)| = 2n− 1.

By Definition 1 and 3,

SCI(fn) = 2(n− 2)− 1
2 + (n− 2)(n− 3)− 1

2 + 2 [(n− 2) + (n− 3)]−
1
2

+ (n− 3)[2(n− 3)]− 1
2

= 2
[
(n− 2)− 1

2 + (2n− 5)− 1
2 + 2− 3

2 (n− 3) 1
2

]
+ (n− 2)(n− 3)− 1

2 .

As fn has a full degree vertex, ABC(fn) does not exist.

Corollary 27. For a fan graph fn = K1 � Pn (n ≥ 4),

ΠSCI(fn) =
[
2

n−3
2 (n− 2)(2n− 5)(n− 3)

2n−5
2

]−1
and ΠABC(fn) does not exist.

Proof.

ΠSCI(fn) = (n− 2)−1(n− 3)−
n−2

2 [(n− 2) + (n− 3)]−1[2(n− 3)]−
n−3

2

=
[
2

n−3
2 (n− 2)(2n− 5)(n− 3)

2n−5
2

]−1

Theorem 28. For a friendship graph Fn = K1 � nK2 (n ≥ 2),

SCI(Fn) = 2 1
2n(n− 1)− 1

2

(
1 + 2− 3

2

)
and ABC(Fn) does not exist.
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Proof. For any u ∈ V (Fn), we have

dFn(u) =
{

2n− 2 if dFn(u) = 2
0 if dFn(u) = 2n and |E(Fn)| = 3n.

By Definition 1 and 3,

SCI(Fn) = 2n[2(n− 1)]− 1
2 + n[4(n− 1)]− 1

2 = 2 1
2n(n− 1)− 1

2

(
1 + 2− 3

2

)
.

As Fn has a full degree vertex, ABC(Fn) does not exist.

Corollary 29. For a friendship graph Fn = K1 � nK2 (n ≥ 2),

ΠSCI(Fn) =
[
22(n− 1) 3

2

]−n

and ΠABC(Fn) does not exist.

Proof. ΠSCI(Fn) = [2(n− 1)]−n[2(2n− 2)]−n
2 =

[
22(n− 1) 3

2

]−n

4 NN-SCI, NN-ABC index and multiplicative NN-SCI, multiplicative NN-ABC index
of some nano-structures

In this section, we consider Tri-Hexagonal boron nanotube C3C6(H)[p, q], Tri-Hexagonal
boron nanotorus THBC3C6[p, q] and Tri-Hexagonal boron-α nanotube THBAC3C6[p, q].
We will compute NN-SCI, NN-ABC index and multiplicative NN-SCI, multiplicative NN-
ABC index of these nano-structures. To compute certain topological indices of these, we
will partition the edge set based on NN degrees of end vertices of each edge of the graph.

4.1 Tri-Hexagonal boron nanotube
In this section, we calculate some topological indices of C3C6(H)[p, q], where p denotes
the number of hexagons in a column and q denotes the number of hexagons in a row of
the 2D graph of G = C3C6(H)[p, q] nanotube. It is easy to see that |V (G)| = 8pq and
|E(G)| = q(18p − 1). The molecular graph of G = C3C6(H)[p, q] nanotube is shown in
the Figure 2.

Figure 2. A 2D molecular graph of Tri-Hexagonal boron nanotube - C3C6(H)[p, q].
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Theorem 30. For Tri-Hexagonal boron nanotube G = C3C6(H)[p, q], where p, q ≥ 1,

SCI(G) = q

[
6√

16pq − 10 + (2p− 1)√
2(8pq − 5)

+ 6(2p− 1)√
16pq − 11 + 2p√

4pq − 3

]
,

ABC(G) = q√
8pq − 6

[
6
√

4pq − 3
2pq − 1 +

√
2(2p− 1)(8pq − 6)

8pq − 5

+ 6(2p− 1)
√

16pq − 13
8pq − 5 + 4p

√
8pq − 7
4pq − 3

]
.

Proof. There are four partitions of the edge set corresponding to their NN degrees of end
vertices of G, which are

E1 = E(8pq−4,8pq−6) = {uv ∈ E(G)| dG(u) = 8pq − 4 and dG(v) = 8pq − 6};
|E1| = 6q
E2 = E(8pq−5,8pq−5) = {uv ∈ E(G)| dG(u) = dG(v) = 8pq − 5};
|E2| = q(2p− 1)
E3 = E(8pq−5,8pq−6) = {uv ∈ E(G)| dG(u) = 8pq − 5 and dG(v) = 8pq − 6};
|E3| = 6q(2p− 1)
E4 = E(8pq−6,8pq−6) = {uv ∈ E(G)| dG(u) = dG(v) = 8pq − 6};
|E4| = 4pq

Now, SCI(G) and ABC(G) can be computed. By Definition 1 and 3,

SCI(G) = 6q√
(8pq − 4) + (8pq − 6)

+ q(2p− 1)√
2(8pq − 5)

+ 6q(2p− 1)√
(8pq − 5) + (8pq − 6)

+ 4pq√
2(8pq − 6)

= q

[
6√

16pq − 10 + 2p− 1√
2(8pq − 5)

+ 6(2p− 1)√
16pq − 11 + 2p√

4pq − 3

]
,

ABC(G) = 6q

√
(8pq − 4) + (8pq − 6)− 2

(8pq − 4)(8pq − 6) + q(2p− 1)

√
2(8pq − 5)− 2

(8pq − 5)2

+ 6q(2p− 1)

√
(8pq − 5) + (8pq − 6)− 2

(8pq − 5)(8pq − 6) + 4pq

√
2(8pq − 6)− 2

(8pq − 6)2

= q√
8pq − 6

[
6
√

4pq − 3
2pq − 1 +

√
2(2p− 1)(8pq − 6)

8pq − 5

+ 6(2p− 1)
√

16pq − 13
8pq − 5 + 4p

√
8pq − 7
4pq − 3

]
,

which is the required result.
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Corollary 31. For Tri-Hexagonal boron nanotube C3C6(H)[p, q], where p, q ≥ 1,

ΠSCI(G) = 2−
q
2 (6p−1)(8pq − 5)−

q
2 (2p−1)(8pq − 6)−2pq

× (16pq − 10)−3q(16pq − 11)−3q(2p−1),

ΠABC(G) = 2
q
2 (6p+11)(4pq − 3)3q(8pq − 4)−3q(8pq − 5)−4q(2p−1)(8pq − 6)−q(9p+ 1

2 )

× (8pq − 7)2pq(16pq − 13)3q(2p−1).

4.2 Tri-Hexagonal boron nanotorus

In this section, we calculate some topological indices of THBC3C6[p, q], where p denotes
the number of hexagons in a column and q denotes the number of hexagons in a row of
the 2D graph of G = THBC3C6[p, q] nanotorus. It is easy to see that |V (G)| = 8pq and
|E(G)| = 18pq. The molecular graph of G = THBC3C6[p, q] nanotorus is shown in the
Figure 3.

Figure 3. A 2D molecular graph of Tri-Hexagonal boron nanotorus - THBC3C6[p, q].

Theorem 32. For Tri-Hexagonal boron nanotorus G = THBC3C6[p, q], where p, q ≥ 1,

SCI(G) = 2pq
[

1√
2(8pq − 5)

+ 6√
16pq − 11 + 1√

4pq − 3

]
,

ABC(G) = 4pq
[√

4pq − 3
8pq − 5 + 3

√
16pq − 13

(8pq − 5)(8pq − 6) +
√

2(8pq − 7)
8pq − 6

]
.

Proof. There are three partitions of the edge set corresponding to their NN degrees of
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end vertices of G, which are

E1 = E(8pq−5,8pq−5) = {uv ∈ E(G)| dG(u) = dG(v) = 8pq − 5};
|E1| = 2pq
E2 = E(8pq−5,8pq−6) = {uv ∈ E(G)| dG(u) = 8pq − 5 and dG(v) = 8pq − 6};
|E2| = 12pq
E3 = E(8pq−6,8pq−6) = {uv ∈ E(G)| dG(u) = dG(v) = 8pq − 6};
|E3| = 4pq

Now, SCI(G) and ABC(G) can be computed. By Definition 1 and 3,

SCI(G) = 2pq√
2(8pq − 5)

+ 12pq√
(8pq − 5) + (8pq − 6)

+ 4pq√
2(8pq − 6)

= 2pq
[

1√
2(8pq − 5)

+ 6√
16pq − 11 + 1√

4pq − 3

]
,

ABC(G) = 2pq

√
2(8pq − 5)− 2

(8pq − 5)2 + 12pq

√
(8pq − 5) + (8pq − 6)− 2

(8pq − 5)(8pq − 6)

+ 4pq

√
2(8pq − 6)− 2

(8pq − 6)2

= 4pq
[√

4pq − 3
8pq − 5 + 3

√
16pq − 13

(8pq − 5)(8pq − 6) +
√

2(8pq − 7)
8pq − 6

]
,

which is the required result.

Corollary 33. For Tri-Hexagonal boron nanotorus THBC3C6[p, q], where p, q ≥ 1,

ΠSCI(G) =
[
25(8pq − 5)(16pq − 11)6(4pq − 3)2]−pq

,

ΠABC(G) =
[
2−6(4pq − 3)−9(8pq − 5)−8(8pq − 7)2(16pq − 13)6]pq

.

4.3 Tri-Hexagonal boron-α nanotorus
In this section, we calculate some topological indices of THBAC3C6[p, q], where p denotes
the number of rows and q denotes the number of columns of the 2D graph of G =
THBAC3C6[p, q] nanotorus. It is easy to see that |V (G)| = 4pq/3 and |E(G)| = 7pq/2.
The molecular graph of G = THBAC3C6[p, q] nanotorus is shown in the Figure 4.

Theorem 34. For Tri-Hexagonal boron-α nanotorus G = THBAC3C6[p, q], where
p, q ≥ 1,

SCI(G) = pq

2


 3

2
√

2
3pq − 3

+ 4√
8
3pq − 13


 ,

ABC(G) = pq

2
√

4
3pq − 6

[
3

√
4
3pq − 7
2
3pq − 3

+ 4

√
8
3pq − 15
4
3pq − 7

]
.
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Figure 4. A 2D molecular graph of Tri-Hexagonal boron-α nanotorus - THBAC3C6[p, q] .

Proof. There are two partitions of the edge set corresponding to their NN degrees of end
vertices of G, which are

E1 = E( 4
3 pq−6, 4

3 pq−6) =
{
uv ∈ E(G)| dG(u) = dG(v) = 4

3pq − 6
}

;

|E1| =
3
2pq

E2 = E( 4
3 pq−6, 4

3 pq−7) =
{
uv ∈ E(G)| dG(u) = 4

3pq − 6 and dG(v) = 4
3pq − 7

}
;

|E2| = 2pq

Now, SCI(G) and ABC(G) can be computed. By Definition 1 and 3,

SCI(G) = 3pq

2
√

2
( 4

3pq − 6
) + 2pq√( 4

3pq − 6
)

+
( 4

3pq − 7
)

= pq

2


 3

2
√

2
3pq − 3

+ 4√
8
3pq − 13


 ,

ABC(G) = 3
2pq

√√√√2
( 4

3pq − 6
)
− 2

( 4
3pq − 6

)2 + 2pq

√( 4
3pq − 6

)
+
( 4

3pq − 7
)
− 2( 4

3pq − 6
)( 4

3pq − 7
)

= pq

2
√

4
3pq − 6

[
3

√
4
3pq − 7
2
3pq − 3

+ 4

√
8
3pq − 15
4
3pq − 7

]
,

which is the required result.



30 S.B. Chandrakala et al.

Corollary 35. For Tri-Hexagonal boron-α nanotorus THBAC3C6[p, q], where p, q ≥ 1,

ΠSCI(G) =
[

2 3
2

(
2
3pq − 3

) 3
4
(

8
3pq − 13

)]−pq

,

ΠABC(G) =
[

2− 7
4

(
4
3pq − 7

)− 1
4
(

2
3pq − 3

)− 5
2
(

8
3pq − 15

)]pq

.
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Abstract
This is a survey on selected developments in the theory of natural dualities where the author had the
opportunity to make with his foreign colleagues several breakthroughs and move the theory forward.
It is aimed as author’s reflection on his works on the natural dualities in Oxford and Melbourne over
the period of twenty years 1993-2012 (before his attention with the colleagues in universal algebra and
lattice theory has been fully focused on the theory of canonical extensions and the theory of bilattices).
It is also meant as a remainder that the main problems of the theory of natural dualities, Dualisability
Problem and Decidability Problem for Dualisability, remain still open.
Theory of natural dualities is a general theory for quasi-varieties of algebras that generalizes ‘classical’
dualities such as Stone duality for Boolean algebras, Pontryagin duality for abelian groups, Priestley
duality for distributive lattices, and Hofmann-Mislove-Stralka duality for semilattices. We present a
brief background of the theory and then illustrate its applications on our study of Entailment Problem,
Problem of Endodualisability versus Endoprimality and then a famous Full versus Strong Problem with
related developments.
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1 Introduction

In 1936 M.H. Stone published a seminal work on duality theory, exhibiting a dual equiv-
alence between the category of all Boolean algebras and the category of all Boolean
spaces [44]. Almost at the same time L. Pontryagin showed that the category of abelian
groups is dually equivalent to the category of compact topological abelian groups [37],
[38]. The most important step toward the development of general duality theory was
Priestley’s duality for distributive lattices: the category of all distributive lattices was
shown to be dually equivalent to the category of all compact totally-order disconnected
ordered topological spaces (since then called Priestley spaces) [41], [42]. Shortly after
that, K.H. Hofmann, M. Mislove and A. Stralka developed a duality for semilattices [34].
The general duality theory, called Natural duality theory, grew out from these four dual-
ities, in a monumental work by B.A. Davey and H. Werner [26]. Its rapid development
over the next two decades is covered in the survey papers by B.A. Davey [4] and by
H.A. Priestley [43], and in the monographs by D.M. Clark and B.A. Davey [2] and by
J.G. Pitkethly and B.A. Davey [36]. The author’s focus here is on selected developments
∗The author gratefully acknowledges support from Slovak grant VEGA 1/0337/16.

Copyright © 2019 Matej Bel University
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in the theory over the period of twenty years 1993-2012 where he had the opportunity and
privilege to make, mainly with H.A. Priestley and B.A. Davey in Oxford and Melbourne,
certain breakthroughs and move the theory forward.

The theory has proven to be a valuable tool in algebra, algebraic logic, certain parts of
computer science, and even in theoretical physics as demonstrated by the author’s survey
in this journal on free orthomodular lattices [31]. This year’s second (and expectedly
final) survey is also meant as a remainder that the main problems of the theory, the
Dualisability Problem and the Decidability Problem for Dualisability, remain still open.

Generally speaking, the theory of natural dualities concerns the topological represen-
tation of algebras. The main idea of the theory is that, given a quasi-variety A = ISP(M)
of algebras generated by an algebra M, one can often find a topological relational struc-
ture M∼ on the underlying set M of M such that a dual equivalence exists between A

and a suitable category X of topological relational structures of the same type as M∼ .
Requiring the relational structure ofM∼ to be algebraic over M, all the requisite category
theory “runs smoothly" (we refer to [2]). A uniform way of representing each algebra
A in the quasi-variety A as an algebra of continuous structure-preserving maps from a
suitable structure X ∈ X into M∼ can be obtained. In particular, the representation is
relatively simple and useful for free algebras in A as was demonstrated also in [31].

The motivation for the natural duality theory goes back to the question “Why in
1614 did the Scottish philosopher and mathematician John Napier, Laird of Merchiston
in Scotland, invent the logarithm?" ([6]). To quote from his 1619 book [35]:

“Seeing there is nothing (right well-beloved Students of the Mathematics) that is so
troublesome to mathematical practice, nor that doth more molest and hinder calculators,
than the multiplications, divisions, square and cubical extractions of great numbers, which
besides the tedious expense of time are for the most part subject to many slippery errors,
I began therefore to consider in my mind by what certain and ready art I might remove
those hindrances. . . . I found at length some excellent brief rules . . . which together with
the hard and tedious multiplications, divisions, and extractions of roots, doth also cast
away from the work itself even the very numbers themselves that are to be multiplied,
divided and resolved into roots, and putteth other numbers in their place which perform
as much as they can do, only by addition and subtraction, division by two or division by
three."

A natural duality is a form of logarithm which is applied to algebraic structures rather
than to numbers: it takes difficult problems concerning algebras and converts them into
simpler yet equivalent problems concerning completely different mathematical structures
just as a logarithm converts a difficult multiplication of positive real numbers into a
simpler yet equivalent addition of entirely different (and not necessarily positive) real
numbers. Given a finite algebra A, a natural duality based on A is the exact analogue
of a logarithm, loga, to the base a for some positive real number a 6= 1 and A is said
to admit a natural duality if a natural duality based on A exists. Just as loga does not
exist if a is not positive or a = 1, a natural duality based on A need not exist. ([6])

In Section 2 we present a brief background of the theory of natural dualities with
its main two open problems, the Dualisability Problem and the Decidability Problem for
Dualisability. In Sections 3 and 4 we illustrate the application of the theory on the study
of entailment and endodualisability developed by the author in a close collaboration with
H.A. Priestley and B.A. Davey. In Section 5 we give an overview of later developments
of the theory in the author’s collaboration with B. Davey’s research group, where our
focus is mainly on a famous Full versus Strong Problem.
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2 The basic scheme of the theory of natural dualities and its main open problems

We now recall the basic scheme of the theory more precisely. Let M = (M ;F ) be a finite
algebra. Let M∼ = (M ;G,H,R,T) be a discrete topological structure, i.e. a non-empty
set M endowed with (finite) families G, H and R of operations, partial operations and
relations, respectively, and with a discrete topology T. We recall that the graph of an
n-ary (partial) operation g : Mn →M is the (n+ 1)-ary relation

graph(g) = { (x1, . . . , xn, g(x)) | (x1, . . . , xn) ∈Mn } ⊆Mn+1.

We say that the structure M∼ is algebraic over M if the relations in R and the graphs
of the operations and partial operations in G∪H are subalgebras of appropriate powers
of M. Hence a unary (partial) operation is algebraic over M if and only if it is a (partial)
endomorphism of M.

Let A = ISP(M) be the quasi-variety generated by a finite algebra M and assume
that M∼ = (M ;G,H,R,T) is algebraic over M. Let X = IScP+(M∼ ) be the ‘topological
quasi-variety’ generated by M∼ , i.e. the class of all structures which are embeddable as
closed substructures into powers of M∼ . For any algebra A ∈ A, let D(A) denote the set
of all A-homomorphisms A→M. Since M∼ is algebraic over M, D(A) can naturally be
understood as a substructure of M∼

A, and so as a member of X.
Let X ⊆ M I for some non-empty set I and let r ⊆ Mn be an n-ary relation on M .

We say that a map ϕ : X → M preserves the relation r if [ϕ(x̃1), . . . , ϕ(x̃n)] ∈ r for all
x̃1 = (x1i)i∈I , . . . , x̃n = (xni)i∈I such that [x1i, . . . , xni] ∈ r for every i ∈ I. We say
that ϕ preserves an n-ary (partial) operation if ϕ preserves its graph as an (n + 1)-ary
relation.

Let X be a structure in X. By an X-morphism ϕ : X → M∼ we mean a continuous
structure-preserving map, i.e. a continuous map preserving all (partial) operations in
G ∪H and all relations in R. Let E(X) be the set of all X-morphisms X→M∼ . Again,
since M∼ is algebraic over M, E(X) can be understood as a subalgebra of MX , i.e.
a member of A.

The (hom-)functors D : A→ X and E : X→ A are contravariant and dually adjoint.
Moreover, for any A ∈ A and for any X ∈ X, we have maps eA : A → ED(A) and
εX : X→ DE(X) given by evaluation, viz.

eA(a)(h) = h(a) for every a ∈ A and h ∈ D(A),
εX(y)(ϕ) = ϕ(y) for every y ∈ X and ϕ ∈ E(X),

which are embeddings. We say that M∼ yields a pre-duality on A. In general, such
a scheme provides us with a canonical way of constructing, via hom-functors, a dual
adjunction between a category of algebras A = ISP(M), generated by a finite algebra
M, and a category X = IScP+(M∼ ) of structured topological spaces, generated by the
alter ego M∼ of the algebra M.

Let M∼ = (M ;G,H,R,T) be an algebraic structure over M, so that M∼ yields a pre-
duality on A = ISP(M). We say thatM∼ yields a natural duality on A if for every A ∈ A

the embedding eA is an isomorphism, i.e. the evaluation maps eA(a) (a ∈ A) are the only
X-morphisms from D(A) to M∼ ; we notice that they represent then the elements a of A.
Sometimes we say that G∪H∪R yields a (natural) duality on A or thatM∼ is dualisable.
We further say that M∼ (or G ∪H ∪ R) yields a full duality on A if M∼ yields a duality
on A and for every X ∈ X the embedding εX is also an isomorphism. In such a case
the categories A and X are dually equivalent via categorical anti-isomorphisms D and
E which are inverse to each other. Finally, we say that M∼ (or G∪H ∪R) yields a strong
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duality on A if it yields a full duality on A and M∼ is injective in the category X (with
respect to embeddings). A famous Full versus Strong Problem, which dated back to the
beginnings of the theory of natural dualities and was open for about twenty-five years
asked:

Problem 2.1. (Full versus Strong Problem) Is every full duality strong?

We have not claimed above that it is always possible, for a given algebra M, to choose
a structure M∼ on M yielding a duality on ISP(M). Indeed, for some finite algebras M
there is no choice of alter ego M∼ for which the resulting dual adjunction yields a duality
between A and X; for example, the two-element implication algebra I = ({0, 1};→),
see [2, Chapter 10]. In fact, the main problem of the theory of natural dualities, the
Dualisability Problem, remains still open:

Problem 2.2. (Dualisability Problem) Which finite algebras are dualisable?

At present, the Dualisability Problem seems to be unsolvable (cf. [36, page viii]).
There are algebras M which fail to be dualizable (we refer to [26] or [4]). However, for
a very wide range of algebras dualities do exist. For example, the NU-Duality Theorem
([26], Theorem 1.18 or [4], Theorem 2.8) guarantees that a duality on ISP(M) is available
whenever M has a lattice reduct. Many further theorems which say how to choose an
appropriate structure M∼ on M to obtain a duality, or a strong (thus full) duality, on
ISP(M) can be found in [2] and in [36]. The Dualisability Problem might be formally
undecidable, and in fact, the “holy grail" (cf. [36, page viii]) of some natural-duality
theoreticians is the Decidability Problem for Dualisability:

Problem 2.3. (Decidability Problem for Dualisability) Is there an algorithm for deciding
whether or not any given finite algebra is dualisable?

3 Entailment in natural dualities and our solution of the Entailment problem

Again assume a structure M∼ = (M ;G,H,R,T) is algebraic over a finite algebra M and
let r be an n-ary algebraic relation on M (i.e. a subalgebra of Mn). We say that the
structureM∼ , or more often just G∪H∪R, entails r if for every X ∈ X, each X-morphism
ϕ : X → M∼ preserves r; we write G ∪H ∪ R ` r. For relations r and s we write r ` s
in place of {r} ` s. We say that G ∪H ∪ R entails an n-ary (partial) operation h if it
entails its graph as an (n + 1)-ary relation, and that it entails a set R′ of relations and
(partial) operations if it entails each r ∈ R′.
3.1 Test Algebra Lemma and the Entailment problem
Central to the identification of the relations entailed from certain set G ∪ H ∪ R is so-
called Test Algebra Lemma. (It is formulated in entailment terms in [25], Lemma 2.3
and in [2], Lemma 8.1.3.) We present this statement and we notice that s always denotes
the algebraic relation s considered as an algebra in A.

Theorem 3.1. (Test Algebra Lemma) Let M be a finite algebra, let G, H, R be,
respectively, sets (possibly empty) of operations, partial operations and relations which
are algebraic over M, and let s be an algebraic relation. Then the following are equivalent:

(1) G ∪H ∪R entails s;
(2) G ∪H ∪R entails s on D(s).

Moreover, G ∪H ∪R entails s whenever G ∪H ∪R yields a duality on s.
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We often use the term test algebra for an algebra A ∈ ISP(M) witnessing the failure
of the structure M∼ to yield a duality on ISP(M).

It is important that provided a set G∪H∪R yields a duality on A then the duality is
not destroyed by deleting from G∪H ∪R any element which is entailed by the remaining
members. This is the key to obtaining so-called economical dualities which are easy to
work with. A full discussion of the central role played by entailment in duality theory is
presented in the paper [17]. In this paper we solved the Entailment Problem of duality
theory that was formulated as follows:

Problem 3.2. (Entailment Problem) Find an intrinsic description of the relations en-
tailed by G ∪H ∪R.

This problem was formulated as the first open problem of the natural dualities in the
famous survey paper [4]. When this problem was firstly introduced, it was expected that
the solution would be a semantic one in terms of a preservation theorem providing a list of
finitary constructs which preserve entailment. By this is meant that if (G∪H∪R) ` s then
s would be obtainable from the set G∪H∪R via a finite sequence of finitary constructs. In
our solution to the problem in [17] we indeed firstly discovered a semantic solution, which
was similar to the characterisation of the well-known clone closure Inv(Pol(R)) of a set of
relations R (all ‘invariants’ of ‘polymorphisms’ preserving R) originally obtained in the
famous pair of papers [1] by V. Bodnarčuk, L.A. Kalužnin, V.N. Kotov and B.A. Romov.
Later on, we noticed that our semantic solution also arises as a direct application of
a syntactic solution: a description of relations entailed by G ∪ H ∪ R in terms of the
first-order formulæ of the language with equality, LM∼, associated withM∼ . An important
step towards the solution was the recognition that on a given set Ω of finitary algebraic
relations on M the map R 7−→ R := { s ∈ Ω | R ` s } is a closure operator (entailment
closure). And also the recognition that this closure operator is algebraic, in the sense
that the closure of any set R is the union of the closures of its finite subsets (so that the
lattice of closed sets is algebraic). This provided indirect evidence for a positive solution
to the Entailment Problem.

3.2 Our syntactic solution of the Entailment problem
In [25] the important fact that entailment closure is algebraic was deduced as a corollary
of the Test Algebra Lemma. In the paper [17] we extended the Test Algebra Lemma,
upgrading it to the Test Algebra Theorem. This theorem provides our syntactic solution
to the Entailment Problem:

Theorem 3.3. (The Test Algebra Theorem or Entailment in the duality sense) Let M
be a finite algebra and let a structure M∼ = (M ;G,H,R,T) be algebraic over M. Then
the following are equivalent:

(1) G ∪H ∪R entails s;
(2) G ∪H ∪R entails s on D(s);
(3) some finite subset of G ∪H ∪R entails s on D(s);
(4) s = { (u(ρ1), . . . , u(ρn)) | u : D(s)→M preserves G ∪H ∪R };
(5) there exists a primitive positive formula Φ(x1, . . . , xn) in the language LM∼ such

that

(i) D(s) ` Φ(ρ1, . . . , ρn) and
(ii) s = { (c1, . . . , cn) ∈Mn |M ` Φ(c1, . . . , cn) }.
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The most important part of our syntactic solution is that (G ∪ H ∪ R) ` s if and
only if there is a primitive positive formula Φ in the language LM∼ such that s may be
obtained from G ∪ H ∪ R via a primitive positive construct. We may take Φ to be the
primitive positive type of ρ1, . . . , ρn in D(s).

In duality theory, a set R of finitary algebraic relations on a finite algebra M entails
a finitary algebraic relation s on the powers of M∼ (which are the duals of free algebras
in the associated quasivariety A; see, for example, [26]) if and only if s can be obtained
from R in the clone-theoretic case.

Therefore applying our results in the clone setting we derive a famous consequence
due to V. Bodnarčuk, L.A. Kalužnin, V.N. Kotov and B.A. Romov [1]:
Theorem 3.4. (Entailment in the clone sense) Let R be a family of finitary relations
on a finite set M and let s ⊆Mn. Then the following are equivalent:
(1) s ∈ Inv(Pol(R));
(2) R entails s on Ms;
(3) s = {(u(ρ1), . . . , u(ρn)) | u : Ms →M preserves R};
(4) there is some finite structure Z of type (M ;R) and elements z1, . . . , zn ∈ Z such

that s = { (u(z1), . . . , u(zn)) | u : Z →M preserves R };
(5) s = { (c1, . . . , cn) ∈ Mn | M ` Φ(c1, . . . , cn) } for some primitive positive formula

Φ(x1, . . . , xn) (in the language of the relational structure (M ;R)).
3.3 Our semantic solution of the Entailment problem
Through the Test Algebra Theorem we are able to convert our syntactic solution to the
Entailment Problem to a semantic solution, so obtaining a set of constructs sufficient to
describe entailment. We only summarise the results below and sketch the main steps of
our semantic solution while for all details of it and definitions of the constructs we refer
to our paper [17] or to [2, 2.4.5 and 9.2.1].

In case G ∪ H = ∅, the list of entailment constructs may be taken to be: trivial
relations, repetition removal, intersection, product, and retractive projection (in which
the natural projection map is required to be a retraction). As a consequence in the clone
setting we have the result of [1] that Inv(Pol(R)) can be obtained from R by a finite
number of applications of trivial relations, intersection, repetition removal, product and
projection.

As is well known, arbitrary projection is not necessarily an allowable construct on
structures of the form D(A) = A(A,M). If it were, we could form the relational product
of two relations, which is not guaranteed to lift to structures D(A) which are not full
powers. This explains why a set R of algebraic relations on M which determines the
clone of term functions on M will not necessarily yield a duality on A. This is illustrated
in [4, p.102] in case A is the variety K of Kleene algebras; for a more extended discussion
we refer to [25, Section 5] or [19].

Our semantic solution to the Entailment Problem in [17] was carried out in two
stages. Firstly, we showed that the second dual ED(s) of an algebraic relation s can be
concretely constructed from G ∪H ∪R, whether or not G ∪H ∪R entails s (for details
again see [17] or [2, 2.4.5 and 9.2.1]). Secondly, we showed that if G ∪H ∪ R entails s
then s can be obtained from this second dual ED(s) by a retractive projection, which is
a bijective projection in case G ∪H ∪R yields a duality on s.

To explain the latter concepts, given an m-ary algebraic relation r on M and an
injective mapping η : {1, . . . , n} → {1, . . . ,m} (n ≤ m) we define the relation

rη = { (c1, . . . , cn) ∈Mn | (∃d1 . . . dm ∈M) (d1, . . . , dm) ∈ r and ci = dη(i) (1 ≤ i ≤ n) }
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(it can be alternatively denoted as the projection Pη(1),...,η(n)(r) of r into its coordinates
η(1), . . . , η(n)). Then we say that the relation s := rη is a retractive projection of r if
the natural projection map p : r → s is a retraction, that is, there is a homomorphism
q : s → r such that p ◦ q = ids. It is called a bijective projection (as introduced by
L. Zadori [45]) if moreover q ◦ p = idr.

Consider G, H and R as before and let now Z = {z1, . . . , zk} be a finite substructure
of MT , for some non-empty set T . By the graph of E(Z) (with respect to G ∪H ∪ R)
we mean the relation

G[E(Z)] := { (u(z1), . . . , u(zk)) ∈Mk | u : Z →M preserves G ∪H ∪R }.

Thus the graph of E(Z) is simply E(Z), given a fixed labelling of Z. We showed that
if Z is a finite subset of MT for some non-empty set T which is hom-closed (for details
see [2, p. 66]), then the relation G[E(Z)] can be concretely constructed from G∪H ∪R.

For an n-ary algebraic relation s we take Z := D(s) to be the dual of the algebra s
and enumerate its elements as {ρ1, . . . , ρn,T1, . . . ,Tm}. We then assume that

G[s] := { (ρ1(a), . . . , ρn(a),T1(a), . . . ,Tm(a)) ∈Mn+m | a ∈ s }

encode the evaluation maps from D(s) to M . It is evident that G[s] is in bijective
correspondence with s itself. Now we have that if G ∪H ∪ R yields a duality on s then
G[ED(s)] necessarily coincides with G[s]. It is helpful to employ the intuition that the
relation G[ED(s)] \ G[s] can be thought of as a measure of how far G ∪H ∪ R is from
yielding a duality on D(s).

Since by the Test Algebra Theorem we have that an algebraic relation s is the re-
tractive projection of G[ED(s)] onto its first n coordinates, where the dual D(s) of s is
labelled as above, we immediately have:

Lemma 3.5. Let s ≤Mn and G ∪H ∪ R entail s. Then s is a retractive projection of
the graph G[ED(s)] of ED(s).

A number of consequences can be deduced. The first is the desired Semantic Entail-
ment Theorem of [17]:

Theorem 3.6. (Semantic Entailment Theorem) Let R be a set of algebraic relations on
a finite set M , let s be an algebraic relation onM and let R ` s. Then s can be obtained
from R by a finite number of applications of product, intersection, trivial relations and
repetition removal, followed by one application of retractive projection.

If a set R of algebraic relations on a finite setM is such that R ` s for every algebraic
relation s on M , then we say that R is entailment-dense. The following result, that
can be derived from our semantic solution, was (independently to our investigations)
discovered by L. Zádori [45]:

Theorem 3.7. (Special Semantic Entailment Theorem) Let R be a set of algebraic
relations on a finite set M and let s be an algebraic relation on M .

(a) If R yields a duality on s, then s can be constructed from R by a finite number
of applications of product, intersection, trivial relations, repetition removal and
bijective projection.

(b) The following are equivalent:

(i) R yields a duality on every finite algebra in A;
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(ii) R is entailment-dense;
(iii) every algebraic relation s on M can be constructed from R by a finite number

of applications of product, intersection, trivial relations, repetition removal
and bijective projection.

4 Endoprimality and endodualisability in theory and practice

The relationship between duality entailment and clone-entailment is rather complex. It
is known that it is possible for G∪H ∪R to clone-entail every finite algebraic relation on
M but to fail to dualise M, but the circumstances under which this phenomenon occurs,
and what it signifies, are still obscure. In particular, we may ask what it means for M to
be endoprimal but not endodualisable (we refer to definitions of these concepts below).
More explicitly, we may ask what it means for some finitary algebraic relation r on M to
be clone-entailed but not entailed by (the graphs of) the endomorphisms of M. From a
semantic viewpoint, a clear difference can be seen: clone-entailment allows all relational
products, whereas duality entailment allows only homomorphic relational products (for
details see [17] or [2, 9.2.1]). Thus one may expect relational products appearing in
the construction of r from the endomorphisms of M to be non-homomorphic relational
products. Exactly how this behaviour happens in general is not clear.

4.1 Endoprimality versus endodualisability
In [19] we showed that the relationship between the two entailment concepts also lies
at the heart of the relationship between endoprimality and endodualisability. This was
nicely demonstrated by the Kleene algebra examples. We note that Kleene algebras were
already known to illustrate the distinction between entailment in the clone sense and in
the duality sense - we refer to [4, p. 87], [25, Section 5] and [2, pp. 272–273]. In [19] we
gave a complete description of endodualisable and endoprimal finite Kleene algebras from
the quasi-variety ISP(4) and showed that there was a plentiful supply of finite Kleene
algebras which were endoprimal but not endodualisable.

Let M = (M ;F ) be any algebra. The algebra M is called k-endoprimal (k ≥ 1)
if every k-ary End(M)-preserving function on M is a term function of M. Algebras
which are k-endoprimal for every k ≥ 1 are called endoprimal. A finite algebra M is
endodualisable if End(M) yields a duality on the quasivariety ISP(M).

The relationship between endodualisability on one hand, and endoprimality and k-
endoprimality on the other hand, was explored, successively, in [18], [5], [23], [32] and [19].
It was shown that in many quasivarieties a finite algebra is endoprimal if and only if it
is endodualisable (we refer to [23], [33] and the papers cited therein).

In [18] we started an intensive study of a general relationship between endodualis-
ability and endoprimality by the following result:

Theorem 4.1. (Endoprimality versus endodualisability for distributive lattices) Let
L = (L;∨,∧) be a finite non-trivial distributive lattice. The following are equivalent:

(1) L is 3-endoprimal;
(2) L is endoprimal;
(3) L is endodualisable;
(4) the retractions of L onto {0, 1} together with the constants 0, 1 yield a duality on

ISP(L);
(5) L is not a Boolean lattice.
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In case of bounded distributive lattices we obtained a similar result, the only difference
is in Condition (1):

Theorem 4.2. (Endoprimality vs endodualisability for bounded distributive lattices)
Let L = (L;∨,∧, 0, 1) be a finite non-trivial bounded distributive lattice. The following
are equivalent:

(1) L is 1-endoprimal;
(2) L is endoprimal;
(3) L is endodualisable;
(4) the retractions of L onto {0, 1} together with the constants 0, 1 yield a duality on

ISP(L);
(5) L is not a Boolean lattice.

The first examples of finite algebras which are endoprimal but not endodualisable
were found by B.A. Davey and J.G. Pitkethly in their paper [23], among algebras with a
semilattice reduct. Many other such examples have been found among Kleene algebras
in our paper [19].

4.2 A criterion for a finite endoprimal algebra to be endodualisable
In the paper [32] the strategy for finding endoprimal algebras due to B.A. Davey and
J.G. Pitkethly [23] is further explored in the finite case. A new theoretical tool, called
the Retraction Test Algebra Lemma, is used to show that, in many quasivarieties, endo-
primality is equivalent to endodualisability for finite algebras which are suitably related
to finitely generated free algebras. The main result of [32] is the following theorem.

Theorem 4.3. (Retraction Test Algebra Lemma) Let a finite algebra D be dualisable
via the structure

D∼ = (D; End(D), s1, . . . , sm,T)
where m ≥ 1 and s1, . . . , sm are finitary algebraic relations on D. Let the algebras
s1, . . . , sm be retracts of the k-generated free algebra FD(k) ∈D where D = ISP(D).

Then for any finite algebra M ∈ D which has D as a retract the following are
equivalent:

(1) M is endoprimal;
(2) M is k-endoprimal;
(3) M is endodualisable.

The result can be applied to the (quasi-)varieties of distributive lattices (with k = 3),
bounded distributive lattices (k = 1), finite vector spaces of dimension greater than one
(k = 2), Stone algebras (k = 2), abelian groups (k = 2), sets (k = 3), semilattices
(k = 3), lower-bounded semilattices (k = 2) and median algebras (k = 3), which have
not been considered before as regards endoprimality.

We explain the applications of our theorem above in several selected cases:
Distributive lattices

The class D of distributive lattices is the quasi-variety ISP(2) generated by the 2-
element lattice 2 = ({0, 1};∨,∧). It is well-known (by Priestley duality presented in [41],
[42]) that 2 is dualisable via the structure 2∼ = ({0, 1}, 0, 1,≤,T) where ≤ is the usual
order on {0, 1} and the constants 0 and 1 replace the usual unary constant endomorphisms
onto 0 and 1, respectively. It is said that 2 is almost endodualisable with ≤ as the extra
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relation to the endomorphisms in the dualising structure. We notice that ≤ is, as a
distributive lattice, isomorphic to the 3-element chain 3.

It is easy to check that the free algebras FD(1) ∼= 1 and FD(2) ∼= 22 do not have
3 as a retract while the free algebra FD(3) does have 3 as a retract. All non-trivial
distributive lattices L ∈ D have evidently 2 as their retracts. From our theorem above
it therefore follows that a finite non-trivial distributive lattice L is endoprimal iff L is
3-endoprimal iff L is endodualisable.
Stone algebras

The class of Stone algebras is the quasi-variety ISP(3) generated by the 3-element
Stone algebra 3 = ({0, a, 1};∨,∧,? , 0, 1) where {0, a, 1} is the 3-element chain, 0? = 1,
and a? = 1? = 0. It is well known that the structure 3∼ = ({0, a, 1}, d,4,T) yields
a duality on the variety of Stone algebras (cf. e.g. [2, p. 105]) where 4 is the order
{(0, 0), (a, a), (1, 1), (1, a)} and graph(d) = {(0, 0), (1, 1), (a, 1)}. It means that 3 is almost
endodualisable with the extra relation 4 which is isomorphic to the 4-element chain
algebra 4 in S. Now the smallest k-generated free algebra in S having 4 as a retract
is known to be FS(2) (we refer to [29]). Our theorem can be applied to Stone algebras
having 3 as a retract. The only Stone algebras which do not have 3 as a retract are the
Boolean algebras (and these are endodualisable). It follows that a finite non-Boolean
Stone algebra L is endoprimal iff L is 2-endoprimal iff L is endodualisable.
Median algebras

The class of median algebras is the quasi-variety M = ISP(M) generated by the
2-element median algebra M = ({0, 1};m) in which the ternary (median) operation m
satisfies the equations

m(x, y, z) = m(y, x, z) = m(y, z, x), m(x, x, y) = x

and
m(m(x, y, z), u, v) = m(x,m(y, u, v),m(z, u, v)).

The duality for M is given by the structure M∼ = ({0, 1};∗ , 0, 1,≤,T), where ∗ is the
automorphism reversing 0 and 1 and ≤ is the usual order on {0, 1} (we refer, for example,
to [2, p. 103]). It follows that M is almost endodualisable with the extra relation ≤ which
can be considered as a median algebra, say s. In our paper [32] we present a verification
in terms of natural duals of the fact that the smallest k-generated free algebra inM which
has the algebra s as a retract is FM(3). Because any non-trivial median algebra L ∈M

has M as a retract it immediately follows from our theorem that a finite non-trivial
median algebra L ∈M is endoprimal iff L is 3-endoprimal iff L is endodualisable.
Abelian groups

Our method allows us to identify also the finite endoprimal abelian groups. Starting
from a finite abelian group A, one can choose D and the generator D of D in such a
way that A ∈D and D is a retract of A. This enables us to apply our theorem.

It is well-known that for any finite abelian group A there is a cyclic group Zm such
that A ∈ Am where Am = ISP(Zm) and Zm is a direct factor, and hence a retract, of A.
It was shown in [26] (we also refer to [2, p. 114]) that the structure Z∼m = (Zm; +,− , 0,T)
yields a duality on the quasi-variety Am. This means that Zm is almost endodualisable
with graph(+) as the extra relation, which is, as an algebra, isomorphic to Z2

m. We have
FAm(2) ∼= Z2

m. Hence for the finite abelian group A and the associated quasivariety
Am = ISP(Zm) we could apply our theorem with k = 2. It follows that a finite abelian
group A is endoprimal iff it is 2-endoprimal iff it is endodualisable.
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4.3 Endodualisable and endoprimal finite double Stone algebras
In the paper [33] we give a complete characterisation of the endoprimal finite double
Stone algebras. In particular, we have shown that all of these algebras are endodualis-
able, and found in every case the minimum value of k for which k-endoprimality forces
endoprimality. Much more work was involved in completing this analysis than that for
the other examples considered in the paper [32], and further duality techniques were
required.

Let us present a brief outline of the results. An algebra L = (L;∨,∧,? ,+ , 0, 1) is
called a double Stone algebra if (L;∨,∧,? , 0, 1) and (L;∧,∨,+ , 1, 0) are Stone algebras.
The double Stone algebras form a variety DS = ISP(4) which is generated by the 4-
element chain algebra 4 = ({0, a, b, 1};∨,∧,? ,+ , 0, 1) where 0 < a < b < 1 and

1? = b? = a? = 0, 0? = 1, 0+ = a+ = b+ = 1, 1+ = 0.

The proper non-trivial subvarieties of DS are generated by the subdirectly irreducible
subalgebras 2 = {0, 1} and 3 = {0, a, 1}. The variety ISP(2) is just the class of Boolean
algebras, while ISP(3) is the variety of regular double Stone algebras, alias three-valued
Lukasiewicz algebras. An algebra is proper precisely when it has 4 as a retract. We have
to consider separately the algebras in ISP(4)\ ISP(3), which we call proper double Stone
algebras, and algebras in ISP(3). Also, a further splitting into cases is necessary, into
algebras with non-empty core and algebras with empty core. The core of an algebra L
in DS is defined to be K(L) = {x ∈ L | x? = 0, x+ = 1 }. A finite algebra L has empty
core if and only if L has 2 as a direct factor. It is easily shown that this occurs if and
only if L ∈ ISP(4×2). Every k-generated free algebra FDS(k) lies in the subquasivariety
ISP(4× 2).

The finite non-Boolean algebras in the variety ISP(3) are exactly those of the form
3m × 2` (m ≥ 1, ` ≥ 0). We could set up a duality for ISP(3 × 2) in which the only
non-endomorphism was isomorphic to 3× 22.

We proved the following result:

Theorem 4.4. (Endodualisable finite double Stone algebras) Let L be a finite non-trivial
double Stone algebra and express L as J × 2` where J does not have 2 as a factor and
` ≥ 0.

Then L is endodualisable when L takes one of the forms described below.

(1) L has non-empty core and L satisfies the following equivalent conditions:

(i) L has 5 as a retract;
(ii) K(L) is a non-Boolean lattice.

(2) L is proper, J has 5 as a retract and ` ≥ 2.
(3) L is not proper and takes the form 3m × 2` where m ≥ 1 and ` ≥ 2.
(4) L is Boolean.

Let L be a finite non-trivial and non-Boolean double Stone algebra which is not shown
by above theorem to be endodualisable and assume that L is expressed as J× 2` where
J does not have 2 as a factor. The following cases arise:

(A) L is a Post algebra of order 3 (that is, L is not proper and ` = 0);
(B) L has a single factor 2 (that is, ` = 1);
(C) L is proper, K(L) 6= ∅ (that is, ` = 0), and J does not have 5 as a retract;
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(D) L is proper, J does not have 5 as a retract and ` ≥ 2.

We showed that L is not endodualisable in each of cases (A)–(D), treating these in
turn.

Proposition 4.5. (Non-endodualisable finite double Stone algebras, Case A) Let L be
a finite Post algebra of order 3. Then

(1) L is not endodualisable, with 2 serving as a test algebra;
(2) L is not 1-endoprimal.

Proposition 4.6. (Non-endodualisable finite double Stone algebras, Case B) Let L =
J× 2 be a finite non-Boolean double Stone algebra with exactly one factor 2. Then

(1) L is not endodualisable, with 22 serving as a test algebra;
(2) L is not 1-endoprimal.

For case (C) we showed that the algebra L is the retract of a power of a finite
indecomposable algebra which is not 3-endoprimal.

Proposition 4.7. (Non-endodualisable finite double Stone algebras, Case C) Let L be
a finite proper double Stone algebra with a non-empty core K(L) = [a, b] (a < b) which
is a Boolean lattice. Then L is not 3-endoprimal (and hence not endodualisable).

Finally we need to consider algebras which have 2` as a factor, where ` ≥ 2 (case (D)).

Proposition 4.8. (Non-endodualisable finite double Stone algebras, Case D) Let L =
J × 2`, where J ∈ ISP(4) \ ISP(3) is a finite double Stone algebra with a non-trivial
Boolean core and ` ≥ 2. Then L is not 3-endoprimal (and so not endodualisable).

To summarise, we identified firstly various endodualisable finite double Stone algebras
and then we showed, considering in turn four cases (A)–(D), that there are no other
endodualisable finite double Stone algebras. Here we bring our results together.

Theorem 4.9. (Endodualisability for finite double Stone algebras, Summary) Assume
that L = (L;∨,∧,? ,+ , 0, 1) is a finite proper double Stone algebra with a non-empty core
K(L) = [a, b] (a < b). Then the following are equivalent:

(1) L is endodualisable;
(2) L is endoprimal;
(3) L is 3-endoprimal;
(4) 5 is a retract of L;
(5) the core K(L) is a non-Boolean lattice.

For proper double Stone algebras with empty core we have the following theorem.

Theorem 4.10. Let L = (L;∨,∧,? ,+ , 0, 1) be a finite proper double Stone algebra with
empty core. Then the following are equivalent:

(1) L is endodualisable;
(2) L is endoprimal;
(3) L is 3-endoprimal;
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(4) 5× 22 is a retract of L.

For algebras in ISP(3) we have, likewise, the following result.

Theorem 4.11. Let L belong to the variety R = ISP(3) of regular double Stone algebras
and assume that L is not Boolean. Then the following are equivalent:

(1) L is endodualisable;
(2) L is endoprimal;
(3) L is 1-endoprimal;
(4) 3× 22 is a retract of L.

We record explicitly the following theorem, which is a corollary of our preceding
results.

Corollary 4.12. A finite double Stone algebra is endoprimal if and only if it is endod-
ualisable.

5 Full versus Strong Problem in the theory of natural dualities

Every quasi-variety of the form A = ISP(M), where M is a finite lattice-based algebra,
has a natural duality. In the case that M is distributive-lattice based, it is possible
to use the restricted Priestley duality and the natural duality for A simultaneously. In
tandem, these dualities can provide an extremely powerful tool for the study of A: see
Clark and Davey [2, Chapter 7]. As well as being a natural area of application of natural
duality theory, distributive-lattice-based algebras in general, and distributive lattices in
particular, have provided deep insights into the general theory. Important examples have
been Heyting algebras, particularly the finite Heyting chains, and Kleene algebras; but
here we firstly concentrate on the three-element bounded distributive lattice

3 = ({0, d, 1};∨,∧, 0, 1),

which was seminal in developments that led to the solution of the Full versus Strong
Problem, one of the most tantalizing problems in the theory of natural dualities.

5.1 The seminal example of the three-element chain
For a natural-duality viewpoint, Priestley duality for the class D of bounded distributive
lattices is obtained via homsets based on the two-element chain 2 and uses the fact that
D = ISP(2). By using the fact that D = ISP(3), in [18] we introduced the following
modified Priestley duality for D as a natural duality based on 3. Let f, g be the non-
identity endomorphisms of 3 (see Figure 1) and let

3∼ = ({0, d, 1}; f, g,T),

where T is the discrete topology T.
Let X = IScP+( 3∼) be the class of all isomorphic copies of closed substructures of

non-zero powers of 3∼.In [18] we showed that such a modified Priestley duality for D, in which the order is
replaced by endomorphisms, can be based on any finite non-boolean distributive lattice
M. We also showed that, while the order relation cannot be removed in the boolean
case, it can at least be replaced by any finitary relation on M, which itself, like the order
on 2, forms a non-boolean lattice.
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Figure 1. The (partial) operations f , g, h and σ on 3

In [9] we studied the enrichment of 3∼ given by

3∼σ := ({0, d, 1}; f, g, σ,T),

and in [21] we explored deeply the enrichments 3∼σ and

3∼h := ({0, d, 1}; f, g, h,T).

(The binary partial operations h and σ are also given in Figure 1.) If in the above scheme
for the modified Priestley duality for D based on 3 the alter ego 3∼ of 3 is replaced with
the alter ego 3∼σ, then not only the map eA : A → ED(A) is an isomorphism, for all
A ∈D, establishing a duality between D = ISP(3) and Xσ = IScP+( 3∼σ), but moreover
the map εX : X→ DE(X) is an isomorphism, for all X ∈ Xσ, establishing a full duality
between D and Xσ. If the hom-functors D,E are restricted to the categories Afin and
Xfin of finite members of A and X only, then the concepts of a finite-level duality, full
duality or strong duality are obtained.

The properties of the modified Priestley dualites for D based on 3 given by the alter
egos 3∼, 3∼h and 3∼σ are summarized in the following theorem.

Theorem 5.1. Let 3∼, 3∼h and 3∼σ be the alter egos of 3 defined above.

(i) 3∼ yields a duality on D. (Davey, Haviar, Priestley [18])
(ii) 3∼h yields a full duality, which is not strong, on the category Dfin and yields a

duality, which is not full, on the category D. (Davey, Haviar, Willard [21])
(iii) 3∼σ yields a strong duality for D. (Davey, Haviar [9])
(iv) Every full duality on D based on 3 is strong. (Davey, Haviar, Willard [21])

5.2 Full versus Strong Problem: its local versions and when full implies strong
Since the Full versus Strong Problem in its global version had remained open for twenty-
five years, we introduced in [13] local versions of this problem that could prove more
tractable and fruitful.

Problem 5.2. For an arbitrary finite algebra M in your favourite class C of algebras, is
every full duality based on M necessarily strong?

We also posed the finite-level version of Problem 5.2.

Problem 5.3. For an arbitrary finite algebra M in your favourite class C of algebras,
is every duality based on M that is full at the finite level necessarily strong at the finite
level?
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The first solutions to these local versions of the Full versus Strong Problem were given
for full dualities based on the three-element chain in the variety of bounded distributive
lattices in our paper [21] (as shown in the previous subsection). The answer was shown to
be affirmative to Problem 5.2 and negative to Problem 5.3. In [13] we provided affirmative
answers to Problems 5.2 and 5.3 for full dualities based on an arbitrary finite algebra
in three varieties of algebras: abelian groups, semilattices (with or without bounds) and
relative Stone Heyting algebras. We also developed some general conditions under which
‘full implies strong’ that had the potential to add to the list of solutions. Finally, we
answered Problem 5.2 in the affirmative for full dualities based on an arbitrary finite
lattice in the variety of bounded distributive lattices.

There is a further, weaker version of Problem 5.2, which deserves to be recorded here.

Problem 5.4. In your favourite class C of algebras, is every fully dualisable finite algebra
necessarily strongly dualisable?

It should be noted that the finite-level variant of this question makes no sense since
every finite algebra M is strongly dualised at the finite level by the alter ego M∼ =
〈M ;H,T〉, where H consists of all finitary algebraic partial operation on M. We found
in [13] several sufficient conditions for full to imply strong:

Theorem 5.5. Let D be a finite algebra, let M be a finite algebra in A := ISP(D) such
that D is a subalgebra of M. Assume that D∼ = 〈D;GD, HD, RD,T〉 strongly dualises
D [at the finite level] and that D, each relation r ∈ RD, and dom(h), for all h ∈ HD, is
an intersection of equalizers of pairs of algebraic total operations on M. Then any alter
ego M∼ that fully dualises M [at the finite level] strongly dualises M [at the finite level].

When RD = ∅ there is a particularly satisfying simplification of this result that
involves assumptions on D only. We say that D is a subretract of M if D is a subalgebra
of M and there is a retraction of M onto D, that is, a homomorphism ω : M→ D with
ω � D = idD.

Theorem 5.6. Let D be a finite algebra and let A := ISP(D). Assume that D∼ =
〈D;GD, HD,T〉 strongly dualises D [at the finite level] and that, for all h ∈ HD, the set
dom(h) is an intersection of equalizers of pairs of algebraic total operations on D. Let
M be a finite algebra in A such that D is a subretract of M. Then any alter ego M∼ that
fully dualises M [at the finite level] strongly dualises M [at the finite level].

The version of Theorem 5.6 that applies when D∼ is a total algebra turned out to be
so striking that we stated it as a separate result:

Theorem 5.7. Let D be a finite algebra, let A := ISP(D) and let M be a finite algebra
in A that has D as a subalgebra. Assume that D∼ = 〈D;GD,T〉 is a total algebra that
strongly dualises D [at the finite level]. If M∼ is an alter ego of M that fully dualises M
[at the finite level], then M∼ strongly dualises M [at the finite level].

Also we presented the following special case of Theorem 5.5:

Theorem 5.8. Let D be a finite algebra. Assume thatD∼ = 〈D;GD, HD, RD,T〉 strongly
dualises D [at the finite level] and that each relation r ∈ RD, and dom(h), for all h ∈ HD,
is an intersection of equalizers of pairs of algebraic total operations on D. Then any alter
ego that fully dualises D [at the finite level], strongly dualises D [at the finite level].

We then applied Theorem 5.7 to show that Questions 5.2 and 5.3 have affirmative
answers for arbitrary finite algebras in the varieties of abelian groups and semilattices.
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Abelian groups Let M = 〈M ; +,− , 0〉 be a finite non-trivial abelian group. Then there
is a cyclic subgroup D of M such that D is a direct factor of M and such that D and
M generate the same quasi-variety A. Since the total algebra D∼ = 〈D; +,− , 0,T〉 yields
a strong duality on A based on D (see [2, 4.4.2]), we may apply Theorem 5.7 to obtain
that every alter ego M∼ that fully dualises the finite abelian group M [at the finite level]
also strongly dualises M [at the finite level]. Hence the answers to Questions 5.2 and 5.3
in the variety of abelian groups are always in the affirmative.
Semilattices Let DK = 〈{0, 1};∨,K〉 be the two-element semilattice with possible
bounds K ⊆ {0, 1}, let SK := ISP(DK) and let S be a finite non-trivial semilattice
in SK . We have the following strong dualities on SK := ISP(DK) based on DK given by
total algebras.

(i) D∼ := 〈{0, 1};∨, 0, 1,T〉 yields a strong duality on S based on the (unbounded)
semilattice D = 〈{0, 1};∨〉.

(ii) D∼0 = 〈{0, 1};∨, 0,T〉 yields a strong duality on S0 based on the semilattice with
zero D0 = 〈{0, 1};∨, 0〉.

(iii) D∼1 = 〈{0, 1};∨, 1,T〉 yields a strong duality on S1 based on the semilattice with
one D1 = 〈{0, 1};∨, 1〉.

(iv) D∼01 = 〈{0, 1};∨,T) yields a strong duality on S01 based on the bounded semilattice
D01 = 〈{0, 1};∨, 0, 1〉.

According to Theorem 5.7, if M∼ is an alter ego of S that fully dualises the finite semi-
lattice S [at the finite level], then M∼ also strongly dualises M [at the finite level]. So
Questions 5.2 and 5.3 have affirmative answers for arbitrary finite algebras in these va-
rieties of semilattices (with bounds).
Bounded distributive lattices

Let D be the variety of bounded distributive lattices. We proved in [13] the following
theorem, thereby showing that Question 5.2 has an affirmative answer for an arbitrary
finite algebra in the variety of bounded distributive lattices.

Theorem 5.9. Let M be a finite non-trivial bounded distributive lattice. If M∼ is an
alter ego of M that yields a full duality on D (based on M), then M∼ yields a strong
duality on D.

5.3 Full versus Strong Problem: related developments and the solution
The realm of natural dualities that were known to be full but not strong at the finite
level was for some time a very small one, consisting of a single example. This example,
based on the three-element bounded distributive lattice, was presented in our paper [21].
In our other developments, we extended this realm to the class of all natural dualities
based on an arbitrary finite non-boolean bounded distributive lattice [14].

The results in [21] raised new questions and opened up new research paths within
the field of natural dualities. More precisely, we were led to ask the following questions
(cf. [14]):

(a) Could it be that, for a finite algebra that is strongly dualisable, every full duality
on the quasi-variety it generates is strong?

(b) What is it about a finite algebra that allows its full dualities at the finite level to
behave so differently from its full dualities at the infinite level?

(c) Which finite algebras generate a quasi-variety for which every duality that is full
[at the finite level] is necessarily strong?
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(d) Which finite algebras have an alter ego that yields a full but not strong duality at
the finite level?

As already mentioned, in [13] we proved that, for each finite abelian group, semi-
lattice and relative-Stone Heyting algebra, every duality that is full [at the finite level]
is strong [at the finite level], and, for each finite bounded distributive lattice, every full
duality is strong. This provided a partial answer to Question (c) and thereby provided
examples with which to study Question (b). While Question (a) could be regarded as
wild speculation, it was supported by the limited evidence available to us. In order to
make headway on questions such as these, we felt we needed a range of examples of finite
algebras that possess a full but not strong duality at the finite level.

In the paper [14] we addressed Question (d). More precisely, we proved the following
result:

Theorem 5.10. Let M be a finite non-boolean bounded distributive lattice. Then there
is an alter ego M∼ of M such that

(a) M∼ yields a duality that is not full on the class D of all bounded distributive lattices,
yet

(b) M∼ yields a duality that is full but not strong on the class of finite bounded dis-
tributive lattices.

Hence our Problem 5.3 was shown to have a negative answer in the variety of bounded
distributive lattices by producing full but not strong dualities at the finite level based on
an arbitrary finite non-boolean lattice.

The authors had hoped to find a conceptual proof of this last theorem that would
indicate possible generalizations beyond distributive lattices. A natural approach would
be to proceed as follows: let M be a finite non-boolean bounded distributive lattice; then
M has the three-element chain 3 as a retract; in [21] an alter ego 3∼ for 3 was given that
yields a full but not strong duality at the finite level; use the retraction from M onto 3 to
lift the alter ego 3∼ up to an appropriate alter ego M∼ for M. Unfortunately, this turned
out to be too simple minded. We pursued this and many other approaches but to no avail.
The hoped-for conceptual proof eluded us and we were left with the direct computational
proof presented in [14]. Nevertheless, our result provided an infinite number of desired
examples where previously there was only one.

Now, at last, we briefly present the much-seeked solution to the Full versus Strong
Problem that was presented by D.M. Clark, B.A. Davey and R. Willard [3].

Let R := ({0, a, b, 1}; t,∨,∧, 0, 1) be the four-element chain with 0 < a < b < 1
enriched with the ternary discriminator function t. Let u be the partial endomorphism
of R with domain {0, a, 1} given by u(a) = b. In [3] the authors showed (via three slightly
different approaches, found gradually by each of them) that the algebra R provides a
negative solution to the Full versus Strong Problem of the theory of natural dualities:

Theorem 5.11. The alter ego R∼⊥ = ({0, a, b, 1}; graph(u),T) yields a full but not strong
duality on ISP(R). (Clark, Davey, Willard [3])

In general, a finite algebra M admits essentially only one finite-level strong duality,
but can admit many different finite-level full dualities. The alter egos M∼ yielding the
finite-level full dualities for ISPfin(M) form a doubly algebraic lattice F(M) introduced
and studied in B.A. Davey, J.G. Pitkethly and R. Willard [24]. The following theorem
summarises results in this direction.
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Theorem 5.12.

(i) |F(M)| = 1 for any finite semilattice, abelian group or relative Stone Heyting
algebra M. (Davey, Haviar, Niven [13])

(ii) F(M) is finite for any finite quasi-primal algebra M; in particular, for the algebra
R defined above, |F(R)| = 17. (Davey, Pitkethly, Willard [24])

(iii) The lattice F(3) is non-modular and has size 2ℵ0 . (Davey, Haviar and Pitkethly
[16]).
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Abstract
The famous Descartes’ rule of signs from 1637 giving an upper bound on the number of positive roots
of a real univariate polynomial in terms of the number of sign changes of its coefficients, has been an
indispensable source of inspiration for generations of mathematicians. Trying to extend and sharpen this
rule, we consider below the set of all real univariate polynomials of a given degree, a given collection of
signs of their coefficients, and given numbers of positive and negative roots. In spite of the elementary
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1 Introduction

This paper continues the line of study of Descartes’ rule of signs initiated in [4]. The
basic set-up under consideration is as follows.

Consider the affine space Pold of all real monic univariate polynomials of degree d.
Below we concentrate on polynomials from Pold with all coefficients non-vanishing. An
arbitrary ordered sequence σ = (σ0, σ1, . . . , σd) of ±-signs is called a sign pattern. When
working with monic polynomials we will use their shortened sign patterns σ̂ representing
the signs of all coefficients except the leading term which equals 1. For the actual sign
pattern σ, we write σ = (1, σ̂) to emphasise that we consider monic polynomials.

Given a shortened sign pattern σ̂, we say that its Descartes pair (p
σ̂
, n
σ̂
) is the pair

of non-negative integers counting sign changes and sign preservations of σ = (1, σ̂). By
Descartes’ rule of signs, p

σ̂
(resp. n

σ̂
) gives the upper bound on the number of positive

(resp. negative) roots of any monic polynomial from Pold(σ̂). (Observe that, for any σ̂,
p
σ̂

+n
σ̂

= d.) To any monic polynomial q(x) with the sign pattern σ = (1, σ̂), we associate
the pair (posq, negq) giving the numbers of its positive and negative roots counted with
multiplicities. Obviously the pair (posq, negq) satisfies the standard restrictions

posq ≤ pσ, posq ≡ pσ (mod 2), negq ≤ nσ, negq ≡ nσ (mod 2). (1.1)
Copyright © 2019 Matej Bel University
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We call pairs (pos, neg) satisfying (1.1) admissible for σ. Conversely, for a given pair
(pos, neg), we call a sign pattern σ such that (1.1) is satisfied admitting the latter pair. It
turns out that there exist couples (σ, (pos, neg)), where σ is a sign pattern and (pos, neg)
is a pair admissible for σ, which are not realizable by polynomials. Namely, D. J. Grabiner
[5] found the first example of non-realizable combination for polynomials of degree 4. He
has shown that the sign pattern (+,−,−,−,+) does not allow to realize the pair (0, 2)
and the sign pattern (+,+,−,+,+) does not allow to realize (2, 0). Observe that their
Descartes pairs equal (2, 2).

His argument is very simple. (Due to symmetry induced by x 7→ −x it suffices to
consider only the first case.) Observe that a fourth-degree polynomial with only two
negative roots for which the sum of roots is positive could be factored as a(x2 + bx +
c)(x2 − sx+ t) with a, b, c, s, t > 0, s2 < 4t, and b2 ≥ 4c.

The product of these factors equals a(x4 + (b− s)x3 + (t+ c− bs)x2 + (bt− cs)x+ ct).
To get the correct sign pattern, we need b < s and bt < cs, which gives b2t < s2c and
thus b2/c < s2/t. But we have b2/c ≥ 4 > s2/t.

The following basic question and related conjecture were formulated in [4]. (Appar-
ently for the first time Problem 1 was mentioned in [3].)

Problem 1. For a given sign pattern σ, which admissible pairs (pos, neg) are realizable
by polynomials whose signs of coefficients are given by σ?

Observe that we have the natural Z2 × Z2-action on the space of monic polynomials
and on the set of all sign patterns respectively. The first generator acts by reverting
the signs of all monomials in second, fourth etc. position (which for polynomials means
P (x) → (−1)dP (−x)); the second generator acts by reading the pattern backwards
(which for polynomials means P (x) → xdP (1/x)). If one wants to preserve the set of
monic polynomials one has to divide xdP (1/x) by its leading term. We will refer to
the latter action as the standard Z2 × Z2-action. Up to some trivialities, the properties
we will study below are invariant under this action. The following initial results were
partially proven in [3, 1] and in complete generality in [4].

Theorem 1.

(i) Up to degree d ≤ 3, for any sign pattern σ, all admissible pairs (pos, neg) are
realizable.

(ii) For d = 4, (up to the standard Z2 ×Z2-action) the only non-realizable combination
is (1,−,−,−,+) with the pair (0, 2);

(iii) For d = 5, (up to the standard Z2 ×Z2-action) the only non-realizable combination
is (1,−,−,−,−,+) with the pair (0, 3);

(iv) For d = 6, (up to the standard Z2 × Z2-action) the only non-realizable combina-
tions are (1,−,−,−,−,−,+) with (0, 2) and (0, 4); (1,+,+,+,−,+,+) with (2, 0);
(1,+,−,−,−,−,+) with (0, 4).

The next two results can be found in [4] and [8].

Theorem 2. For d = 7, among the 1472 possible combinations of a sign pattern and a
pair (up to the standard Z2 × Z2-action), there exist exactly 6 which are non-realizable.
They are:

(1,+,−,−,−,−,−,+) with (0, 5); (1,+,−,−,−,−,+,+) with (0, 5);
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(1,+,−,+,−,−,−,−) with (3, 0); (1,+,+,−,−,−,−,+) with (0, 5);
and, (1,−,−,−,−,−,−,+) with (0, 3) and (0, 5).

Theorem 3. For d = 8, among the 3648 possible combinations of a sign pattern and a
pair (up to the standard Z2 ×Z2-action), there exist exactly 13 which are non-realizable.
They are:

(1,+,−,−,−,−,−,+,+) with (0, 6); (1,−,−,−,−,−,−,+,+) with (0, 6);

(1,+,+,+,−,−,−,−,+) with (0, 6); (1,+,+,−,−,−,−,−,+) with (0, 6);
(1,+,+,+,−,+,+,+,+) with (2, 0); (1,+,+,+,+,+,−,+,+) with (2, 0);

(1,+,+,+,−,+,−,+,+) with (2, 0) and (4, 0) ; (1,−,−,−,+,−,−,−,+) with
(0, 2) and (0, 4); (1,−,−,−,−,−,−,−,+) with (0, 2), (0, 4), and (0, 6).

Finally, it was shown in [9] that for d = 11, the sign pattern

(+,−,−,−,−,−,+,+,+,+,+,−)
is not realizable with the admissible pair (1, 8). This is the first example found of non-
realizability in which both components of the admissible pair are nonzero.

The first goal of the present paper is to present a new infinite series of non-realizable
patterns, defined for odd degrees, this is why we call it the odd series. (Two other series
can be found in [4]; one of them, defined for even degrees, is called the even series.)
Namely, for a fixed odd degree d ≥ 5 and 1 ≤ k ≤ (d − 3)/2, denote by σk the sign
pattern beginning with two pluses followed by k pairs “−,+” and then by d − 2k − 1
minuses. Its Descartes pair equals (2k + 1, d− 2k − 1).

Theorem 4.

(i) The sign pattern σk is not realizable with any of the pairs (3, 0), (5, 0), . . ., (2k+1, 0);

(ii) the sign pattern σk is realizable with the pair (1, 0);

(iii) the sign pattern σk is realizable with any of the pairs (2` + 1, 2r), ` = 0, 1, . . ., k,
r = 1, 2, . . ., (d− 2k − 1)/2.

Theorem 4 is proved in § 2. Notice that Cases (i), (ii) and (iii) exhaust all possible
admissible pairs (pos, neg). It is also worth mentioning that Theorem 4 covers the only
non-realizable case for degree 5 (up to the Z2×Z2-action) and the third and the last two
non-realizable cases for degree 7 mentioned above. Indeed,

1) for d = 5, the sign pattern σ• := (+,−,−,−,−,+) is not realizable with the admissi-
ble pair (0, 3) if and only if the sign pattern σ◦ := (+,+,−,+,−,−) is not realizable
with the pair (3, 0) (should the couple (σ•, (0, 3)) be realizable by some polynomial
P (x), then (σ◦, (3, 0)) should be realizable by the polynomial −P (−x)); see part (iii)
of Theorem 1;

2) for d = 7, the third example of Theorem 2 is exactly the case of σ1 with the pair (3, 0)
of Theorem 4;

3) by analogy with 1), the sign pattern (+,−,−,−,−,−,−,+) is not realizable with the
admissible pair (0, 3) or (0, 5) (see the last case in Theorem 2) if and only if the sign
pattern (+,+,−,+,−,+,−,−) is not realizable with the pair (3, 0) or (5, 0) (this is
the case of σ2, see Theorem 4).
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The second aim of this paper is to present discriminant loci for families of polynomials of
degree d ≤ 4, see § 3. These loci and the coordinate hyperplanes partition the space of
coefficients of monic degree d polynomials into open domains in each of which one and the
same couple (sign pattern, admissible pair) is realized. We explain the correspondence
between the couples and the domains and for degree 4, we explain the non-realizability
of the case mentioned in part (ii) of Theorem 1 by the absence of the corresponding
domain.

2 Proofs

Proof of Theorem 4. Part (i): Suppose that a polynomial P :=
∑d
j=0 ajx

d−j has the sign
pattern σk and realizes the pair (2s+ 1, 0), 1 ≤ s ≤ k. Denote by

Pe :=
(d−1)/2∑

ν=0
a2ν+1x

d−2ν−1 and Po :=
(d−1)/2∑

ν=0
a2νx

d−2ν

its even and odd parts respectively. In each of the sequences {a2ν+1}(d−1)/2
ν=0 and {a2ν}(d−1)/2

ν=0
there is exactly one sign change. Therefore by Descartes’ rule of signs each of the poly-
nomials Pe and Po has exactly one real positive root (denoted by xe and xo respectively)
which is simple.

Remarks 5.

(i) The polynomial Pe (resp. Po) is positive and increasing on (xe,∞) (resp. on
(xo,∞)) and negative on [0, xe) (resp. on (0, xo)).

(ii) One has xo 6= xe, otherwise P (−xo) = 0, i.e. P has a negative root which is a
contradiction.

Without loss of generality we assume all positive roots of P to be distinct. Indeed,
if P has a positive root h of multiplicity κ > 1, then P is of the form P = (x − h)κP ],
where P ](h) 6= 0. Then for ε > 0 small enough, the polynomial (x− h)κ−1(x− h− ε)P ]
realizes the same sign pattern as P , with the same admissible pair (2s + 1, 0), but has
one simple positive root more than P . Continuing like this one can obtain after ≤ 2s
steps a polynomial with 2s + 1 simple positive roots, defining the same sign pattern as
P and realizing the admissible pair (2s+ 1, 0)

Denote the smallest three of the positive roots of P by 0 < ξ1 < ξ2 < ξ3. Hence at
any point ζ ∈ (ξ1, ξ2) one has the P (ζ) > 0; clearly P is negative on (ξ2, ξ3). One can
choose ζ 6= xe and ζ 6= xo. Hence it is impossible to have Pe(ζ) ≤ 0 and Po(ζ) ≤ 0 (with
at most one equality, see part (ii) of Remarks 5). It is also impossible to have Pe(ζ) ≥ 0
and Po(ζ) ≥ 0. Indeed, this would imply that xe ≤ ζ and xo ≤ ζ. Thus one would get
Pe(x) ≥ 0 and Po(x) ≥ 0, i.e. P (x) > 0, for x ∈ (ξ2, ξ3) – a contradiction.

The two remaining possibilities are (one can skip the possibilities to have equalities,
they were already taken into account):

a) Pe(ζ) > 0, Po(ζ) < 0;

b) Pe(ζ) < 0, Po(ζ) > 0.

The first one is impossible because it would imply that

P (−ζ) = Pe(ζ)− Po(ζ) > 0 ,
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and since P (0) < 0 and P (x)→ −∞ for x→ −∞, the polynomial P would have at least
one negative root in (−∞,−ζ) and at least one in (−ζ, 0) – a contradiction.

So suppose that possibility b) takes place. In this case one must have xo < ζ < xe.
Without loss of generality one can assume that ξ1 = 1; this can be achieved by a rescaling
x 7→ ξ1x. Hence Po(1) = β > 0 and Pe(1) = −β. Considering the polynomial P/β instead
of P, one can assume that β = 1. Lemma 6 below immediately implies that there are
no real roots of P larger than 1 (one can use the Taylor series of P at 1) which is a
contradiction finishing the proof of Part (i).

Lemma 6. Under the above assumptions, P (m)(1) > 0, for any m = 1, 2, . . . , d.

Proof of Lemma 6. In the proof we use minimization arguments which can be applied
to compact sets, so we allow zero values of the coefficients as well. For any m = 1, 2,
. . ., d, it is true that if the sum of the coefficients δ := a2 + a4 + · · · + ad−1 is fixed
(recall that all these coefficients are negative), then P

(m)
o (1) is minimal for a2 = δ,

a4 = a6 = · · · = ad−1 = 0. Indeed, when taking derivatives and computing their values
at x = 1, monomials of larger degree in x are multiplied by larger factors (equal to these
degrees); we apply (d− 3)/2 times the fact that if A ≥ 0, B ≥ 0 and λ > µ > 0, then for
A + B fixed, the sum λA + µB is maximal when B = 0. Therefore in what follows we
assume that a4 = a6 = · · · = ad−1 = 0, and hence a2 = 1− a0 < 0.

Similarly, consider P (m)
e (1). Recall that a1 > 0, a3 > 0, . . ., a2k+1 > 0, a2k+3 < 0,

a2k+5 < 0, . . ., ad < 0. Hence for fixed sums δ∗ := a1 + a3 + · · · + a2k+1 and δ∗∗ :=
a2k+3 + a2k+5 + · · ·+ ad, the value of P (m)

e (1) is minimal if
{
a1 = · · · = a2k−1 = 0 , a2k+1 = δ∗
a2k+5 = · · · = ad = 0 , a2k+3 = δ∗∗.

(2.1)

Let us now assume that conditions (2.1) are valid. Thus Pe = a2k+1x
d−2k−1 +

a2k+3x
d−2k−3 and a2k+1 + a2k+3 = −1. One can further decrease P (m)

e (1) by assuming
that a2k+1 = 0, a2k+3 = −1. Thus P (x) = a0x

d + a2x
d−2−xd−2k−3 and a0 + a2 = 1 .

But then P (m)(x) = uma0x
d−m + vma2x

d−2−m − wmx
d−2k−3−m and P (m)(1) =

uma0 + vma2 − wm for some numbers 0 ≤ wm ≤ vm < um. Therefore

P (m)(1) = wm(a0 + a2 − 1) + (vm − wm)(a0 + a2) + (um − vm)a0
= (vm − wm)(a0 + a2) + (um − vm)a0 > 0 .

Proof of Part (ii): The polynomial xd − 1 has the necessary signs of the leading
coefficient and of the constant term. It has a single real simple root at 1. One can
construct a polynomial of the form S := xd − 1 + ε

∑d−1
j=1 cjx

j , where cj = 1 (resp.
cj = −1) if the sign at the corresponding position of σk is + (resp. −). For a small
enough ε > 0, the polynomial S has a single simple real root close to 1, and its coefficients
have the sign pattern σ.

Finally, our approach to settling Part (iii) is based on the following lemma borrowed
from [4].

Lemma 7 (See Lemma 14 in [4]). Suppose that the monic polynomials P1 and P2 of
degrees d1 and d2 with sign patterns σ̄1 = (1, σ̂1) and σ̄2 = (1, σ̂2), respectively, realize
the pairs (pos1, neg1) and (pos2, neg2).

Then
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(i) if the last position of σ̂1 is +, then for any small enough ε > 0, the polynomial
εd2P1(x)P2(x/ε) realizes the sign pattern (1, σ̂1, σ̂2) and the pair (pos1+pos2, neg1+
neg2).

(ii) if the last position of σ̂1 is −, then for any ε > 0 small enough, the polyno-
mial εd2P1(x)P2(x/ε) realizes the sign pattern (1, σ̂1,−σ̂2) and the pair (pos1 +
pos2, neg1 + neg2). (Here −σ̂ is the sign pattern obtained from σ̂ by changing each
+ by − and vice versa.)

Remark 8. Example 15 in [4] explains some of the possible applications of Lemma 7.
We present and extend this example below. If

P2 = x− 1 , x+ 1 , x2 + 2x+ 2 , x2 + 2x+ 0.5 , x2 − 2x+ 2 or x2 − 2x+ 0.5 ,

then (pos2, neg2) = (1, 0), (0, 1), (0, 0), (0, 2), (0, 0) and (2, 0) respectively. Denote by
τ the last entry of σ̂1. When τ = +, then one has respectively σ̂2 = (−), (+), (+,+),
(+,+), (−,+) and (−,+) and the sign pattern of εd2P1(x)P2(x/ε) equals

(1, σ̂1,−) , (1, σ̂1,+) , (1, σ̂1,+,+) , (1, σ̂1,+,+) , (1, σ̂1,−,+) or (1, σ̂1,−,+) .

If τ = −, then −σ̂2 = (+), (−), (−,−), (−,−), (+,−) and (+,−) and the sign pattern
of εd2P1(x)P2(x/ε) equals

(1, σ̂1,+) , (1, σ̂1,−) , (1, σ̂1,−,−) , (1, σ̂1,−,−) , (1, σ̂1,+,−) or (1, σ̂1,+,−) .

Proof of Part (iii): Recall that the sign pattern σk ends with d− 2k− 1 minuses. Set
σk = (+,+, σ∗, σ†), where the sign patterns σ∗ (resp. σ†) consist of a minus followed by
k pairs (+,−) (resp. of d− 2k − 2 minuses).

The sign pattern (+,+) is realizable by the polynomial x + 1 (hence with the pair
(0, 1)). To obtain a polynomial realizing the sign pattern (+,+, σ∗) with the pair (2`+
1, 1) one applies Lemma 7, first k− ` times with P2 = x2− 2x+ 2, and then 2`+ 1 times
with P2 = x− 1. After this one applies Lemma 7, first 2r− 1 times with P2 = x+ 1, and
then (d− 2k − 1)/2− r times with P2 = x2 + 2x+ 2 to realize the sign pattern σk with
the pair (2`+ 1, 2r).

3 Discriminant loci of cubic and quartic polynomials under a microscope

The goal of this section is mainly pedagogical. For the convenience of our readers, we
present below detailed descriptions and illustrations of cases of (non)realizability of sign
patterns and admissible pairs for polynomials of degree up to 4.

Define the standard real discriminant locus Dd ⊂ Pold as the subset of all polynomials
having a real multiple root. (Detailed information about a natural stratification of Dd
can be found in e.g., [6].) It is a well-known and simple fact that Pold \ Dd consists of[
d
2
]

+ 1 components distinguished by the number of real simple roots. Moreover, each
such component is contractible in Pold. Obviously, the number of real roots in a family
of monic polynomials changes if and only if this family crosses the discriminant locus Dd.
3.1 Degrees 1 and 2
Clearly, a polynomial x + u has a single real root −u whose sign is opposite to the

sign of the constant term. For degrees 2, 3 and 4 we will use the invariance of the zero
set of the family of polynomials xn + a1x

n−1 + · · · + an with respect to the group of
quasi-homogeneous dilatations x 7→ tx, aj 7→ tjaj , to set the subdominant coefficient to
1. Namely, for a1 6= 0, if we set x 7→ a1x, then this changes the family of polynomials
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Figure 1. The discriminant locus of the family x3 + x2 + ax + b.

into (a1)n(xn + xn−1 + · · · ) which upon division by (a1)n (which preserves the zero set)
gives xn + xn−1 + · · · . Thus for n = 2, we consider the family P2 := x2 + x + a. For
a ≤ 1/4, it has two real roots; for a < 1/4, these are distinct. For a ∈ (0, 1/4), they are
both negative while for a < 0, they are of opposite signs.

3.2 Degree 3
For n = 3, we consider the family P3 := x3 + x2 + ax + b. Its discriminant locus Σ is
defined by the equation 4a3− a2 + 4b− 18ab+ 27b2 = 0. This is a curve shown in Fig. 1.
It has an ordinary cusp for (a, b) = (1/3, 1/27) and an ordinary tangency to the a-axis
at the origin. In the eight regions of the complement to its union with the coordinate
axes, the polynomial has roots as indicated in Fig. 1. (Here (0, 1) means 0 positive and
1 negative real roots hence there exists a complex conjugate pair as well.) The point of
the cusp corresponds to a triple root at −1/3, the upper arc corresponds to the case of
one double real root to the right and a simple one to the left (and vice versa for the lower
arc).

Figure 2. The projection of the discriminant locus of x4 + x3 + ax2 + bx + c to the plane of
parameters (a, b). (Picture on the right shows the enlarged portion of the projection near the
cusp point.)

3.3 Degree 4
For n = 4, we consider the family P4 := x4 + x3 + ax2 + bx + c. In Fig. 2 we show
the projection Φ̃ of its discriminant locus Φ in the (a, b)-plane. (For the other sets their
projections in (a, b) are denoted by the same letters with tilde.) By the dashed line we
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show the set Σ for the family P3. One has

Φ ∩ {c = 0} = Σ ∪ {b = c = 0}.

By the solid line we represent the projection

Λ̃ : 64a3 − 18a2 + 54b− 216ab+ 216b2 = 0
of the subset Λ ⊂ Φ for which the polynomial P4 has a real root of multiplicity at least
3. The ordinary cusp point of Λ̃ is the projection of the point (3/8, 1/16, 1/256) which
defines the polynomial x4 + x3 + 3x2/8 + x/16 + 1/256 = (x+ 1/4)4 to the plane (a, b).

At this point the set Φ has a swallowtail singularity, see e.g. [2]. On the upper arc
of Λ the polynomial P4 has one triple root to the right and a simple one to the left (and
vice versa for the lower arc). The upper arc of Λ̃ has an ordinary tangency to the a-axis
at the origin. Along the curve Λ the intersections of the hypersurface Φ with planes
transversal to Λ have cusp points.

The cusp point of Σ belongs to Λ. At this point Λ intersects the (a, b)-plane. The
tangent line L̃ : b = a/2− 1/8 to Λ̃ at its cusp at (3/8, 1/16) is tangent to the curve Σ at
(1/4, 0). (L̃ is shown by the dotted line.) The set L corresponds to polynomials having
two double roots. For a < 3/8, these roots are real, and for a > 3/8, they are complex
conjugate. The curve L is tangent to the (a, b)-plane at the point (1/4, 0, 0). It belongs
to the half-space {c ≥ 0}.

Now we consider the intersections of Φ with the planes parallel to the (b, c)-plane.
For a < 3/8, they have two ordinary cusps (which are the points of Λ) and a transversal
self-intersection point (which belongs to L). The first three pictures in Fig. 3 show this
intersection with the plane a = −0.1 in different scales. The curves are tangent to the
a-axis. Inside the curvilinear triangle (denoted by H4) the polynomial has four distinct
real roots. In the domain H2 which surrounds H4, the polynomial P4 has two distinct
real roots and a complex conjugate pair. In the domain H0 above the self-intersection
point it has two complex conjugate pairs. These domains are defined in the same way
for all a < 3/8. For a > 3/8, the domain H4 does not exist.

The set Φ∩{a < 0, b < 0, c > 0} divides the set {a < 0, b < 0, c > 0} into four sectors,
see the first picture in Fig. 3. The intersection {a < 0, b < 0, c > 0} ∩ H2 consists of
two contractible components. They correspond to the two cases (0, 2) (the right sector,
bordering {a < 0, b > 0, c > 0}) and (2, 0) (the left sector) realizable with the sign
pattern (+,+,−,−,+). The other two cases realizable in {a < 0, b < 0, c > 0} are (2, 2)
(the sector below) and (0, 0) (the sector above).

For a < 0, b > 0, c > 0, and when the polynomial P4 belongs respectively to H4, H2
or H0, it realizes the cases (2, 2), (0, 2) and (0, 0). The set {a < 0, b > 0, c > 0} ∩H2 is
contractible, so only one of the cases (0, 2) and (2, 0) (namely, (0, 2)) is realizable with
the sign pattern (+,+,−,+,+) (see the first picture in Fig. 3).

In {a < 0, b < 0, c < 0} one can realize the cases (1, 3) and (1, 1). They correspond to
the domains {a < 0, b < 0, c < 0} ∩H4 (the curvilinear triangle) and {a < 0, b < 0, c <
0} ∩H2 (its complement).

In {a < 0, b > 0, c < 0} one can similarly realize the cases (3, 1) (the curvilinear
triangle) and (1, 1) (its complement).

On the fourth and fifth pictures in Fig. 3 we present the intersection of Φ with the
plane {a = 0.15}. The figures are quite similar to the first three pictures in Fig. 3, and
the realizable pairs are the same with one exception. Namely, for a > 0, b > 0, c > 0 in
the domain H4 it is the pair (0, 4) which is realized. And, clearly, the third component
of the sign patterns changes from − to +.
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Figure 3. Intersections of the discriminant locus of x4 + x3 + ax2 + bx + c with the planes
a = −0.1 (the first three pictures); a = 0.15 (the fourth and the fifth pictures); and a = 0.26
(the last picture).
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Figure 4. The intersection of the discriminant locus of x4 + x3 + ax2 + bx + c with the planes
a = 0.29; 0.31; 0.335; 0.4.

The intersections of Φ with the planes {a = 0.26}, {a = 0.29}, {a = 0.31} and
{a = 0.335} are shown on the last picture in Fig. 3 and in Fig. 4. For a0 > 0.375, the
intersections of Φ with the planes {a = a0} resemble the lower right picture in Fig. 4.

4 Final Remarks

The following important questions closely related to the main topic of the present paper
remained unaddressed above.
Problem 2. Is the set of all polynomials realizing a given pair (pos, neg) and having a
sign pattern σ path-connected (if non-empty)?

Given a real polynomial p of degree d with all non-vanishing coefficients, consider the
sequence of pairs

{(pos0(p), neg0(p)), (pos1(p), neg1(p)), (pos2(p), neg2(p)), . . . , (posd−1(p), negd−1(p))},
where (posj(p), negj(p)) is the numbers of positive and negative roots of p(j) respectively.
Observe that if one is given the above sequence of pairs, then one knows the sign pattern
of a polynomial p which is assumed to be monic. Additionally it is easy to construct
examples when the converse fails.
Problem 3. Which sequences of pairs are realizable by real polynomials of degree d with
all non-vanishing coefficients?

Notice that a similar problem for the sequence of pairs of real roots (without division
into positive and negative) was considered in [7]. One can easily find examples of non-
realizable sequences {(posj(p), negj(p))}d−1

j=0 . E. g. for d = 4 this is the sequence (2, 0),
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(2, 1), (1, 1), (0, 1). Indeed, the sign pattern must be (+,+,−,+,+) about which we
know that it is not realizable with the pair (2, 0). However it is not self-evident that all
non-realizable sequences are obtained in this way.

Our final question is as follows.

Problem 4. Is the set of all polynomials realizing a given sequence of pairs as above
path-connected (if non-empty)?
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Abstract
Let C = c1, c2, . . . , , c` be a proper colouring of a connected graph G with chromatic number `. Then,
the chromatic Schultz polynomial S(G, x) of G is defined as S(G, x) =

∑
vi,vj∈V (G)

(ζ(vi) + ζ(vj))xd(u,v),

where ζ(vi) = s, when the vertex vi has the colour cs under C. In this paper, we study the chromatic
Schultz polynomials of certain cycle related graph classes.
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Keywords graph colouring, χ−-colouring, χ+-colouring, chromatic Schultz polynomial, modified chro-
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1 Introduction

For all terms and definitions, not defined specifically in this paper, we refer to [1, 5, 12,
13] and for graph classes, we refer to [2, 4]. Further, for graph colouring, see [3, 6, 9].
Unless mentioned otherwise, all graphs considered here are undirected, simple, finite and
connected.

A vertex colouring is an assignment c : V (G) → C which assigns the vertices of G,
to a set of colours (or labels or weights) C = {c1, c2, c3, . . . , c`}. The vertex colouring c
is said to be proper if no two adjacent vertices of G have same colours with respect to
that colouring. The number of colours required in a minimum proper colouring of G is
called the chromatic number of G and is denoted χ(G). A colour class of G is the set
∗corresponding author

Copyright © 2019 Matej Bel University
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of all vertices of G which have the same colour. The cardinality of the colour class of
a colour ci is said to be the strength of that colour in G and is denoted by θ(ci). We
can also define a function ζ : V (G) → {1, 2, 3, . . . , `} such that ζ(vi) = s if and only if
c(vi) = cs, cs ∈ C.

If we colour the vertices of G in such a way that c1 is assigned to maximum possible
number of vertices, then c2 is assigned to maximum possible number of remaining un-
coloured vertices and proceed in this manner until all vertices are coloured, then such a
colouring is called a χ−-colouring of G (see [7]). In a similar manner, if c` is assigned
to maximum possible number of vertices, then c`−1 is assigned to maximum possible
number of remaining uncoloured vertices and proceed in this manner until all vertices
are coloured, then such a colouring is called a χ+-colouring of G (see [7, 8].

With respect to a proper colouring c : V (G)→ C, a function ζ : V (G)→ N0 is defined
in [10] as ζ(v) = s if c(v) = cs ∈ C.

The chromatic version of Schultz polynomial was introduced in [10] as follows:

Definition 1 (Chromatic Schultz Polynomial of Graphs). [10] Let G be a connected
graph with chromatic number χ(G). Then, the chromatic Schultz polynomial of G de-
noted by Sχ(G, x) is defined as

Sχ(G, x) =
∑

u,v∈V (G)

(ζ(u) + ζ(v))xd(u,v).

A modified version of the chromatic Schultz polynomial was also introduced in [10]
as given below:

Definition 2 (Modified Chromatic Schultz Polynomial of Graphs). [10] Let G be a
connected graph with chromatic number χ(G). Then, the chromatic Schultz polynomial
of G denoted by Sχ(G, x) is defined as

Sχ(G, x) =
∑

u,v∈V (G)

(ζ(u) · ζ(v))xd(u,v).

The two versions of chromatic Schultz polynomials of some fundamental graph classes
were determined in [10]. Following that article, in this paper, we investigate the chromatic
Schultz polynomials of certain related graph classes.

Definition 3. Let G be a connected graph with chromatic number χ(G). Then, the
modified chromatic Schultz polynomial of G, denoted by S∗χ(G, x), is defined as

S∗χ(G, x) =
∑

u,v∈V (G)

(ζ(u)ζ(v))xd(u,v)

Definition 4. Let G be a connected graph with chromatic number ϕ− and ϕ+ be the
minimal and maximal parameter colouring of G. Then,

(i) the modified χ−-chromatic Schultz polynomial of G, denoted by S∗χ− , is defined as

S∗χ−(G, x) =
∑

u,v∈V (G)

(ζϕ−(u) · ζϕ−(v))xd(u,v);

and
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(ii) the χ+-chromatic Schultz polynomial of G, denoted by S∗χ− , is defined as

S∗χ+(G, x) =
∑

u,v∈V (G)

(ζϕ+(u) · ζϕ+(v))xd(u,v).

The two versions of chromatic Schultz polynomials of some fundamental graph classes
namely paths, cycles and complete graphs were determined in [10]. The chromatic Schultz
polynomial of certain other graph classes namely wheel graphs, helm graphs, closed helm
graphs, sunflower graphs, flower graphs and sunflower graphs were determined in [11].
Following those articles, in this paper, we investigate the modified chromatic Schultz
polynomials of certain cycle related graph classes.

2 Discussion and New Results

2.1 The Modified Chromatic Schultz Polynomial of Wheel Graphs
A wheel graph, denoted by Wn, is a graph obtained by joining all vertices of a cycle Cn−1
to an external vertex. That is, Wn = Cn−1 + K1. The vertices on the cycle of Wn is
called its rim vertices and the vertex K1 is called the central vertex. The wheel graph
on 9 vertices is shown in Figure 1.

Figure 1. The wheel graph W9.

The following theorem discusses the modified chromatic Schultz polynomial of wheel
graphs.
Theorem 5. Let Wn be a wheel graph on n vertices. Then, we have

S∗χ−(Wn, x) =
{

1
8 (9n2 − 44n+ 35)x2 + 1

2 (13n− 13)x+ 1
2 (5n+ 13); if n is odd;

1
8 (7n2 − 6n− 88)x2 + (8n+ 3)x+ 5

2 (n+ 8); if n is even.

Proof. Let V = {v1, v2, . . . , vn} be the vertex set of Wn, where the rim vertices are
labelled consecutively from v1 to vn−1 and vn is the central vertex. We note that the
diameter ofWn is 2. Hence, the power of the variable x varies from 0 to 2 in the modified
Schultz polynomial of Wn. Here, we need to consider the following two cases:

Note that if n is odd and χ(Wn) = 4 if n is even. Let c1, c2, c3, c4 be the four colours
we use for colouring Wn.

Case-1: Let n be odd. In this case, χ(Wn) = 3. Let c1, c2, c3 be the three colours we
use for colouring the vertices of Wn. Then, with respect to a χ−-colouring, the vertices
v1, v3, v5, . . . vn−2 get the colour c1, the vertices v2, v4, v6, . . . vn−1 get the colour c2 and
vn gets the colour c3. The possible colour pairs and their numbers in G in terms of the
distances between them are listed in Table 1.
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Distance d(u, v) Colour pairs Number of pairs

0
(c1, c1) n−1

2
(c2, c2) n−1

2
(c3, c3) 1

1
(c1, c2) n− 1
(c1, c3) n−1

2
(c2, c3) n−1

2

2
(c1, c1) (n−3)(n−1)

8
(c2, c2) (n−3)(n−1)

8
(c1, c2) (n−5)(n−1)

4

Table 1

In Table 1, the possible distances between different pairs of vertices are written in
the first column, the different colour pairs with respect to each distance is written in
the second column and the number of corresponding colour pairs with respect to each
distance is written in the third column.

From Table 1, we have the modified chromatic Schultz polynomial of the wheel graph
Wn when number of vertices n is odd, is given by

S∗χ−(Wn, x) = [1(n− 1
2 ) + 4(n− 1

2 ) + 9]x0 + [2(n− 1) + 3(n− 1
2 ) + 6(n− 1

2 )]x1

+[1((n− 3)(n− 1)
8 ) + 4((n− 3)(n− 1)

8 ) + 2((n− 5)(n− 1)
8 )]x2

= 1
8(9n2 − 44n+ 35)x2 + 13

2 (n− 1)x+ 1
2(5n+ 13)

Distance d(u, v) Colour pairs Number of pairs

0

(c1, c1) n−2
2

(c2, c2) n−2
2

(c3, c3) 1
(c4, c4) 1

1

(c1, c2) n− 3
(c1, c4) n−2

2
(c2, c4) n−2

2
(c1, c3) 1
(c2, c3) 1
(c3, c4) 1

2

(c1, c1) (n−4)(n−2)
8

(c2, c2) (n−4)(n−2)
8

(c1, c2) (n−4)(n−2)
8

(c2, c3) n−4
2

(c1, c3) n−4
2

Table 2

Case-2: Let n be even. In this case, χ(Wn) = 4. Let c1, c2, c3, c4 be the four colours
we use for colouring the vertices of Wn. Then, with respect to a given χ−-colouring, the
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vertices v1, v3, v5, . . . vn−3 get the colour c1, the vertices v2, v4, v6, . . . vn−2 get the colour
c2, the vertex v3 gets the colour c3 and the vertex v4 gets the colour c4. The possible
colour pairs and their numbers in G in terms of the distances between them are listed in
Table 2.

From Table 2, we have the modified chromatic Schultz polynomial of the Wheel graph
Wn when the number of vertices, n is even, is given by

S∗χ−(Wn, x) = [1(n− 2
2 ) + 4(n− 2

2 ) + 9(1) + 16(1)]x0 + [2(n− 3) + 4(n− 2
2 ) +

8(n− 2
2 ) + 3(1) + 6(1) + 12(1)]x1 + [1(n− 4)(n− 2)

8

+4(n− 4)(n− 2)
8 + 2(n− 4)(n− 2)

8 + 6(n− 4
2 ) + 3(n− 4

2 )]x2

= 1
8(7n2 − 6n− 88)x2 + (8n+ 3)x+ 5

2(n+ 8)

Therefore,

S∗χ−(Wn, x) =
{

1
8 (9n2 − 44n+ 35)x2 + 1

2 (13n− 13)x+ 1
2 (5n+ 13); if n is odd;

1
8 (7n2 − 6n− 88)x2 + (8n+ 3)x+ 5

2 (n+ 8); if n is even.

This completes the proof.

Since χ+-colouring can be obtained by reversing the colouring pattern, the modified
chromatic Schultz polynomial of a wheel graph with respect to its χ+-colouring can be
determined as follows:

Theorem 6. Let Wn be a wheel with n vertices. Then, we have

S∗χ+(Wn, x) =





1
8 (25n2 − 144n+ 99)x2 + 1

2 (17n− 17)x+ 1
2 (13n− 11); if n is odd;

1
8 (26n2 − 100n− 40)x2 + 1

2 (31n− 54)x+ 1
2 (25n− 40); if n is even.

2.2 The Modified Chromatic Schultz Polynomial of Helm Graphs
A helm graph consists of wheel graphs consisting of n rim vertices and each rim vertex
has an extra (pendant) vertex attached to it. Therefore, a helm graph consists of 2n+ 1
vertices where n is the number of rim vertices. The helm graph on 17 vertices is depicted
in Figure 2.

When n is odd, Hn is 4-colourable and when n is even, Hn is 3-colourable. The
modified chromatic Schultz polynomial of the helm graph with respect to χ− colouring,
can be determined as n the following theorem.

Theorem 7. Let Hn be a helm graph with 2n+ 1 vertices. Then, we have

S∗χ−(Hn, x) =





1
2 (n2 − 3n)x4 + 1

2 (5n2 − 15n− 24)x3

+ 1
8 (25n2 + 128n− 241)x2 + (11n+ 11)x+ 5

2 (3n+ 1); if n is odd;

1
2 (n2 − 3n)x4 + 1

2 (27n)x3 + 1
4 (25n2 − 74n+ 96)x2+

11nx+ 1
2 (15n+ 2); if n is even.
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Figure 2. The helm graph H8.

Proof. Let V = {v1, v2, . . . , v2n+1 be the vertex set of Hn, where the rim vertices are
labelled consecutively from v1 to vn, the corresponding extra vertices are labelled from
vn+1 to v2n and v2n+1 is the central vertex. We note that the diameter of Hn is 4. Hence,
the power of the variable x varies from 0 to 4 in the modified Schultz polynomial of Hn.
Here, we need to consider the following two cases:

Note that χ(Hn) = 4 if the number of rim vertices n is odd and χ(Hn) = 3 if n is
even. Let c1, c2, c3, c4 be the four colours we use for colouring Hn.

Case-1: Let n be odd. In this case, χ(Hn) = 4. Let c1, c2, c3, c4 be the four colours we
use for colouring the vertices of Hn. Then, with respect to a χ−-colouring, the vertices
vn, vn+1, vn+2, . . . v2n and v2n+1 get the colour c1, the vertices v1, v3, v5, . . . vn−2 get the
colour c2, v2, v4, v6, . . . vn−1 get the colour c3, and vn gets the colour c4. The possible
colour pairs and their numbers in G in terms of the distances between them are listed in
Table 3.

Distance d(u, v) Colour pairs Number of pairs

0

(c1, c1) n+ 1
(c2, c2) n−1

2
(c3, c3) n−1

2
(c4, c4) 1

1

(c1, c2) n− 1
(c1, c3) n− 1
(c1, c4) 2
(c2, c3) n− 2
(c2, c4) 1
(c3, c4) 1

2

(c1, c1) n

(c2, c2) (n−1)(n+1)
8

(c3, c3) (n−1)(n+1)
8

(c1, c2) n− 1
(c1, c3) n− 1
(c2, c3) (n−1)(n+1)

4
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(c1, c4) 2
(c2, c4) n−3

2
(c3, c4) n−3

2

3

(c1, c1) n

(c1, c2) n(n−5)
2

(c1, c3) n(n−5)
2

(c1, c4) n− 3
4 (c1, c1) n(n−3)

2

Table 3

In Table 3, the possible distances between different pairs of vertices are written in
the first column, the different colour pairs with respect to each distance is written in
the second column and the number of corresponding colour pairs with respect to each
distance is written in the third column.

From Table 3, we have the chromatic Schultz polynomial of the helm graph Hn when
number of rim vertices n is odd, is given by

S∗χ−(Hn, x) = [n+ 1 + 13(n− 1
2 ) + 16]x0 + [5(n− 1) + 6(n− 2) + 28]x1

+[n+ 13(n2 − 1)
8 + 5(n− 1) + 6(n2 − 1)

4 + 8 + 20n− 3
2 ]x2 +

[n+ 5n(n− 5)
2 + 4(n− 3)]x3 + [1((n− 3)n

2 )]x4

= 1
2(n2 − 3n)x4 + 1

2(5n2 − 15n− 24)x3 + 1
8(25n2 + 128n− 241)x2

+(11n+ 11)x+ 5
2(3n+ 1).

Distance d(u, v) Colour pairs Number of pairs

0
(c1, c1) n+ 1
(c2, c2) n

2
(c3, c3) n

2

1
(c1, c2) n
(c1, c3) n
(c2, c3) n

2

(c1, c1) n

(c2, c2) n(n−2)
4

(c1, c2) n
(c1, c3) n

(c2, c3) (n−4)(n−2)
2

(c3, c3) n(n−2)
4

3
(c1, c1) n
(c1, c2) 5n

2
(c1, c3) 5n

2
4 (c1, c1) n(n−3)

2

Table 4
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Case-2: Let n be even. In this case, χ(Hn) = 3. Let c1, c2, c3 be the three colours we
use for colouring the vertices of Hn. Then, with respect to a χ− colouring, the vertices
vn+1, vn+2, vn+3, . . . v2n and v2n+1 get the colour c1, the vertices v1, v3, v5, . . . vn−1 get
the colour c2, and the vertices v2, v4, v6, . . . vn the colour c3. The possible colour pairs
and their numbers in G in terms of the distances between them are listed in Table 4.

From Table 4, we have the modified chromatic Schultz polynomial of the helm graph
Hn when the number of rim vertices n is even, is given by

S∗χ−(Hn, x) = [1(n+ 1) + 4(n2 ) + 9(n2 )]x0 + [2(n) + 3(n) + 6(n)]x1

+[1(n) + 4n(n− 2)
4 + 2(n) + 3(n) + 6(n− 4)(n− 2)

2 + 9n(n− 2)
4 ]x2

+[1(n) + 2(5n
2 ) + 3(5n

2 ]x3 + [(n− 3)n
2 ]x4

= 1
2(n2 − 3n)x4 + 27

2 nx
3 + 1

4(25n2 − 74n+ 96)x2 + 11nx+ 1
2(15n+ 2).

Therefore,

S∗χ−(Hn, x) =





1
2 (n2 − 3n)x4 + 1

2 (5n2 − 15n− 24)x3

+ 1
8 (25n2 + 128n− 241)x2 + (11n+ 11)x+ 5

2 (3n+ 1); if n is odd;

1
2 (n2 − 3n)x4 + 1

2 (27n)x3 + 1
4 (25n2 − 74n+ 96)x2+

(11n)x+ 1
2 (15n+ 2); if n is even.

This completes the proof.

Using a similar argument, we get the modified chromatic Schultz polynomial of a
helm graph, with regard to a χ+-colouring, as follows:

Theorem 8. Let Hn be a helm graph with n rim vertices. Then, with respect to χ+

colouring, we have

S∗χ+(Hn, x) =





8(n2 − 3n)x4 + (10n2 − 30n− 12)x3 + 1
8 (19n2+

308n− 181)x2 + (26n− 19)x+ 1
2 (45n+ 20); if n is odd;

9
2 (n2 − 3n)x4 + 1

2 (63n)x3 + 1
4 (9n2 + 38n+ 32)x2+

11nx+ 1
2 (23n+ 18); if n is even.

2.3 The Modified Chromatic Schultz Polynomial of Closed Helm Graphs
A closed helm graph consists of helm graphs with each attached extra vertex connected
to its neighbouring extra vertices by edges. Therefore, a closed helm graph H∗n consists of
2n+ 1 vertices where n is the number of rim vertices. When n is odd, H∗n is 4-colourable
and when n is even, H∗n is 3-colourable. The closed helm graph on 17 vertices is depicted
in Figure 3.

The modified chromatic Schultz polynomial of the helm graph with respect to χ−
colouring, can be determined as in the following theorem.
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Figure 3. The closed helm graph H∗8 .

Theorem 9. Let H∗n be a closed helm graph with 2n+ 1 vertices. Then, we have

S∗χ−(H∗n, x) =





1
8 (5n2 − 4n− 177)x4 + 1

4 (9n2 − 2n− 3)x3

+ 1
4 (2n2 + 56n+ 10)x2 + 1

2 (24n+ 42)x+ (5n+ 29); if n is odd;

1
4 (n2 − 10n+ 24)x4 + (11n)x3 + 1

8 (2n2 + 92n)x2

+ 1
2 (21n)x+ (5n+ 9); if n is even.

Proof. Let V = {v1, v2, . . . , v2n+1} be the vertex set of H∗n, where the rim vertices are
labelled consecutively from v1 to vn, the corresponding extra vertices are labelled from
vn+1 to v2n and v2n+1 is the central vertex. We note that the diameter of H∗n is 4. Hence,
the power of the variable x varies from 0 to 4 in the modified Schultz polynomial of H∗n.
Here, we need to consider the following two cases:

Note that χ(H∗n) = 4 if the number of rim vertices n is odd and χ(H∗n) = 3 if n is
even. Let c1, c2, c3, c4 be the four colours we use for colouring H∗n.

Case-1: Let n be odd. In this case, χ(H∗n) = 4. Let c1, c2, c3, c4 be the four colours
we use for colouring the vertices of H∗n. Then, with respect to a χ−-colouring, the
vertices v1, v3, v5, . . . vn−2 and the vertices vn+2, vn+4, vn+6, . . . v2n get the colour c1, the
vertices v2, v4, v6, . . . vn−1 and the vertices vn+3, vn+ 5, vn+7, . . . v2n−1 get the colour c2,
the vertices vn and vn+1 gets the colour c3 and the vertex v2n+1 gets the colour c4. The
possible colour pairs and their numbers in G in terms of the distances between them are
listed in Table 5.

In Table 5, the possible distances between different pairs of vertices are written in
the first column, the different colour pairs with respect to each distance is written in
the second column and the number of corresponding colour pairs with respect to each
distance is written in the third column.

Distance d(u, v) Colour pairs Number of pairs

0

(c1, c1) n− 1
(c2, c2) n− 1
(c3, c3) 2
(c4, c4) 1
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1

(c1, c2) 3n− 6
(c1, c3) 3
(c1, c4) n−1

2
(c2, c3) 3
(c2, c4) n−1

2
(c3, c4) 1

2

(c1, c1) 3n−7
2

(c2, c2) 3n−7
2

(c3, c3) 1
(c1, c2) 1 + (n−5)(n−3)

4
(c1, c3) n−1

2
(c2, c3) (n−1)

2
(c1, c4) n−1

2
(c2, c4) n−1

2
(c3, c4) 1

3

(c1, c1) (n−3
2 )2

(c2, c2) (n−3
2 )2

(c1, c2) (n−3)(n+1)
2

(c1, c3) n− 1
(c2, c3) n− 1

4

(c1, c1) (n−5)(n−3)
8

(c2, c2) (n−5)(n−3)
8

(c1, c3) n−7
2

(c2, c3) n−7
2

Table 5

From Table 5, we have the modified chromatic Schultz polynomial of the closed helm
graph H∗n when number of rim vertices n is odd, is given by

S∗χ−(H∗n, x) = [5(n− 1) + 34]x0 + [2(3n− 6) + 9 + 12(n− 1
2 ) + 30]x1

+[5(3n− 7
2 ) + 9 + 2(n

2 − 8n+ 19
4 ) + 41(n− 1

2 ) + 24]x2

+[5(n− 3
2 )2 + 2(n2 − 2n− 3)

2 + 9(n− 1)]x3 +

[5((n2 − 8n− 15)
4 ) + 9(n− 7

2 )]x4

= 1
8(5n2 − 4n− 177)x4 + 1

4(9n2 − 2n− 3)x3 + 1
4(2n2 + 56n+ 10)x2

+1
2(24n+ 42)x+ (5n+ 29).

Case-2: Let n be even. In this case, χ(H∗n) = 3. Then, with respect to a χ− colouring,
the vertices the vertices v1, v3, v5, . . . vn−1 and the vertices vn+2, vn+4, vn+6,
. . . v2n get the colour c1, the vertices v2, v4, v6, . . . vn and the vertices vn+1, vn+3, vn+5,
. . . v2n−1 get the colour c2, and the vertex v2n+1 get the colour c3. The possible colour
pairs and their numbers in G in terms of the distances between them are as given in
Table 6.
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Distance d(u, v) Colour pairs Number of pairs

0
(c1, c1) n
(c2, c2) n
(c3, c3) 1

1
(c1, c2) 3n
(c1, c3) n

2
(c2, c3) n

2

2

(c1, c1) 3n
2

(c2, c2) 3n
2

(c1, c2) (n−4)(n+2)
8

(c1, c3) n
2

(c2, c3) n
2

3
(c1, c1) n
(c2, c2) n
(c1, c2) 3n

4 (c1, c1) (n−6)(n−4)
4

(c2, c2) (n−6)(n−4)
4

Table 6

From Table 6, we have the modified chromatic Schultz polynomial of H∗n, when the
number of rim vertices n is even, is given by

S∗χ−(H∗n, x) = [5n+ 9]x0 + [6n+ 9(n2 )]x1 + [5(3n
2 ) + 2((n− 4)(n+ 2)

8 ) + 9(n2 )]x2

+11nx3 + [5((n− 6)(n− 4)
4 )]x4

= 1
4(n2 − 10n+ 24)x4 + 11nx3 + 1

8(2n2 + 92n)x2 + 21
2 nx+ (5n+ 9).

Therefore,

S∗χ−(H∗n, x) =





1
8 (5n2 − 4n− 177)x4 + 1

4 (9n2 − 2n− 3)x3

+ 1
4 (2n2 + 56n+ 10)x2 + 1

2 (24n+ 42)x+ (5n+ 29); if n is odd;

1
4 (n2 − 10n+ 24)x4 + (11n)x3 + 1

8 (2n2 + 92n)x2

+ 1
2 (21n)x+ (5n+ 9); if n is even.

This completes the proof.

Theorem 10. Let H∗n be a closed helm graph with n rim vertices. Then, with respect to
χ+ colouring, we have

S∗χ+(H∗n, x) =





1
8 (25n2 − 144n− 73)x4 + 1

4 (49n2 − 216n+ 97)x3+
1
4 (122 + 12n− 28)x2 + 1

2 (79n− 63)x+ (25n− 16); if n is odd;

13
4 (n2 − 10n+ 24)x4 + (31n)x3

+ 1
4 (3n2 + 82n− 24)x2 + 1

2 (41n)x+ (13n+ 1); if n is even.
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2.4 The Modified Chromatic Schultz Polynomial of Sunflower Graphs
A sunflower graph SFn is a graph obtained by replacing each edge of the rim of a wheel
graph Wn by a triangle such that two triangles share a common vertex if and only if the
corresponding edges in Wn are adjacent in Wn. Therefore, a sunflower graph consists of
2n+1 vertices where n is the number of rim vertices. The sunflower graph on 17 vertices
is depicted in Figure 4.

Figure 4. The sunflower graph SF8.

When n is odd, SFn is 4-colourable and when n is even, SFn is 3-colourable. The
modified chromatic Schultz polynomial of the sunflower graph with respect to χ− colour-
ing, can be determined as n the following theorem.
Theorem 11. Let SFn be a sunflower graph with 2n+ 1 vertices. Then, we have

S∗χ−(SFn, x) =





1
2 (n2 − 5n)x4 + (15n− 6)x3 + 1

8 (24n2 + 168n)x2

+ 1
2 (27n+ 25)x+ 1

2 (15n+ 5); if n is odd;

1
2 (n2 − 5n)x4 + 3

2 (n2 − 6n)x3 + 1
8 (19n2 + 34n)x2

+ 21
2 nx+ 1

2 (15n+ 1); if n is even.

Proof. Let V = {v1, v2, . . . , v2n+1 be the vertex set of SFn, where the rim vertices of Wn

are labelled consecutively from v1 to vn, the corresponding extra vertices of the triangle
are labelled from vn+1 to v2n and the central vertex is v2n+1. We note that the diameter
of SFn is 4. Hence, the power of the variable x varies from 0 to 4 in the modified
chromatic Schultz polynomial of SFn. Here, we need to consider the following two cases:

Note that χ(SFn) = 4 if the number of rim vertices n is odd and χ(SFn) = 3 if n is
even. Let c1, c2, c3, c4 be the four colours we use for colouring SFn.

Case-1: Let n be odd. In this case, χ(SFn) = 4. Let c1, c2, c3, c4 be the four colours we
use for colouring the vertices of SFn. Then, with respect to a χ−-colouring, the vertices
vn+1, vn+2, vn+3, . . . v2n and v2n+1 get the colour c1, the vertices v1, v3, v5, . . . vn−2 get
the colour c2, v2, v4, v6, . . . vn−1 get the colour c3, and vn gets the colour c4. The possible
colour pairs and their numbers in G in terms of the distances between them are listed in
Table 7.
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Distance d(u, v) Colour pairs Number of pairs

0

(c1, c1) n+ 1
(c2, c2) n−1

2
(c3, c3) n−1

2
(c4, c4) 1

1

(c1, c2) 3n−3
2

(c1, c3) 3n−3
2

(c1, c4) 3
(c2, c3) n− 2
(c2, c4) 1
(c3, c4) 1

2

(c1, c1) 2n
(c1, c2) n− 1
(c1, c3) n− 1
(c1, c4) 2
(c2, c2) (n−3)(n−1)

8
(c2, c3) ( (n−3)

2 )2

(c1, c4) n−3
2

(c2, c4) (n−3)(n−1)
8

(c3, c4) n−3
2

3

(c1, c1) n
(c1, c2) 2n+ 2
(c1, c3) 2n+ 2
(c1, c4) n− 4

4 (c1, c1) (n−5)n)
2

Table 7

In Table 7, the possible distances between different pairs of vertices are written in
the first column, the different colour pairs with respect to each distance is written in
the second column and the number of corresponding colour pairs with respect to each
distance is written in the third column.

From Table 7, we have the modified chromatic Schultz polynomial of the Sunflower
graph SFn when number of rim vertices n is odd, is given by

Sχ−(SFn, x) = [1(n+ 1) + 4(n− 1
2 ) + 9(n− 1

2 ) + 16(1)]x0

+[2(3n− 3
2 ) + 3(3n− 3

2 ) + 4(3) + 6(n− 2) + 8(1) + 12(1)]x1

+[1(2n) + 2(n− 1) + 3(n− 1) + 4(2) + 4((n− 3)(n− 1)
2 ) + 6(n− 3

2 )2

+4(n− 3
2 ) + 8((n− 3)(n− 1)

4 ) + 12(n− 3
2 )]x2

+[1(n) + 2(2n+ 2) + 3(2n+ 2) + 4(n− 4)]x3 + [1(n− 5)n
2 ]x4

= 1
2(n2 − 5n)x4 + (15n− 6)x3 + 1

8(24n2 + 168)x2

+1
2(27n+ 25)x+ 1

2(15n+ 5).



76 Rohith Raja M, Sudev Naduvath, Charles Dominic

Case-2: Let n be even. In this case, χ(SFn) = 3. Let c1, c2, c3 be the three colours we
use for colouring the vertices of SFn. Then, with respect to a χ− colouring, the vertices
vn+1, vn+2, vn+3, . . . v2n and v2n+1 get the colour c1, the vertices v1, v3, v5, . . . vn−1 get
the colour c2, and the vertices v2, v4, v6, . . . vn the colour c3. The possible colour pairs
and their numbers in G in terms of the distances between them are listed in Table 8

Distance d(u, v) Colour pairs Number of pairs

0
(c1, c1) n+ 1
(c2, c2) n

2
(c3, c3) n

2

1
(c1, c2) 3n

2
(c1, c3) 3n

2
(c2, c3) n

2

(c1, c1) 2n
(c1, c2) n
(c1, c3) n

(c2, c2) n(n+2)
8

(c2, c3) n(n−2)
8

(c3, c3) n(n−2)
8

3
(c1, c1) n

(c1, c2) (n−4)n
2

(c1, c3) (n−4)n
2

4 (c1, c1) (n−5)n
2

Table 8

From Table 8, we have the modified chromatic Schultz polynomial of the sunflower
graph SFn when the number of rim vertices n is even, is given by

S∗χ−(SFn, x) = [1(n+ 1) + 4(n2 ) + 9(n2 ]x0 + [2(3n
2 ) + 3(3n

2 ) + 6(n)]x1

+[1(2n) + 2(n) + 3(n) + 4(n(n+ 2)
8 ) + 6(n(n− 2)

8 ) + 9(n(n− 2)
8 )]x2

+[n+ 5((n− 4)n
2 )]x3 + [(n− 5)n

2 ]x4

= 1
2(n2 − 5n)x4 + 3

2(n2 − 6n)x3 + 1
8(19n2 + 34n)x2 + 21

2 nx+ 1
2(15n+ 1).

Therefore,

S∗χ−(SFn, x) =





1
2 (n2 − 5n)x4 + (15n− 6)x3 + 1

8 (24n2 + 168n)x2

+ 1
2 (27n+ 25)x+ 1

2 (15n+ 5); if n is odd;

1
2 (n2 − 5n)x4 + 3

2 (n2 − 6n)x3 + 1
8 (19n2 + 34n)x2+

1
2 (21n)x+ 1

2 (15n+ 1); if n is even.

This completes the proof.
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Theorem 12. Let SFn be a sunflower graph with n rim vertices. Then, with respect to
χ+ colouring, we have

Sχ+(SFn, x) =





8(n2 − 5n)x4 + (60n+ 24)x3

+ 1
8 (18n2 + 288n− 24)x2 + (36n− 25)x+ 1

2 (45n+ 20); if n is odd;

9
2 (n2 − 5n)x4 + 9

2 (9n2 − 2n)x3+
1
8 (7n2 + 218n)x2 + 1

2 (33n)x+ 1
2 (23n+ 18); if n is even.

2.5 The Modified Chromatic Schultz Polynomial of Flower Graphs
A flower graph Fln is a graph which is obtained by joining the pendant vertices of a
helm graph Hn to its central vertex. Therefore, a flower graph consists of 2n+ 1 vertices
where n is the number of rim vertices. The flower graph on 17 vertices is depicted in
Figure 5.

Figure 5. The flower graph F l8.

When n is odd, Fln is 5-colourable and when n is even, Fln is 4-colourable. The
modified chromatic Schultz polynomial of the flower graph with respect to χ− colouring,
can be determined as n the following theorem.

Theorem 13. Let Fln be a flower graph with 2n+ 1 vertices. Then, we have

S∗χ−(Fln, x) =





3
2 (2n2 − n− 1)x2 + (21n+ 22)x+ 1

2 (15n+ 69); if n is odd;

3(n2 − n)x2 + 1
2 (45n)x+ 1

2 (15n+ 32); if n is even.

Proof. Let V = {v1, v2, . . . , v2n+1 be the vertex set of Fln, where the rim vertices of Wn

are labelled consecutively from v1 to vn, the corresponding extra vertices are labelled
from vn+1 to v2n and the central vertex is v2n+1. We note that the diameter of Fln is 2.
Hence, the power of the variable x varies from 0 to 2 in the modified chromatic Schultz
polynomial of Fln. Here, we need to consider the following two cases:

Note that χ(Fln) = 5 if the number of rim vertices n is odd and χ(Fln) = 4 if n is
even. Let c1, c2, c3, c4, c5 be the five colours we use for colouring Fln.
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Case-1: Let n be odd. In this case, χ(Fln) = 5. Let c1, c2, c3, c4, c5 be the five
colours we use for colouring the vertices of Fln. Then, with respect to a χ−-colouring,
the vertices vn+1, vn+2, vn+3, . . . v2n get the colour c1, the vertices v1, v3, v5, . . . vn−2 get
the colour c2, v2, v4, v6, . . . vn−1 get the colour c3, vn gets the colour c4 and v2n+1 gets
the colour c5. The possible colour pairs and their numbers in G in terms of the distances
between them are listed in the following table.

Distance d(u, v) Colour pairs Number of pairs

0

(c1, c1) n
(c2, c2) n−1

2
(c3, c3) n−1

2
(c4, c4) 1
(c5, c5) 1

1

(c1, c2) n−1
2

(c1, c3) n−1
2

(c1, c4) 1
(c1, c5) 1
(c2, c3) n− 2
(c2, c4) 1
(c2, c5) n−1

2
(c3, c4) 1
(c3, c5) n−1

2
(c4, c5) 1

2

(c1, c1) (n−1)n
2

(c1, c2) (n−1)2

2
(c1, c3) (n−1)2

2
(c1, c4) n− 1
Table 9

In Table 9, the possible distances between different pairs of vertices are written in
the first column, the different colour pairs with respect to each distance is written in
the second column and the number of corresponding colour pairs with respect to each
distance is written in the third column.

From Table 9, we have the modified chromatic Schultz polynomial of the flower graph
Fln when number of rim vertices n is odd, is given by

Sχ−∗(Fln, x) = [1(n) + 4(n− 1
2 ) + 9(n− 1

2 ) + 16(1) + 25(1)]x0

+[2(n− 1
2 ) + 3(n− 1

2 ) + 4(1) + 5(1)

+6(n− 2) + 8(1) + 10(n− 1
2 ) + 12(1) + 15(n− 1

2 ) + 20(1)]x1

+[1(n(n− 1)
2 + 2(n− 1)2

2 + 3((n− 1)2

2 ) + 4(n− 1)]x2

= 3
2(2n2 − n− 1)x2 + (21n+ 12)x+ 1

2(15n+ 69).

Case-2: Let n be even. In this case, χ(Fln) = 4. Let c1, c2, c3, c4 be the four colours
we use for colouring the vertices of Fln. Then, with respect to a χ− colouring, the
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vertices vn+1, vn+2, vn+3, . . . v2n get the colour c1, the vertices v1, v3, v5, . . . vn−1 get the
colour c2, the vertices v2, v4, v6, . . . vn the colour c3 and the vertex v2n+1 gets the colour
c4. The possible colour pairs and their numbers in G in terms of the distances between
them are listed in Table 10.

Distance d(u, v) Colour pairs Number of pairs

0

(c1, c1) n
(c2, c2) n

2
(c3, c3) n

2
(c4, c4) 1

1

(c1, c2) n
2

(c1, c3) n
2

(c1, c4) n
(c2, c3) n
(c2, c4) n

2
(c3, c4) n

2

2
(c1, c1) n(n−1)

2
(c1, c2) n(n−1)

2
(c1, c3) n(n−1)

2

Table 10

From Table 10, we have the modified chromatic Schultz polynomial of the helm graph
Fln when the number of rim vertices n is even, is given by

S∗χ−(Fln, x) = [1(n) + 4(n2 ) + 9(n2 + 16(1)]x0

+[2(n2 ) + 3(n2 ) + 4(n) + 6(n) + 8(n2 + 12(n2 )]x1

+[1(n(n− 1)
2 ) + 2(n− 1)2

2 ) + 3(n− 1)2

2 )]

= 3(n2 − n)x2 + 45
2 nx+ 1

2(15n+ 32).

Therefore,

S∗χ−(Fln, x) =





3
2 (2n2 − n− 1)x2 + (21n+ 22)x+ 1

2 (15n+ 69); if n is odd;

3(n2 − n)x2 + 1
2 (45n)x+ 1

2 (15n+ 32); if n is even.

This completes the proof.

The following theorem provides the modified chromatic Schultz polynomial of a flower
graph Fln with respect to its χ+-colouring.

Theorem 14. Let Fln be a flower graph with n rim vertices. Then, with respect to χ+

colouring, we have

S∗χ+(Fln, x) =





1
2 (60n2 − 75n+ 15)x2 + 1

2 (18n+ 46)x+ 1
2 (75n− 15); if n is odd;

20(n2 − n)x2 + 1
2 (39n)x+ 1

2 (45n+ 1); if n is even.
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2.6 The Modified Chromatic Schultz Polynomial of Friendship Graphs
A friendship graph Fn consists of n triangles joined together by a single vertex. Fn
consists of 2n + 1 vertices and 3n edges. Fn is 3-colourable. The friendship graph on 9
vertices is shown in Figure 6.

Figure 6. The friendship graph F4.

The following theorem discusses the chromatic Schultz polynomial of friendship graphs:

Theorem 15. Let Fn be a friendship graph with n triangles. Then, we have

Sχ−(Fn, x) = 9
2(n2 − n)x2 + (11n)x+ (5n+ 9)

Proof. Let V = {v1, v2, . . . , v2n+1} be the vertex set of Fn. We note that the diameter of
Fn is 2. Hence the power of the variable x varies from 0 to 2 in the modified chromatic
Schultz polynomial of Fn. For Friendship graph, number of vertices is always odd. Now,
χ(Fn) = 3. Let c1, c2, c3 be the three colours we use for colouring the vertices of Fn.
Then, with respect to a χ− colouring, one vertex each of the triangles are coloured c1,
the other is coloured c2 and the common vertex is coloured c3. The possible colour pairs
and their numbers in Fn in terms of the distances between them are listed in Table 11.

Distance d(u, v) Colour pairs Number of pairs

0
(c1, c1) n
(c2, c2) n
(c3, c3) 1

1
(c1, c2) n
(c1, c3) n
(c2, c3) n

2
(c1, c1) n(n−1)

2
(c2, c2) n(n−1)

2
(c1, c2) n(n− 1)

Table 11

From Table 11, the modified chromatic Schultz polynomial of Fn can be evaluated as
follows:

S∗χ−(Fn, x) = [1(n) + 4(n) + 9(1)]x0 + [2(n) + 3(n) + 6(n)]x1 +
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[1(n(n− 1)
2 ) + 4(n(n− 1)

2 ) + 2(n(n− 1))]x2

= 9
2(n2 − n)x2 + (11n)x+ (5n+ 9).

This completes the proof.

In a similar way, the modified chromatic Schultz polynomial of a friendship graph
with respect to its χ+-colouring, can be determined as in the following theorem.

Theorem 16. Let Fn be a friendship graph with n triangles. Then we have,

S∗χ+(Fn, x) = 25
2 (n2 − n)x2 + (11n)x+ (13n+ 1).

3 Conclusion

In this paper, we have discussed the modified chromatic Schultz polynomial of certain
cycle related graphs. This polynomial can be determined for many other graph classes
with finite diameter. Further investigations on the chromatic Schultz polynomial and
modified chromatic Schultz polynomial of graph operations, graph products and graph
powers are also promising. This study can be extended to other types of graph colouring
such as injective colouring and equitable colouring. The concept can be extended to edge
colouring and map colouring also. All these facts show a wide scope for further studies
in this area.
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Abstract
In this paper we prove some basic results on Jordan ideals of rings that make the study of derivations
on Jordan ideals of (semi)prime rings parallel to the study of derivations on ideals of (semi)prime rings.
More precisely, we prove a number of commutativity theorems with generalized (θ, φ)−derivations that
act on Jordan ideals of prime rings. Consequently, many known results of this subject are unified or
extended.
Received October 15, 2019
Accepted in final form January 22, 2020
Communicated with Miroslav Haviar.
Keywords Generalized (θ, φ)−derivations, Jordan ideals, prime rings, commutativity.
MSC(2010) 16W25, 16W20, 15A27.

1 Introduction

For any ring R, an additive subgroup J of R is said to be the Jordan ideal (resp. Lie
ideal) of R if J ◦R ⊆ J (resp. [J,R] ⊆ J), where the symbol x ◦ y (resp. [x, y]) denotes
the Jordan product xy + yx (resp. Lie product xy − yx). It is well-known that if J
is a nonzero Jordan ideal of R then for any j ∈ J, 2[j2, R] ⊆ J, 4j2R ⊆ J, 4Rj2 ⊆ J
(see [[3], proof of Lemma 3]) and 4jRj ⊆ J (see [[3], proof of Theorem 3]). Moreover,
2J [R,R] ⊆ J and 2[R,R]J ⊆ J (see [[19], Lemma 2.4]). It is well-known that if union
of two proper subgroups G1 and G2 of a group G is whole of G, then either G1 = G or
G2 = G, provided G1 6⊆ G2 and G2 6⊆ G1. This fact is known as Brauer’s trick. Recall
that a ring R is said to be prime (resp. semiprime) if for any a, b ∈ R, aRb = (0) (resp.
aRa = (0)) implies a = 0 or b = 0 (resp. a = 0) and an additive mapping d : R → R is
called a derivation of R if d(xy) = d(x)y + xd(y) for any x, y ∈ R. For a fixed α ∈ R, a
mapping dα : R → R such that x 7→ [α, x] is a derivation, which is known as the inner
derivation induced by α. For some fixed a, b ∈ R, a mapping Fa,b : R → R such that
x 7→ ax+ xb is called the generalized inner derivation of R. Immediately it follows that,
if Fa,b is generalized inner derivation, then we have Fa,b(xy) = Fa,b(x)y+xd−b(y), where
d−b is inner derivation associated with the element (−b). This observation of Brešar
[5] gave rise to the notion of generalized derivation. Accordingly, if d is a derivation
of R and F : R → R is an additive map such that F (xy) = F (x)y + xd(y) for all
∗ORCID iD: 0000-0001-8618-6325

Copyright © 2019 Matej Bel University
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x, y ∈ R, then F is called a generalized derivation of R. The familiar examples of these
mappings are derivations, left multipliers ( i.e., an additive mapping T : R→ R such that
T (xy) = T (x)y for all x, y ∈ R). For any ring endomorphisms θ and φ, a (θ, φ)−derivation
is an additive mapping d : R→ R such that d(xy) = d(x)θ(y) +φ(x)d(y) for all x, y ∈ R.
Such mappings appeared first time in the classic text [10] by Jacobson. Of course, a
derivation is an (1R, 1R)−derivation, where 1R is the identity map on R. A mapping
dα : R → R such that x 7→ αθ(x) − φ(x)α is called the (θ, φ)− inner derivation of
R, where α ∈ R is a fixed element. Intuitively, a generalized (θ, φ)− inner derivation
of R is a mapping Fa,b : R → R such that x 7→ aθ(x) + φ(x)b, where a, b are fixed
elements of R. Similarly, if Fa,b is a generalized (θ, φ)−inner derivation of R, then we
have Fa,b(xy) = Fa,b(x)θ(y) + φ(x)d−b(y), where d−b is (θ, φ)−inner derivation of R.
This computation naturally extends the notion of generalized derivation to generalized
(θ, φ)−derivation. More specifically, an additive mapping F : R → R is said to be
a generalized (θ, φ)−derivation of R if F (xy) = F (x)θ(y) + φ(x)d(y) for all x, y ∈ R,
where d is a (θ, φ)− derivation of R. We denote the (θ, φ)−commutator and (θ, φ)−
anticommutator by [x, y]θ,φ = xθ(y)− φ(y)x and (x ◦ y)θ,φ = xθ(y) + φ(y)x respectively.
In order to prevent any confusion, note that a generalized (θ, φ)−derivation has also been
used by many authors as generalized (α, β)−derivation or generalized (σ, τ)−derivation.
We use the following commutator and anti-commutator identities without mentioning
them specifically:

• [x, yz] = y[x, z] + [x, y]z,
• [xy, z] = x[y, z] + [x, z]y,
• (x ◦ yz) = (x ◦ y)z − y[x, z] = y(x ◦ z) + [x, y]z and
• (xy ◦ z) = x(y ◦ z)− [x, z]y = (x ◦ z)y + x[y, z].

The study of certain types of conditions (e.g. polynomial conditions and differential
conditions) that finally imply commutativity of rings is very natural in the noncommu-
tative ring theory. For instance the famous Wedderburn’s theorem can be taken as the
first precedent. In this line of investigation the initial results are mainly due to the work
of Jacobson, Herstein and Posner (see [12]). Since then several authors investigated the
commutativity of (semi)prime rings admitting various types of derivations which satisfy
appropriate algebraic identities on suitable subsets of the rings. For example, we refer
the reader to [1], [2], [6], [7], [13], [14], [15], [17], [18] with further references therein).

A classical result of Herstein [8] states that if d is a nonzero derivation of a 2-torsion
free prime ring R such that [d(x), d(y)] = 0 for all x, y ∈ R, then R is commutative.
Inspired by this, Bell and Daif [4] proved that: If d is a nonzero derivation of a prime
ring R and d([x, y]) = 0 for all x, y ∈ I, where I is nonzero ideal of R, then R is
commutative. In 2002, Ashraf and Rehman [2] extended this result by proving it for
(σ, τ)−derivations of 2-torsion free prime rings. Moreover, at the same time Ashraf and
Rehman [1] studied the derivation d of prime ring R satisfying the conditions d([x, y]) =
[x, y] and d(x ◦ y) = (x ◦ y), and obtained the commutativity of R. In [18], Rehman et al.
obtained many informative results by studying generalized (α, β)−derivations of prime
rings that satisfy several conditions on Lie ideals. In the same direction, Marubayashi
et al. [13] examined all these above mentioned conditions by replacing derivation and
(σ, τ)−derivation by generalized (α, β)−derivation F. More precisely, they proved that
every 2-torsion free prime ring is commutative if it satisfies any one of the identities:
(i) [F (x), x]α,β = 0, (ii) F ([x, y]) = 0, (iii) F (x ◦ y) = 0, (iv) F ([x, y]) = [x, y]α,β , (v)
F (x ◦ y) = (x ◦ y)α,β , (vi) F (xy) − α(xy) ∈ Z(R), (vii) F (x)F (y) − α(xy) ∈ Z(R) for
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all x, y ∈ R. Recently, Dhara et al. [6] studied all these situations in semiprime rings
admitting generalized (σ, τ)−derivations.

On the other hand, Oukhtite and Mamouni [16] explored the commutativity of 2-
torsion free prime ring R admitting a nonzero derivation d satisfying d([x, y]) = 0 on a
nonzero Jordan ideal J of R. In addition, Oukhtite et al. [14] proved that a 2-torsion free
prime ring Rmust be commutative if it admits a nonzero derivation d such that d([x, y]) ∈
Z(R) for all x, y ∈ J, a nonzero Jordan ideal of R. Motivated by these commutativity
theorems, we present some results which are the generalization and unification of the
above-mentioned results. Precisely, we investigate the commutativity of 2-torsion free
prime rings by taking the conditions: (i) F ([x, y]) = 0, (ii) F (x ◦ y) = 0, (iii) F ([x, y]) =
[x, y]θ,φ, (iv) F (x ◦ y) = (x ◦ y)θ,φ, (v)F (xy) ± θ(xy) = 0, (vi) F (xy) ± φ(xy) ∈ Z(R),
(vii) [F (x), x]θ,φ = 0 for all x, y ∈ J ; here F is a generalized (θ, φ)−derivation of R and
J is a nonzero Jordan ideal of R.

The following lemmas are essential in the development of our main results.

Lemma 1. [[7], Lemma 4] Let R be a 2-torsion free ∗-prime ring, J a nonzero ∗-Jordan
ideal of R and d a nonzero (α, β)-derivation of R. If d commutes with ∗ and d(J) = (0),
then R is commutative.

Lemma 2. [[17], Lemma 3] Let R be a 2-torsion free ∗-prime ring and J a nonzero
∗-Jordan ideal of R. If J ⊆ Z(R), then R is commutative.

Lemma 3. [[17], Theorem 1] Let (R, ∗) be a 2-torsion free prime ring with involution.
Let J be a nonzero ∗-Jordan ideal of R and d be a nonzero derivation centralizing on J .
If R is ∗-prime, then R is commutative.

Lemma 4. [[19], Lemma 2.6] Let R be a 2-torsion free prime ring and J a nonzero
Jordan ideal of R. If aJb = (0), then a = 0 or b = 0.

Lemma 5. [[19], Lemma 2.7] Let R be a 2-torsion free prime ring and J a nonzero
Jordan ideal of R. If J is a commutative Jordan ideal, then J ⊆ Z(R).

The following lemma will play a key role throughout.

Lemma 6. Let R be a ring and J be a Jordan ideal of R. Then

1. 2R[j2, i] ⊆ J for all i, j ∈ J,
2. 2[j2, i]R ⊆ J for all i, j ∈ J,
3. 2R[j2, i]R ⊆ J for all i, j ∈ J.

Proof. (1) Let r ∈ R and x ∈ J. Then we know that 2[r, x2] ∈ J (see [3], proof of Lemma
3). That means

2(rx2 − x2r) ∈ J. (1.1)

For any y ∈ J, we replace r by ry in (1.1) and find 2(ryx2 − x2ry) ∈ J. But

2(ryx2 − x2ry) = 2(ryx2 − x2ry + rx2y − rx2y)
= 2(ryx2 − rx2y) + 2(rx2y − x2ry)
= 2r[y, x2] + 2[r, x2]y.

Since 2[r, x2]y ∈ J for all r ∈ R and x, y ∈ J, it follows that 2r[y, x2] ∈ J for each x, y ∈ J
and r ∈ R. In other words, 2R[J2, J ] ⊆ J.
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(2) We replace r by yr in order to find 2(yrx2 − x2yr) ∈ J. But

2(yrx2 − x2yr) = 2(yrx2 − x2yr + yx2r − yx2r)
= 2(yrx2 − yx2r) + 2(yx2r − x2yr)
= 2y[r, x2] + 2[y, x2]r.

Since 2y[r, x2] ∈ J for all r ∈ R and x, y ∈ J, it follows that 2[y, x2]r ∈ J for all x, y ∈ J
and r ∈ R. In other words 2[J2, J ]R ⊆ J.
(3) We have 2[y, x2]r ∈ J for all x, y ∈ J and r ∈ R. For any s ∈ R, we compute
2((x2y − yx2)r)s+ 2s(x2y − yx2)r ∈ J. That is R[2J2, J ]R ⊆ J and we are done.

Lemma 7. Let R be a 2-torsion free prime ring and J be a nonzero Jordan ideal of R.
If [J, [R,R]] = (0) (i.e., J ⊆ CR([R,R])), then R is commutative.

Proof. For any x ∈ J, we have [x, [R,R]] = (0). Assume that R is noncommutative. Then
[R,R] is a noncommutative Lie ideal of R. By Lemma 2 of [11], if R is not a PI-ring,
then [R,R] and R satisfy the same GPIs. Thus, by assumption, we have [x,R] = (0)
implies x ∈ Z(R) for all x ∈ J. In the light of Lemma 2, R is commutative, which is a
contradiction.

2 The results on generalized (θ, φ)−derivations

In everything that follows, R denotes a prime ring with char(R) 6= 2, J is a nonzero
Jordan ideal and θ, φ are the automorphisms of R, unless otherwise mentioned.

Proposition 8. If [x, y]θ,φ = 0 or (x ◦ y)θ,φ = 0 for all x, y ∈ J, then R is commutative.

Proof. Let us consider
[x, y]θ,φ = xθ(y)− φ(y)x = 0, (2.1)

for all x, y ∈ J. When replacing x by 4xz2 in (2.1), we get

xz2θ(y)− φ(y)xz2 = 0. (2.2)

Post-multiply (2.1) by z2 and subtract from (2.2), we obtain x[z, θ(y)] = 0, where x, y, z ∈
J. With the aid of Lemma 4, we get [θ(y), z2] = 0. On substituting y = x ◦ r, we get
[θ(x ◦ r), z2] = 0 for all x, z ∈ J and r ∈ R. Explicitly we have

θ(x)[θ(r), z2] + [θ(r), z2]θ(x) = 0. (2.3)

Replacing x by 2x[p, q] in (2.3), we obtain θ(x)[[θ(p), θ(q)], [θ(r), z2]] = 0 for all p, q, r ∈ R
and x, z ∈ J. Invoking Lemma 4 gives [[θ(p), θ(q)], [θ(r), z2]] = 0. That is [[R,R], [R, z2]] =
(0). For any a, b, c ∈ R, we have [[a, b], [c, z2]] = 0. Replacing b by ba, we obtain
[a, b][a, [c, z2]] = 0. Taking br in place of b, we get [a, b]R[a, [c, z2]] = (0) for all a, b, c ∈ R
and z ∈ J. It implies that either R is commutative or [R, [R, z2]] = 0. In the latter case we
have [r, [s, z2]] = 0 for all z ∈ J and r, s ∈ R. Replacing s by z2s, we have [r, z2][s, z2] = 0.
It implies that [r, z2]R[r, z2] = (0) for all z ∈ J and r ∈ R. It forces that [r, z2] = 0.
Hence R is commutative (see [[14], proof of Lemma 5]).

Theorem 9. Let d : R → R be a (θ, φ)−derivation such that d(x2) = 0 for all x ∈ J.
Then, d = 0.
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Proof. By hypothesis, we have d(x2) = 0, where x ∈ J. By linearizing, we get

d(xy + yx) = 0 for all x, y ∈ J. (2.4)

Now, we have two cases, as follows:
Case 1. Let J ⊆ Z(R). For any r ∈ R and u ∈ J, we have 2ru = u ◦ r. Hence,
equation (2.4) gives that 2d(xy) = 0 which implies d(xy) = 0. Substitute 2yr for y, we
get φ(x)φ(y)d(r) = 0 for all x, y ∈ J and r ∈ R. That is, xJφ−1(d(r)) = 0. Hence,
φ−1(d(r)) = 0 for all r ∈ R. It forces that d = 0.
Case 2. Suppose J 6⊆ Z(R). With the aid of Lemma 6, we substitute y = 2r[u2, v]s
(where r, s ∈ R and u, v ∈ J) in (2.4). Thus we have

d(xr[u2, v]s) + d(r[u2, v]sx) = 0.

Replacing s by sx in the last expression, we get d(xr[u2, v]s)θ(x) + φ(xr[u2, v]s)d(x) +
d(r[u2, v]sx)θ(x) + φ(r[u2, v]sx)d(x) = 0 for all x, y ∈ J and r, s ∈ R. It reduces to
φ(x ◦ r[u2, v]s)d(x) = 0. For any z ∈ J, we take zr in place of r and obtain φ(z)φ(x ◦
r[u2, v]s)d(x) + φ([x, z])φ(r)φ([u2, v]s)d(x) = 0. It implies φ([x, z])Rφ([u2, v]s)d(x) =
0 for all x, y, z ∈ J and r, s ∈ R. That means, for each x ∈ J, either [x, z] = 0 or
φ([u2, v]s)d(x) = 0. We set

G1 = {x ∈ J : [x, z] = 0 for all z ∈ J} and
G2 = {x ∈ J : φ([u2, v]s)d(x) = 0 for all u, v ∈ J, s ∈ R}.

It is easy to see that G1 and G2 are additive subgroups of J and J = G1 ∪ G2. By
Brauer’s trick, we have either J = G1 or J = G2. If J = G1, that means [x, z] = 0 for
all x, z ∈ J. It easily implies that J ⊆ Z(R), which is a contradiction. On the other
hand, let I = G2 i.e., for any s ∈ R and x, u, v ∈ J, we have φ([u2, v]s)d(x) = 0. That
is φ([u2, v])Rd(x) = (0) for all x, u, v ∈ J. Since R is a prime ring, either [u2, v] = 0 for
all u, v ∈ J or d(J) = (0). In view of [[14], proof of Lemma 5], a contradiction follows.
Finally, we suppose that d(x) = 0 for all x ∈ J. It forces that d = 0, by Lemma 7. Thus
we have d = 0 in each case.

Remark 10. Similarly, we can prove that: Let R be a 2-torsion free prime ring and
J a nonzero Jordan ideal of R. If R admits a nonzero (θ, φ)−derivation d such that
d([x, y]) = 0 for all x, y ∈ J, then R is commutative. Consequently, this result proves a
complete form of Theorem 3 of [2].

Theorem 11. Let F : R → R be a generalized (θ, φ)-derivation of R associated with a
nonzero (θ, φ)-derivation d such that F ([x, y]) = 0 for all x, y ∈ J. Then, R is commuta-
tive.

Proof. By our hypothesis, we have F (xy)− F (yx) = 0 for all x, y ∈ J. That is

F (x)θ(y) + φ(x)d(y)− F (y)θ(x)− φ(y)d(x) = 0.

In view of Lemma 6, substitute 2r[u2, v]s for y, where u, v ∈ J and r, s ∈ R, then

F (x)θ(r[u2, v]s) + φ(x)d(r[u2, v]s)− F (r[u2, v]s)θ(x)− φ(r[u2, v]s)d(x) = 0. (2.5)

Replace s by sx in (2.5), we get

F (x)θ(r[u2, v]s)θ(x) + φ(x)d(r[u2, v]s)θ(x) + φ(x)φ(r[u2, v]s)d(x)− F (r[u2, v]s)
θ(x)θ(x)− φ(r[u2, v]s)d(x)θ(x)− φ(r[u2, v]s)φ(x)d(x) = 0.

(2.6)



88 Gurninder S. Sandhu, Deepak Kumar

Equation (2.5) reduces (2.6) to

φ([x, r[u2, v]s])d(x) = 0 for all x, u, v ∈ J, r, s ∈ R. (2.7)

Taking qr instead of r in (2.7), where q ∈ R, we get φ([x, q])φ(r[u2, v]s)d(x) = 0. It
implies that

[x, q]r[u2, v]Rφ−1d(x) = 0 for all x, u, v ∈ J, r, q ∈ R.
Applying Brauer’s trick, we get that either [x, q]r[u2, v] = 0 for all x, u, v ∈ J and r, q ∈ R
or d(x) = 0 for all x ∈ J. The second case forces R commutative. Now the first case
gives [x, q]R[u2, v] = 0 for all x, u, v ∈ J and q ∈ R. It implies that either J ⊆ Z(R) or
[u2, v] = 0 for all u, v ∈ J. In both of these cases, we get R is commutative (see Lemma
2 and [[14], proof of Lemma 5] respectively).

Using similar techniques as we used in the proof of Theorem 11 with necessary vari-
ations, we can obtain the following result:

Theorem 12. Let F : R → R be a generalized (θ, φ)-derivation of R associated with
a nonzero (θ, φ)-derivation d such that F (x ◦ y) = (0) for all x, y ∈ J. Then, R is
commutative.

Theorem 13. Let F : R → R be a generalized (θ, φ)-derivation of R associated with
a nonzero (θ, φ)-derivation d such that F ([x, y]) = [x, y]θ,φ for all x, y ∈ J. Then, R is
commutative.

Proof. By hypothesis, we have F (xy) − F (yx) = xθ(y) − φ(y)x for all x, y ∈ J. Taking
y = 2r[u2, v]s in particular, where r, s ∈ R and u, v ∈ J, we find

F (x2r[u2, v]s)− F (2r[u2, v]sx) = xθ(2r[u2, v]s)− φ(2r[u2, v]s)x.

Replace s by sx, we obtain

F (x.2r[u2, v]s)θ(x) + φ(x.2r[u2, v]s)d(x)− F (2r[u2, v]s.x)θ(x)− φ(2r[u2, v]s.x)d(x) =
xθ(2r[u2, v]s)θ(x)− φ(2r[u2, v]s)φ(x)x.

Our hypothesis reduces it to

φ([x, r[u2, v]s])d(x) = φ(r[u2, v]s)[x, x]θ,φ. (2.8)

Substituting pr instead of r in (2.8) and using it, we get φ([x, p])φ(r[u2, v]s)d(x) = 0 for
all x, u, v ∈ J and r, s, p ∈ R. It implies that

[x, p]R[u2, v]sφ−1(d(x)) = 0.

Since R is prime ring, we find that for each x ∈ J, either [x, p] = 0 for all p ∈ R or
[u2, v]sφ−1(d(x)) = 0 for all u, v ∈ J and s ∈ R. Application of Brauer’s trick yields that
either J ⊆ Z(R) (and hence R is commutative by Lemma 2) or [u2, v]sφ−1(d(x)) = 0. In
the latter case we get that either [u2, v] = 0 for all u, v ∈ J or d(x) = 0 for all x ∈ J. The
prior case implies that R is commutative (see the proof of Lemma 5 in [14]). Assume
that d(x) = 0 for all x ∈ J. In view of Lemma 1, we get the commutativity of R.

Using similar techniques as we used in the proof of Theorem 13 with necessary vari-
ations, we can obtain the following result:

Theorem 14. Let F : R → R be a generalized (θ, φ)-derivation of R associated with a
(θ, φ)-derivation d such that F (x◦y) = (x◦y)θ,φ for all x, y ∈ J. Then, R is commutative.
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Theorem 15. Let F : R → R be a generalized (θ, φ)-derivation of R associated with
a nonzero (θ, φ)-derivation d such that F (xy) ∈ Z(R) for all x, y ∈ J. Then, R is
commutative.

Proof. By our hypothesis, we have F (xy) ∈ Z(R) for any x, y ∈ J. Let us put y =
2r[u2, v]s, where r, s ∈ R and u, v ∈ J, that is

F (x)θ(r[u2, v]s) + φ(x)d(r[u2, v]s) ∈ Z(R). (2.9)

Replace s by sq, where q ∈ R, we get

F (x)θ(r[u2, v]s)θ(q) + φ(x)d(r[u2, v]s)θ(q) + φ(x)φ(r[u2, v]s)d(q) ∈ Z(R).

Commuting with θ(q) and using (2.9), we get

[φ(x)φ(r[u2, v]s)d(q), θ(q)] = 0 for all x, u, v ∈ J, r, s, q ∈ R. (2.10)

Replace x by 2[m,n]x (2.10), where m,n ∈ R, we get

[φ([m,n]), θ(q)]φ(r[u2, v]s)d(q) = 0.

That is
[[m,n], φ−1(θ(q))]R[u2, v]sφ−1(d(q)) = (0)

for all u, v ∈ J and s, q,m, n ∈ R. It implies that either [[m,n], φ−1(θ(q))] = 0 or
[u2, v]sφ−1(d(q)) = 0. Using Brauer’s trick, we get either [φ([m,n]), θ(q)] = 0 for all
m,n, q ∈ R or [u2, v]sφ−1(d(q)) = 0 for all u, v ∈ J and s, q ∈ R. Clearly first assertion
implies commutativity of R. Thus we consider the latter case i.e., [u2, v]Rφ−1(d(q)) = (0)
for all u, v ∈ J and q ∈ R. Since R is prime ring and d is a nonzero (θ, φ)−derivation, we
get [u2, v] = 0 for all u, v ∈ J. In view of [[14], proof of Lemma 5], R is commutative.

By substituting F +θ and F −θ for F in Theorem 15, we have the following theorem:

Theorem 16. Let F : R → R be a generalized (θ, φ)-derivation of R associated with a
nonzero (θ, φ)-derivation d. If any one of the following holds,

1. F (xy) + θ(xy) ∈ Z(R),

2. F (xy)− θ(xy) ∈ Z(R),

for all x, y ∈ J, then R is commutative.

Theorem 17. Let F : R → R be a generalized (θ, φ)-derivation of R associated with
a nonzero (θ, φ)-derivation d of R such that [F (x), x]θ,φ = 0 for all x ∈ J. Then, R is
commutative.

Proof. By hypothesis, we have

[F (x), x]θ,φ = 0 for all x ∈ J. (2.11)

It implies that
[F (x), y]θ,φ + [F (y), x]θ,φ = 0 for all x ∈ J. (2.12)

In view of Lemma 6, we take 2r[u2, v]x in place of y in (2.12) in order to obtain

[F (x), 2r[u2, v]]θ,φθ(x) + φ(2r[u2, v])[F (x), x]θ,φ + [F (2r[u2, v])θ(x), x]θ,φ
+[φ(2r[u2, v])d(x), x]θ,φ = 0.

(2.13)
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Re-writing it as

[F (x), 2r[u2, v]]θ,φθ(x) + φ(2r[u2, v])[F (x), x]θ,φ + Λ(x, u, v, r) = 0

for all x, u, v ∈ J, r ∈ R, where
Λ(x, u, v, r) = [F (2r[u2, v])θ(x), x]θ,φ + [φ(2r[u2, v])d(x), x]θ,φ

= F (2r[u2, v])θ(x)θ(x)− φ(x)F (2r[u2, v])θ(x) + φ(2r[u2, v])d(x)θ(x)
−φ(2r[u2, v])φ(x)d(x) + φ(2r[u2, v])φ(x)d(x)− φ(x)φ(2r[u2, v])d(x)

= [F (2r[u2, v]), x]θ,φθ(x) + φ(2r[u2, v])[d(x), x]θ,φ + φ([2r[u2, v], x])d(x).

Combining the last relation with (2.13) and using (2.11) and (2.12), we obtain

φ(r[u2, v])[d(x), x]θ,φ + [φ(r[u2, v]), φ(x)]d(x) = 0 for all x, u, v ∈ J, r ∈ R. (2.14)

Taking sr instead of r in (2.14), where s ∈ R, we obtain [φ(s), φ(x)]Rφ([u2, v])d(x) = 0
for all x, u, v ∈ J and s ∈ R. And hence primeness of R forces that for each x ∈ J, either
[φ(s), φ(x)] = 0 or φ([u2, v])d(x) = 0. By Brauer’s trick, we obtain that either J ⊆ Z(R)
or φ([u2, v])d(x) = 0 for all x, u, v ∈ J. The first case implies that R is commutative
and we are done. Let us assume that φ([u2, v])d(x) = 0. Replacing v by 2[p, q]v, where
p, q ∈ R, we get φ([u2, [p, q]])Jd(x) = 0 for all x, u ∈ J. By Lemma 4, it follows that either
u2 ∈ Z([R,R]) or d(J) = 0. In light of lemma 2, latter case implies that R is commutative.
Now, in case u2 ∈ Z([R,R]), we get u2 ∈ Z(R) and hence R is commutative.

3 The results on generalized (1R, φ)−derivations

Theorem 18. Let F : R → R be a generalized (1R, φ)-derivation associated with an
(1R, φ)−derivation d. If for any 0 6= α ∈ R, α(F (x)F (y)±xy) = 0 for all x, y ∈ J, then
either R is commutative or there exists λ ∈ C such that F (x) = λx for all x ∈ R and
λ2 = ±1.
Proof. By hypothesis, we have

α(F (x)F (y)± xy) = 0 (3.1)

for all x, y ∈ J. Replace y by 4yz2, where z ∈ J. We get α(F (x)F (y) ± xy)z2 +
αF (x)φ(y)d(z2) = 0. Our hypothesis reduces it to αF (x)φ(y)d(z2) = 0 for all x, y, z ∈ J.
That is, φ−1(αF (x))Jφ−1(d(z2)) = (0) for all x, z ∈ J. By Lemma 4, we have αF (x) = 0
or d(z2) = 0 for all x, z ∈ J. Firstly, let αF (J) = (0). Eq. (3.1) implies that αxy = 0 for
all x, y ∈ J. Since J is nonzero, we have α = 0, which is a contradiction. Thus, we must
have d(z2) = 0 for all z ∈ J. In the light of Theorem 9, we obtain d = 0. Consequently
F (xy) = F (x)y for all x, y ∈ R. By Lemma 2 of [9], there exists λ ∈ Qmr(RC) such that
F (x) = λx for all x ∈ R. Since 2R[J2, J ]R ⊆ J (by Lemma 6), we replace x by 2r[u2, v]y
in (3.1) in order to obtain

α(F (r[u2, v])yF (y)± r[u2, v]y2) = 0 for all u, v, y ∈ J and r ∈ R. (3.2)

By substituting x = 2r[u2, v] in (3.1), where u, v ∈ J and r ∈ R, we obtain

α(F (r[u2, v])F (y)± r[u2, v]y) = 0.

Post-multiplying the above relation by y, we get

α(F (r[u2, v])F (y)y ± r[u2, v]y2) = 0. (3.3)

Subtract (3.2) from (3.3), we have αF (r)[u2, v][F (y), y] = 0 for any u, v, y ∈ J and r ∈ R.
Replace r by rs, where s ∈ R, we get αF (r)s[u2, v][F (y), y] = 0. That is
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αF (r)R[u2, v][F (y), y] = (0)

for all u, v, y ∈ J and r ∈ R. Since R is prime ring, it follows that either αF (r) = 0
or [u2, v][F (y), y] = 0. The first case is not possible, thus we have [u2, v][F (y), y] = 0
where u, v, y ∈ J . Replace v by 2[r, s]v in the last expression and using it, we find
[u2, [r, s]]J [F (y), y] = (0) for all u, y ∈ J and r, s ∈ R. Lemma 4 forces [F (y), y] = 0 or
[u2, [r, s]] = 0 for all u, y ∈ J and r, s ∈ R. If [u2, [r, s]] = 0 for all u ∈ J and r, s ∈ R,
then by Lemma 7, we find that u2 ∈ Z(R). Hence R is commutative, as we have already
seen in the proof of Theorem 11.

Next, we consider [F (y), y] = 0 for all y ∈ J. It gives [λy, y] = 0 for all y ∈ J.
Linearizing w.r.t.y, we find [λ, x]y + [λ, y]x = 0 for all x, y ∈ J. Changing y by 2y[r, s],
we find [λ, x]y[r, s] + y[λ, [r, s]]x+ [λ, y][r, s]x = 0 for all x, y ∈ J and r, s ∈ R. It implies

y[λ, [r, s]]x+ [λ, y][[r, s], x] = 0. (3.4)

Taking 2py2 in place of y in the last expression, where p ∈ R, we may infer that

p(2y2)[λ, [r, s]] + p[λ, 2y2][[r, s], x] + [λ, p]2y2[[r, s], x] = 0.

Equation (3.1) reduces it to [λ, p]2y2[[r, s], x] = 0 for all x, y ∈ J and r, s, p ∈ R. It
implies that [λ, p]Ry2[[r, s], x] = 0. In view of our assumption, it yields that [λ, p] = 0 for
all p ∈ R. It is a well known fact of theory of differential identities that a prime ring R
and U (the Utumi quotient ring of R) satisfies the same GPI. Hence the first case implies
that λ ∈ C, while it is easy to check that the latter case forces R to be commutative.

Theorem 19. Let F : R → R be a generalized (1R, φ)-derivation associated with an
(1R, φ)−derivation d of R. If for any 0 6= α ∈ R, α(F (x)F (y)± yx) = 0 for all x, y ∈ J,
then R is commutative or there exists λ ∈ C such that F (x) = λx for all x ∈ R and
λ2 = ±1.

Proof. By the hypothesis, we have

α(F (x)F (y)± yx) = 0 for all x, y ∈ J. (3.5)

In view of Lemma 6, we replace y by 2r[u2, v]s (where r, s ∈ R and u, v ∈ J) in (3.5) and
get

α(F (x)F (r[u2, v]s)± r[u2, v]sx) = 0. (3.6)
Replacing s by sx, we obtain

α(F (x)F (r[u2, v]s)x+ F (x)φ(r[u2, v]s)d(x)± r[u2, v]sx2) = 0.

Thus (3.6) reduces it to

α(F (x)φ(r)φ([u2, v]s)d(x)) = 0 for all x, u, v ∈ J, r, s ∈ R.

That is αF (x)Rφ([u2, v]s)d(x) = (0). It implies that for each x ∈ J, either αF (x) = 0 or
φ([u2, v]s)d(x) = 0. Applying Brauer’s trick, we find that either αF (x) = 0 for all x ∈ J
or φ([u2, v]s)d(x) = 0 for all x, u, v ∈ J and s ∈ R. Now onwards, we split the proof into
two parts.
First we assume that αF (x) = 0 for all x ∈ J. In this view (3.5) implies αyx = 0 for all
x, y ∈ J. By Lemma 4, we get α = 0, which is a contradiction. Thus, we have

φ([u2, v]s)d(x) = 0 for all x, u, v ∈ J, s ∈ R.
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It forces that either d(x) = 0 for all x ∈ J or [u2, v] = 0 for all u, v ∈ J. The latter
subcase implies that R is commutative (see the proof of Lemma 5 in [14]). We now
consider d(x) = 0 for all x ∈ J . In view of Lemma 1, it follows that either d = 0 or R is
commutative.

Let us assume that d = 0. Consequently F (xy) = F (x)y for all x, y ∈ R. By Lemma
2 of [9], there exists λ ∈ Qmr(RC) such that F (x) = λx for all x ∈ R.

When replacing x by 4x2r in (3.5), where r ∈ R, we get

α(F (2x2)rF (y)± 2yx2r) = 0. (3.7)

Replace x by 2x2 in (3.5), we find α(F (2x2)F (y)± 2yx2) = 0. Post-multiply by r, we get

α(F (2x2)F (y)r ± 2yx2r) = 0. (3.8)

Eq. (3.7) together with Eq. (3.8) gives αF (x2)[F (y), r] = 0, where x, y ∈ J and r ∈ R.
It easily follows that αF (x2)R[F (y), r] = (0). Since R is a prime ring, we have either
αF (x2) = 0 or [F (y), r] = 0. Let us consider αF (x2) = 0 for all x ∈ J. When linearizing,
we obtain αF (x ◦ y) = 0 for any x, y ∈ J. Putting 4uy2 for y (where u ∈ J) in the last
relation, we obtain

0 = αF ((x ◦ u)y2)− αF (u[x, y2])
= αF ((x ◦ u))y2 − αF (u)[x, y2]
= −αF (u)[x, y2].

Replace u by 4uru in above expression, we obtain αF (u)Ru[x, y2] = (0) for all u, x, y ∈ J.
It follows that either αF (u) = 0 or u[x, y2] = 0. But according to our assumption
αF (u) = 0 is not the case, hence we have u[x, y2] = 0 implies [x, y2] = 0 for all x, y ∈ J.
As above, it implies that R is commutative.

In the latter case, we assume that [F (y), r] = 0 for all y ∈ J and r ∈ R. Thus by our
hypothesis, we find

α(F (y)F (x)± yx) = 0 for all x, y ∈ J.
By repeating the same reasoning as in Theorem 18, there exists some λ ∈ C such that
F (x) = λx for all x ∈ R and λ2 = ±1.
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