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Abstract
This article provides approximate solutions to some linear and nonlinear Volterra-Integral equations of
the second kind by using the Variational Iteration Method (VIM). Conversion Volterra’s integral equation
to an initial value problem or Volterra integro-differential equation is considered. The convergence of the
method is also considered to provide rapidly convergent successive approximations to the exact solution
if such a closed form solution exists. A comparison of the approximate solutions of this method with the
Adomian decomposition method and an exact solution will be demonstrated through numerical examples
to shows that the method is reliable, accurate and readily implemented.
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1 Introduction

Several authors in engineering and physical sciences have studied and used different nu-
merical methods to solve Volterra Integral equations. In recent years, many of these
numerical methods gave reliable and accurate solutions. [9] applied the two-step Laplace
decomposition method for solving nonlinear Volterra integral equations. [8] used the
homotopy analysis method for solving linear integral equations. [11] implemented a new
modified of Adomian decomposition method by the Taylor expansion of the components
apart from the zeroth of the Adomian series solution for Volterra integral equation of
the second kind. [10] employed the Taylor collocation method to approximate solutions
and convergence analysis for the Volterra-Fredholm integral equations, and [1] combined
Laplace transform with analytical methods for solving Volterra integral equations with a
convolution kernel. [6] studied the reliable modified of Laplace Adomian decomposition
method to solve nonlinear interval Volterra-Fredholm integral equations. [7] constructed
the numerical solution of nonlinear Volterra-Fredholm integral equations by variational
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iteration method.[12] used modified variational iteration method for the numerical so-
lutions of some non-linear Fredholm integro-differential equations of the second kind.
[5] studied recent advances in reliable methods for solving Volterra-Fredholm integral
and integro-differential equations. [3] implemented the usage of the homotopy analysis
method for solving fractional Volterra-Fredholm integro-differential equation of the sec-
ond kind. [2] introduced the approximate solutions using the Adomian decomposition
method and its modification for solving Fredholm integral equations. [4] employed modi-
fied the Adomian decomposition method to solve fuzzy Volterra-Fredholm integral equa-
tions. [14] used iterative methods to solve two-dimensional nonlinear Volterra-Fredholm
integro-differential equations.

In this article, we consider linear Volterra integral equation of the second kind of the
form

y(x) = f(x) + λ

∫ x)

a

k(x, t)y(t)dt, (1.1)

and nonlinear Volterra integral equation of the second kind is represented by the form

y(x) = f(x) +
∫ x

a

k(x, t)F (y(t))dt, (1.2)

where the kernel K(x, t) and the function f(x) are given real valued functions, λ is a
parameter and F (y(x)) is a nonlinear function of y(x) and the unknown function y(x)
appears inside and outside the integral sign.

The structure of this article is organized as follows: In the second section we present
linear and nonlinear Volterra integral equations of the second kind were solved by vari-
ational iteration method which uses a few numbers of iterations. Section 3 presents our
numerical examples and graphical results will demonstrate the efficiency of the method
and will be shown that the method is accurate and readily implemented compared to
some exact solutions. Finally, the conclusion will be in Section 4.

2 VIM for solving Volterra integral equations

To use the variational iteration method for solving Volterra integral equations, it is
necessary to convert the integral equation to an equivalent initial value problem or to an
equivalent integro-differential equation.

To convert Equation (1.1) to equivalent initial value problems [13] we achieved simply
by differentiating both sides of Volterra equation with respect to x as many times as we
need to get rid of the integral sign and come out with a differential equation. The
conversion of Volterra equations requires the use of Leibnitz rule for differentiating the
integral at the right hand side. The initial conditions can be obtained by substituting
x = 0 into y(x) and its derivatives.

2.1 Linear Volterra integral equations:
For the purpose of illustration of the methodology to the variational iteration method,
we begin by considering a nonlinear differential equation of the formal form

L(y) +N(y) = g(x), (2.1)

where L and N are linear and nonlinear operators respectively, g(x) is a known
analytical function and y is an unknown function to be determined. He [13] introduced
method where a correction function for Equation (2.1) can be written as

yn+1(x) = yn(x) +
∫ x

0
λ(ξ)(Lyn(ξ) +Nỹ(ξ) − g(ξ))dξ, (2.2)
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Where λ is a general Lagrange’s multiplier, noting that in this method λ may be a
constant or a function, and ỹn is a restricted value that means it behaves like a constant,
hence δỹn = 0, where δ is the variational derivative.

For the complete use of the variational iteration method, we should follow two steps,
first, we determine the Lagrange multiplier λ(ξ) that will be identified optimally, second,
we substitute the result into Equation (2.2) where the restrictions should be omitted.

Taking the variation of Equation (2.2) with respect to the independent variable y we
find

δyn+1

δyn
= 1 + δ

δyn

(∫ x

0
λ(ξ)(Lyn(ξ) +N ˜yn(ξ) − g(ξ))dξ

)
, (2.3)

integration by parts is usually used for the determination of the Lagrange multiplier λ(ξ).
In other words, we can use

∫ x

0
λ(ξ)y′n(ξ)dξ = λ(ξ)yn(ξ) −

∫ x

0
λ′(ξ)yn(ξ)dξ∫ x

0
λ(ξ)y′′n(ξ)dξ = λ(ξ)y′n(ξ) − λ′(ξ)yn(ξ) +

∫ x

0
λ′′(ξ)yn(ξ)dξ∫ x

0
λ(ξ)y′′′n (ξ)dξ = λ(ξ)y′′n(ξ) − λ′(ξ)y′n(ξ) + λ′′(ξ)yn(ξ) −

∫ x

0
λ′′′(ξ)yn(ξ)dξ (2.4)∫ x

0
λ(ξ)yivn (ξ)dξ = λ(ξ)y′′′n (ξ) − λ′(ξ)y′′n(ξ) + λ′′(ξ)y′n(ξ) − λ′′′(ξ)yn(ξ) +

∫ x

0
λiv(ξ)yn(ξ)dξ

and so on.
Having determined the Lagrange multiplier λ(ξ), the successive approximations yn+1,

n ≥ 0, of the solution y(x) will be readily obtained upon using selective function y0(x).
However, for fast convergence, the function y(x) should be selected by using the initial
conditions as follows:

y0(x) = y(0), for first order y′n,
y0(x) = y(0) + xy′0, for second order y′′n,

y0(x) = y(0) + xy′n + 1
2!x

2y′′0 , for third order y′′′n ,

and so on. Consequently, the solution

y(x) = lim
n−→∞

yn(x). (2.5)

The determination of the Lagrange multiplier plays a major role in the determination
of the solution of the problem. In what follows, we write generally iteration formu-
lae that show ODE, its corresponding Lagrange multiplier,and its correction functional
respectively:

y(n) + f(y(ξ), y′(ξ), . . . , y(n)(ξ)) = 0, λ = (−1)n 1
(n− 1)! (ξ − x)n−1

yn+1 = yn + (−1)n
∫ x

0

1
(n− 1)! (ξ − x)n−1[y′′′n + f(yn, . . . , y(n)

n )]dξ, (2.6)

for n ≥ 1
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2.2 Nonlinear Volterra integral equation:
For solving Equation (1.2) by variational iteration method [15], first we differentiate once
from both sides of Equation (1.2), with respect to x:

y′(x) = f ′(x) + k(x, x)F (y(x)) +
∫ x

0

∂k(x, t)
∂x

F (y(t))dt, (2.7)

now we apply variational iteration method to Equation (2.7). According to this method
correction functional can be written in the following form:

yn+1(x) = yn(x) +
∫ x

0
λ

(
y′n(s) − f ′(s) − k(s, s)F (ỹn(s)) −

∫ s

0

∂k(s, t)
∂s

F (ỹn(t)dt)
)
ds,

(2.8)
to make the above correction functional stationary with respect to yn, we have:

δyn+1(x) = δyn(x) + δ

∫ x

0
λ

(
y′n(s) − f ′(s) − k(s, s)F (ỹn(s)) −

∫ s

0

∂k(s, t)
∂s

F (ỹn(t)dt)
)

= δyn(x) +
∫ x

0
λ, (s)δ(y′n(s))ds = δyn(x) + λ(x)δyn(x) +

∫ x

0
λ′(s)δyn(s)ds = 0,(2.9)

from the above relation for any δyn, we obtain the Euler-Lagrange equation:

λ′(s) = 0, (2.10)

with the following natural boundary condition:

λ(x) + 1 = 0, (2.11)

using equations (2.10) and (2.11), Lagrange multiplier can be identified optimally as
follows:

λ(s) = 1, (2.12)

substituting the identified Lagrange multiplier into Equation (2.8) we obtain the following
iterative relation:

yn+1(x) = yn(x) +
∫ x

0

(
y′n(s) − f ′(s) − k(s, s)F (yn(s)) −

∫ s

0

∂k(s, t)
∂s

F (yn(t)dt)
)
ds,

(2.13)
we can obtain the exact solution or an approximate solution to the Equation (1.2) by
starting from y0(x). Also in some Volterra integral equations by differentiating from
integral equation, for example when the kernel is independent of x, we obtain a differential
equation then we solve it by using variational iteration method.

3 Illustrative examples

In this section we solve three examples of the linear and nonlinear of Volterra integral
equations which have solved in [13]. Numerical results show that our proposed method
has a high accuracy.

Example 1. Consider the following linear Volterra integral equation with the exact
solution y(x) = ex

y(x) = 1 + x+ x2

2 + 1
2

∫ x

0
(x− t)2y(t)dt, (3.1)
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differentiate both sides of Equation (3.1) with respect to x by using Leibnitz rule
gives the integro-differential equation

y′(x) = 1 + x+
∫ x

0
(x− t)y(t)dt, y(0) = 1, (3.2)

applyig the variational iteration method to Equation (3.2) we get the correction func-
tional

yn+1(x) = yn(x) +
∫ x

0
λ(ξ

(
y′n(ξ) − 1 − ξ −

∫ ξ

0
(ξ − s)ỹn(s)ds

)
dξ, (3.3)

we find the Lagrange multiplier
λ = −1, (3.4)

substituting this value of the Lagrange multiplier into the functional Equation (3.3) gives
the iteration formula

yn+1(x) = yn(x) +
∫ x

0
λ(ξ

(
y′n(ξ) − 1 − ξ −

∫ ξ

0
(ξ − s)yn(s)ds

)
dξ, (3.5)

using the initial conditions to select y0(x) = y(0) = 1 and use it into Equation 3.5 we get

y0(x) = 1,

y1(x) = 1 + x+ x2

2! + x3

3! ,

y2(x) = 1 + x+ x2

2! + x3

3! + x4

4! + x5

5! + x6

6! ,

yn(x) = 1 + x+ x2

2! + x3

3! + x4

4! + x5

5! + x6

6! + · · · + xn

n! , (3.6)

which converges to the exact solution y(x) = ex

Figure 1 shows the comparison between the exact solution and the approximate solution

Table 1. Numerical results of Example 1, N = 4.

x yExact(x) yAppr.(x) E4(y)
0.1 1.105170918 1.105170918
0.2 1.221402758 1.221402758
0.3 1.349858808 1.349858808
0.4 1.491824698 1.491824698
0.5 1.648721271 1.648721270 1 × 10−9

0.6 1.822118800 1.822118799 1 × 10−9

0.7 2.013752707 2.013752699 8 × 10−9

0.8 2.225540928 2.225540897 31 × 10−9

0.9 2.459603111 2.459603007 104 × 10−9

1.0 2.718281828 2.718281526 302 × 10−9

obtained by the VIM. It is seen from Fig.1 the solution obtained by the proposed method
nearly identical to the exact solution. In this example, the simplicity and accuracy of
the proposed method is illustrated by computing the absolute error E4(x).
The accuracy of the result can be improved by introducing more terms of the approx-
imate solutions. In Table 1, VIM solutions is compared with the exact solution of the
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Figure 1. Comparison between exact and approximate solutions for Example 1

Volterra integral Equation (3.1). There is good agreement between exact and approx-
imate solution obtained by proposed method. The table also shows the absolute error
between the exact and approximate solutions.

Example 2. Consider the following nonlinear Volterra integral equation with the exact
solution y(x) = tan(x)

y(x) = x+
∫ x

0
y2(t)dt, (3.7)

differentiate both sides of Equation (3.7) with respect to x by using Leibnitz rule gives
the integro-differential equation

y′(x) = 1 +
∫ x

0
y2(t), y(0) = x, (3.8)

applyig the variational iteration method VIM to Equation (3.7) we get the correction
functional

yn+1(x) = yn(x) +
∫ x

0
λ(ξ

(
y′n(ξ) − 1

∫ ξ

0
ỹ2
n(s)ds

)
dξ, (3.9)

we find the Lagrange multiplier
λ = −1, (3.10)

substituting this value of the Lagrange multiplier into the functional (3.9) gives the
iteration formula

yn+1(x) = yn(x) −
∫ x

0

(
y′n(ξ) − 1 −

∫ ξ

0
(y2
n(s)ds

)
dξ, (3.11)

using the initial conditions to select y0(x) = y(0) = 1 and use it into Equation (3.11) we
get

y0(x) = x,
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Figure 2. Comparison between exact and approximate solutions for Example 2

y1(x) = x+ x3

3 ,

y2(x) = x+ x3

3 + 2x5

15 + x7

63 ,

y3(x) = x+ x3

3 + 2x5

15 + 17x7

315 + 342x9

25515 + 1206x11

467775 + 4x13

12285 + x15

59535 , (3.12)

which converges to the exact solution y(x) = tan(x)

Table 2. Numerical results of Example 2, N = 4.

x yExact(x) VIM ADM E4(yV IM ) E4(yADM )
0.1 0.100334672 0.100334672 0.100334672
0.2 0.202710035 0.202710031 0.202710024 4 × 10−9 11 × 10−9

0.3 0.309336249 0.309336071 0.309335802 178 × 10−9 447 × 10−9

0.4 0.422793218 0.422790712 0.422787088 2.506 × 10−6 6.13 × 10−6

0.5 0.546302489 0.546282438 0.546254960 20.015 × 10−6 47.538 × 10−6

0.6 0.684136808 0.684023632 0.683878765 113.176 × 10−6 258.043 × 10−6

0.7 0.842288380 0.841782292 0.841187184 506.088 × 10−6 1.101196 × 10−3

0.8 1.029638557 1.027714288 1.025675297 1.924269 × 10−3 3.96326 × 10−3

0.9 1.260158218 1.253633063 1.247544849 6.525155 × 10−3 12.613369 × 10−3

1.0 1.557407725 1.536959360 1.520634921 20.448365 × 10−3 36.772804 × 10−3

Figure 2 shows the comparison between the exact solution and the approximate so-
lutions obtained by the VIM and ADM. It is seen from Figure 2 the solution obtained
by the proposed method nearly identical to the exact solution. In this example, the
simplicity and accuracy of the proposed method is illustrated by computing the absolute
error E4(x).
The accuracy of the result can be improved by introducing more terms of the approxi-
mate solutions. In Table 2, VIM solutions is compared with ADM and the exact solution
of the Volterra integral Equation (3.1). There is good agreement between exact and
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approximate solution obtained by proposed method. The table also shows the absolute
error between the exact and approximate solutions. VIM is better than ADM and it has
more accuracy.

Example 3. Consider the following linear Volterra integral equation with the exact
solution y(x) = x+ cos(x)

y(x) = 1 + x+ x3

3! −
∫ x

0
(x− t)y(t)dt, (3.13)

differentiate both sides of Equation (3.13) with respect to x by using Leibnitz rule gives
the integro-differential equation

y′(x) = 1 + x2

2 −
∫ x

0
y(t)dt, y(0) = 1, (3.14)

we obtain the initial value problem by differentiating Equation (3.14) again

y′′(x) = x− y(x), y(0) = 1, y′(0) = 1, (3.15)

(a) Applyig the variational iteration method to Equation (3.14) we get the correction
functional

yn+1(x) = yn(x) +
∫ x

0
λ(ξ)

(
y′n(ξ) − 1 − ξ2

2 −
∫ ξ

0
ỹn(s)ds

)
dξ, (3.16)

we find the Lagrange multiplier of the first order

λ = −1, (3.17)

substituting this value of the Lagrange multiplier into the functional Equation (3.15)
gives the iteration formula

yn+1(x) = yn(x) −
∫ x

0

(
y′n(ξ) − 1 − ξ2

2 −
∫ ξ

0
(yn(s)ds

)
dξ, (3.18)

using the initial conditions to select y0(x) = y(0) = 1 and use it into Equation (3.18)
we get

y0(x) = 1,

y1(x) = 1 + x− x2

2! + x3

3! ,

y2(x) = 1 + x− x2

2! + x4

4! − x5

5! ,

y3(x) = 1 + x− x2

2! + x4

4! − x6

6! + x7

7! ,

yn(x) = x+
(

1 − x2

2! + x4

4! − x6

6! + · · · + (−1)nx2n

(2n)!

)
, (3.19)

which gives the exact solution y(x) = x+ cos(x)
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(b) Applying the variational iteration method to Equation (3.14) we get the correction
functional

yn+1(x) = yn(x) +
∫ x

0
λ(ξ) (y′′n(ξ) + ỹn(ξ)) dξ, (3.20)

we find the Lagrange multiplier for second order

λ = ξ − x, (3.21)

substituting this value of the Lagrange multiplier into the functional (3.20) gives the
iteration formula

yn+1(x) = yn(x) +
∫ x

0
(ξ − x) (y′′n(ξ) + yn(ξ) − ξ) dξ, (3.22)

using the initial conditions to select y0(x) = y(0) + xy′0 = 1 + x and use it into
Equation (3.22) we get

y0(x) = 1 + x,

y1(x) = 1 + x− x2

2! ,

y2(x) = 1 + x− x2

2! + x4

4! ,

y3(x) = 1 + x− x2

2! + x4

4! − x6

6! ,

yn(x) = x+
(

1 − x2

2! + x4

4! − x6

6! + · · · + (−1)nx2n

(2n)!

)
, (3.23)

which gives the exact solution y(x) = x+ cos(x).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

Exact

VIM first order

VIM second order

Figure 3. Comparison between exact and approximate solutions for Example 3

Figure 3 shows the comparison between the exact solution and the approximate so-
lution obtained by the VIM of the first order and the second order respectively. It is
seen from Figure 3 the solution obtained by the proposed method nearly identical to the
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exact solution. In this example, the simplicity and accuracy of the proposed method
is illustrated by computing the absolute error E4(x) .The accuracy of the result can be
improved by introducing more terms of the approximate solutions. In Table 3, VIM
solutions are compared with the exact solution of the Volterra integral Equation (3.13).
There is good agreement between the exact and approximate solution obtained by the
proposed method. The table also shows the absolute error between the exact and ap-
proximate solutions and the approximate solution is obtained from the second order is
accuracy more than that is obtained from first order with the same iterations.

Table 3. Numerical results of Example 3, N = 4.

x yExact(x) VIM 1storder VIM 2nd order E4(y) 1storder E4(y) 2nd order
0.1 1.095004165 1.095004165 1.095004165
0.2 1.180066578 1.180066580 1.180066578 10 × 10−9

0.3 1.255336489 1.255336531 1.255336488 42 × 10−9 1 × 10−9

0.4 1.321060994 1.321061303 1.321060978 309 × 10−9 16 × 10−9

0.5 1.377582562 1.377584015 1.377582465 1.453 × 10−6 97 × 10−9

0.6 1.425335615 1.425340754 1.425335520 5.139 × 10−6 415 × 10−9

0.7 1.464842187 1.464857105 1.464840765 14.918 × 10−6 1.422 × 10−6

0.8 1.496706709 1.496744188 1.496702578 37.479 × 10−6 4.131 × 10−6

0.9 1.521609968 1.521694288 1.521599388 84.32 × 10−6 10.58 × 10−6

1.0 1.540302306 1.540277778 1.540277778 173.884 × 10−6 24.528 × 10−6

4 Conclusion

In this article, the variational iteration method has been successfully employed to obtain
the approximate and analytical solution of linear and nonlinear Volterra integral equation
of the second kind. The results showed that the convergence, powerful and efficient of this
technique was in a good agreement with the exact, analytical and approximate solutions
for wide classes of problems. The solution is obtained by the our proposed method
has high accuracy and also VIM better than Adomian decomposition method. The
computations associated with the examples in this work were performed using Maple 17.
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