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Abstract
We present a survey of selected new results about graceful labellings of graphs which were published
during the last seven years. Among them a proof of famous Ringel-Kotzig Conjecture from the 1960s,
which for “large” trees was announced in February 2020, has a prominent role. Many of the new results
are complemented by our own representations of the discovered graceful labellings of graphs via their
graph chessboards and labelling tables. The aim of creating these representations has been to provide
an extra value of visualization, in particular to allow seeing better a pattern of the graceful labelling in
graph chessboards or in labelling sequences.
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1 Introduction

The study of graph labellings started in the late 1960s. Since then a lot of methods and
techniques on graph labellings have been studied in almost 3000 research papers, surveys
and theses. The best source of information on results concerning the graph labellings is
the electronic book Dynamic Survey of Graph Labeling by Gallian [10]. Our survey is
mainly, though not entirely, based on the information provided in this book.

The history of the study of graph labellings began with a problem on decompositions
of a complete graph into trees. In 1963 Ringel conjectured at a conference in Smolenice,
Slovakia [40] that for any tree of size m the complete graph K2m+1 can be decomposed
into 2m + 1 copies of the given tree. Kotzig conjectured (as far as we know at the
same conference) that this decomposition can be cyclic. A proof of the Ringel-Kotzig
Conjecture has recently been announced in [32] for large trees. (By “large” is meant that
the size of the tree is comparable with the size of the complete graph.)
∗The second author acknowledges the (honorary) position of a Visiting Professor at University of Jo-
hannesburg since June 1, 2020 and the Slovak grant VEGA 2/0078/20.
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With the aim to give a better insight to the Ringel-Kotzig Conjecture, in 1965 Rosa
in his dissertation [42], and two years later in his seminal paper [43], defined four new
labellings of graphs: α, β, σ, ρ. Here α is the strongest and ρ is the weakest labelling.
A graph with m edges has a β-labelling if its vertices can be assigned different labels
from the set {0, 1, ...,m} such that the absolute values of the differences in the vertex
labels between adjacent vertices form exactly the set {1, ...,m}. Later on Golomb [12]
called β-labellings graceful labellings and the graphs possesing graceful labellings are
called graceful graphs. The famous Graceful Tree Conjecture stated by Rosa in [42] and
[43], which implies the Ringel-Kotzig Conjecture, says that every tree is graceful, that is,
every tree can be gracefully labelled. The conjecture, due to its close relationship with
the Ringel-Kotzig Conjecture, which we explain later on, is known also as the Ringel-
Kotzig-Rosa Conjecture (see also [32, Conjecture 8.1]).

In this survey of recent developments on gracefulness of graphs we mapped selected
new results on gracefully labelled graphs over the last seven years. We divided these
results into four sections. The first section relates to the mentioned recent proof of the
Ringel-Kotzig Conjecture for large trees and explains some background related to it.
The second section informs about selected new results on gracefulness of certain trees,
among them specific trees of diameter six, spider graphs, symmetrical trees and specific
caterpillars and lobsters. The third section focuses on recent results on graceful cyclic
graphs such as linear cyclic snakes, certain cycle related graphs, unicyclic graphs and
corona product of an aster flower graph. The last section is about recent results on
graceful subdivisions of selected graphs such as complete bipartite graphs and wheels.
We finalize our survey with so-called shell and bow graphs.

Most of the presented results are complemented by our own representations of the
given graceful labelling of a graph by its simple chessboard, labelling relation and labelling
sequence. They have been created in order to provide the extra value of visualization and
to allow seeing better a certain pattern in the graceful labelling. These representations
have not been done in each case, only when the corresponding simple chessboards to the
graceful graphs have reasonable sizes enabling their presentations (considering up to 45
vertices). The diagrams of the presented gracefully labelled graphs were taken from the
original papers or created, by applying the formulas for the graceful labellings provided
in the papers, with the help of a Graph processor – a computer program which was
developed by and is presented in Haviar and Ivaška [17, Chapter 7].

2 Preliminaries

We note that all basic concepts and facts in this chapter concerning graphs are taken
from [17] and [29].

By a graph in this paper we mean what is called a simple graph, that is, an undirected
finite graph without loops and multiple edges. To denote the vertex set of some known
graph G, we use the symbol VG and to denote the edge set of some known graph G, we
use the symbol EG.

The order of a graph G is the number of vertices in G. The size of a graph G is the
number of edges in G.

Definition 2.1. ([17, Definition 1.2.1]) A vertex labelling f of a graph G is a mapping
of its vertex set VG into the set of non-negative integers (which are called vertex labels).

Throughout our survey by a labelling we mean a vertex labelling. If f(u), f(v) are
the labels of vertices u, v respectively, then the number |f(u) − f(v)| will be called an
induced label of the edge uv in the labelling f . Assigning to every edge uv ∈ EG the
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induced label of the edge uv in the labelling f naturally yields the usual understanding
of the labelling f as acting also on the set EG of the edges of G.

The following two labellings play an important role with respect to the Ringel-Kotzig
Conjecture and the Graceful Tree Conjecture.

Definition 2.2. ([17, Definition 1.2.5]) Let G be a graph of size |EG| = m and let f be
its one-to-one labelling. Then f is called a ρ-labelling if

1. f(VG) ⊆ {0, 1, . . . , 2m}, and

2. f(EG) = {x1, x2, . . . , xm}, where xi = i or xi = 2m+1−i, for all i ∈ {0, 1, . . . ,m}.

Definition 2.3. ([17, Definition 1.2.3]) Let G be a graph of size m and let f be its
one-to-one labelling. Then f is called a graceful labelling (in the old terminology a
β-labelling) if

1. f(VG) ⊆ {0, 1, . . . ,m}, and

2. f(EG) = {1, 2, . . . ,m}.

The Ringel-Kotzig Conjecture ([40], [43]) says:

Conjecture 2.4. (Ringel-Kotzig Conjecture): For any tree of size m the complete
graph K2m+1 has a cyclic decomposition into 2m+ 1 copies of the given tree.

It is important to note that Rosa showed ([42], [43]) that the Ringel-Kotzig Conjecture
is equivalent to the existence of the ρ-labelling of every tree.

The Graceful Tree Conjecture, which is due to Rosa ([42], [43]) says:

Conjecture 2.5. (Graceful Tree Conjecture): All trees are graceful.

In Figure 1 we see an example of a graph with its graceful labelling.
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Figure 1. An example of a gracefully labelled graph

Since the ρ-labelling is weaker than the graceful labelling, it follows immediately that
the Ringel-Kotzig Conjecture is weaker than the Graceful Tree Conjecture.

In 2016 the authors of [2] proved that the Graceful Tree Conjecture holds asymptoti-
cally for trees of maximum degree at most n

log n . Almost all studies on the graph labellings
since the 1960s have been devoted to the graceful labellings and to the Graceful Tree
Conjecture, and its elder cousin, the Ringel-Kotzig Conjecture, and the corresponding
ρ-labellings of trees, have received much less attention. However, recent progress has
been mainly made on the Ringel-Kotzig Conjecture as we shall see in Section 3.

In [17] the second author of this survey together with his former student Ivaška
described the idea that every labelled graph of order n can be visualized by a simple
chessboard (called also a graph chessboard or just a chessboard). It is a table with n rows
and n columns, in which every edge uv is represented by a pair of dots with coordinates
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[u, v] and [v, u]. (In Figure 2 we see a graph and its corresponding chessboard.) One can
also obtain such a graph chessboard using the adjacency matrix of a graph by placing
dots to the cells corresponding to “ones” in the matrix.

0

1 10

38

52 9

7 4

6

Figure 2. A graph and its corresponding chessboard

Let G be a graph whose vertices are labelled by distinct numbers from the set
{0, 1, 2, . . . , n−1}. Consider a chessboard of size n, i.e. table with n rows and n columns.
Let the r-th diagonal (or the diagonal with value r) be the set of all cells with the coor-
dinates [i, j] where i− j = r and i ≥ j. The 0-th diagonal is called the main diagonal of
the chessboard and the other diagonals are called associate diagonals. We do not need
to consider the diagonals “above” the main diagonal, since the chessboard is symmetric
with respect to the main diagonal.

A simple chessboard will be called graceful if there is exactly one dot on each of its
associate diagonals.

Example 2.6. In Figure 3 we see a graceful labelling of a graph G and its coresponding
chessboard. We can clearly see the gracefulness of the graph because on each of the
associate diagonals there is exactly one dot.

1

0 7
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2

Figure 3. Graceful labelling of graph G and its graceful chessboard

Each gracefully labelled graph can be represented by labelling sequence, whose concept
was introduced by Sheppard in [55]. He proved there that there is unique correspondence
between gracefully labelled graphs and labelling sequences. In [17] Haviar and Ivaška
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introduced and studied the graph chessboards and labelling relations, and showed a one-
to-one correspondence between these two concepts and the labelling sequences. Let us
now give more details on this.

Definition 2.7. ([55], [17, Definition 3.1.1]) For a positive integer m, the sequence of
integers (j1, j2, . . . , jm), denoted (ji), is a labelling sequence if

0 ≤ ji ≤ m− i for all i ∈ {1, 2, . . . ,m}. (LS)

The labelling sequences can be understood as a tool to encode graceful labellings
of graphs. The correspondence between gracefully labelled graphs (without isolated
vertices) and the labelling sequences is described in the following theorem.

Theorem 2.8. ([55], [17, Theorem 3.1.2]) There is a one-to-one correspondence between
graphs with m edges having a graceful labelling f and between labelling sequences (ji)
of m terms (entries). The correspondence is given by

ji = min{f(u), f(v)}, i ∈ {1, 2, . . . ,m},

where u, v are the end-vertices of the edge labelled i.

Since the graceful simple chessboards also encode gracefully labelled graphs, it is
natural that also the following result holds:

Proposition 2.9. ([17, Proposition 3.1.3]) There is a one-to-one correspondence between
all graceful simple chessboards and all labelling sequences.

Now we turn to the concept of a labelling relation which is the third main tool of [17]
to encode gracefully labelled graphs.

1 2 3 4 5 6 7 8 9 10
0 5 2 1 5 1 0 2 1 0
1 7 5 5 10 7 7 10 10 10

Figure 4. The labelling table of graph G above

Definition 2.10. ([17, Definition 3.5.1]) Let L = (j1, j2, . . . , jm) be a labelling sequence.
Then the relation A(L) = {[ji, ji + i], i ∈ {1, 2, . . . ,m}} is called a labelling relation
assigned to the labelling sequence L.

From the book [17] we also use the concept of a labelling table to visualize a labelling
relation (for particular case see Figure 4 above and for a general case see Figure 5 below).

1 2 3 . . . m
j1 j2 j3 . . . jm

j1 + 1 j2 + 2 j3 + 3 . . . jm + m

Figure 5. Displaying a labelling relation in a table (taken from [17, Figure 3.3])

The table header contains the numbers 1, 2, . . . ,m. The numbers from the labelling
sequence are situated in the first row and the sums of numbers from the heading and the
first row are in the second row. The pairs from first and second row in each column are
then the elements of the labelling relation (and also the edges of the graph).
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3 Proof of Ringel’s Conjecture for large trees

As we mentioned, the history of the study of graph labellings began with a problem on
decompositions of the complete graph into trees. This led to the Ringel’s Conjecture
that for any tree of size n the complete graph K2n+1 can be decomposed into 2n + 1
copies of the given tree [40]. As also mentioned, Kotzig strengthened the conjecture by
claiming that this decomposition can be cyclic.

In the area of the conjecture only some partial general results have been achieved
for almost six decades. As already mentioned, Rosa (cf. [42], [43]) showed that the
Ringel-Kotzig Conjecture is equivalent to the existence of the ρ-labelling for any tree.
Hence the existence of the stronger graceful labelling for any tree, thus the Graceful Tree
Conjecture, implies the Ringel-Kotzig Conjecture.

In February 2020, Montgomery, Pokrovskiy and Sudakov published in arXiv a proof of
the Ringel-Kotzig Conjecture [32] for large trees, where the size of the tree is comparable
with the size of the complete graph. In their proof they used a language of rainbow
subgraphs, which describe the ρ-labellings.
Definition 3.1. ( [32, page 2] ) A rainbow copy of a graph H in an edge-coloured
graph G is a subgraph of G isomorphic to H whose edges have different colours.

The Ringel-Kotzig Conjecture is implied by the existence of a rainbow copy of every
tree T of size n in a so-called near distance colouring of the complete graph K2n+1:
Definition 3.2. ([32, page 2]) Let {0, 1, . . . , 2n} be the vertex set of K2n+1. Colour the
edge ij by colour k, where k ∈ {1, . . . , n}, if either i = j + k or j = i + k with addition
modulo 2n+ 1. This is called the near distance (ND) colouring.

Figure 6. Left is a distance and right the ND-colouring of K11 (taken from [16])

Example 3.3. ([16]) Let us consider the complete graph K11 of order 11. We color the
edges the way that edges of the same distance have the same colour. The distance is
defined as the number of edges of circuit we need to move from one vertex to another.
No shortcuts through the inside of the circle are allowed (see Figure 6). We always
have two options, but we choose the shorter one. Now color the edges of the graph
considering distance. All edges connecting vertices of distance 1 paint, say, by blue. All
edges connecting vertices of distance 2 paint, say, by yellow. Etc. (See Figure 6.) On
the complete graph of order 2n+ 1 we need n different colors to paint the whole graph.

Kotzig realized that this colouring can be helpful to place a given tree over the
complete graph. By a placement of a rainbow copy of the tree is meant to position
the tree so that every edge of the tree has different colour (see Figure 7).
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Figure 7. A rainbow copy of a tree (taken from [16])

If the ND-colouring of K2n+1 contains a rainbow copy of a tree T , then K2n+1 can be
decomposed into copies of T by taking 2n+ 1 cyclic shifts of the original rainbow copy.
This idea and Ringel’s Conjecture motivated Kotzig to conjecture that the ND-colouring
of K2n+1 contains a rainbow copy of every tree of size n. It is important to note that a
rainbow copy of a tree T with vertex set {0, 1, . . . , n} in the ND-colouring of K2n+1 is
equivalent to a graceful labelling of the tree T .

Montgomery, Pokrovskiy, and Sudakov already in 2019 [33] gave a new approach
to embedding large trees (with no degree restrictions) into edge-colourings of complete
graphs, and used this to prove the Ringel’s Conjecture asymptotically. In [32] they further
developed and refined their approach, combining it with several critical new ideas to prove
Ringel’s Conjecture for large complete graphs:

Theorem 3.4. ([32, Theorem 1.2]) For every sufficiently large n the complete graph
K2n+1 can be decomposed into copies of any tree with n edges.

In [32] the authors, instead of working directly with tree decompositions or studying
graceful labellings, proved for large n that every ND-coloured complete graph K2n+1
contains a rainbow copy of every tree of size n:

Theorem 3.5. ([32, Theorem 2.1]) For sufficiently large n, every ND-coloured K2n+1
has a rainbow copy of every n-edge tree.

Then they obtain a decomposition of the complete graph by rotating one copy of a
given tree. Hence this gives a proof of the whole Ringel-Kotzig Conjecture for large n.

The proof approach of the authors of [32] builds on ideas from the previous research
on both graph decompositions and graceful labellings. From the work on graph decompo-
sitions, their approach is inspired by randomized decompositions and so-called absorption
technique. The rough idea of the method of “absorption” is as follows (cf. [32]):

(1) Before the embedding of a tree T prepare a template which has some useful prop-
erties.

(2) Find a partial embedding of the tree T with some vertices removed such that it
does not use the edges of the template.

(3) Use the template to embed the remaining vertices extensively since then.

This idea was introduced by Rödl, Rucinski and Szemerédi [41]. Also the proof of
Ringel’s Conjecture for bounded degree trees is based on this method [23].
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From the work on graceful labellings, the proof approach of [32], when dealing with
trees with very high degree vertices, is based on a completely deterministic approach
for finding a rainbow copy of the tree. This approach heavily relies on features of the
ND-colouring and produces something very close to a graceful labelling of the tree. Their
theorem is the first general result giving a perfect decomposition of a graph into subgraphs
with arbitrary degrees. All previous comparable results placed a bound on the maximum
degree of the subgraphs into which they decomposed the complete graph. Hence all these
techniques encounter some barrier when dealing with trees with arbitrarily large degrees.
Having overcome this “bounded degree barrier” for Ringel’s Conjecture, the authors of
[32] hope that further development of their techniques can help overcome the “bounded
degree barrier” also in other problems (cf. [32, page 3]).

The authors of [32] in their concluding remarks return to two other conjectures, the
first one is the Graceful Tree Conjecture. They mention that this conjecture was proved
for many isolated classes of trees, among them caterpillars, trees with at most 4 leaves,
firecrackers, all trees with diameter at most 5, symmetrical trees, trees with at most 35
vertices, and olive trees (see [10]). They also mention that the Graceful Tree Conjecture is
known to hold asymptotically for trees of maximum degree at most n

log n [2]. But as they
emphasize, solving the Graceful Tree Conjecture for general trees, even asymptotically,
is still wide open.

The second conjecture the authors of [32] mention in their concluding remarks is the
Tree Packing Conjecture ([13], [32, Conjecture 8.2]):

Conjecture 3.6. (Tree Packing Conjecture) Let T1, . . . , Tn be trees with |Ti| = i
for each i ∈ {1, . . . , n}. The edges of Kn can be decomposed into n trees which are
isomorphic to T1, . . . , Tn respectively.

In 2018 this conjecture was proved for bounded degree trees by Joos, Kim, Kühn
and Osthus [23], but in general it is also wide open. The authors of [32] remark that it
would be interesting to see if any of their techniques could be used here to make further
progress on the Tree Packing Conjecture.

4 Recent results on graceful trees

4.1 Diameter six trees
In [19] Hrnčiar and Haviar proved that all trees of diameter five are graceful, which is
still the best result on gracefulness of all trees with a bounded diameter. Mishra and
Panigrahi in [30] and [31] gave a new class of graceful lobsters obtained from diameter
four trees. Based on their techniques, in 2015-2017 Mishra and Panda [36] found graceful
labellings for some new classes of diameter six trees [34], [35] and [36]. We briefly present
the main results of [36].

Definition 4.1. ([36, Definition 1.2] ) A diameter six tree can be represented as
(a0; a1, a2, . . . , am; b1, b2, ..., bn; c1, c2, ..., cr), where a0 is the center of the tree; ai for
i = 1, 2, . . . ,m; bj for j = 1, 2, . . . , n, and ck for k = 1, 2, . . . , r are the vertices of the
trees adjacent to a0 such that each ai is a central vertex of some diameter three tree,
each bj is the central vertex of some star, and each ck is some pendant vertex.

We note that in the above definition the authors mistakenly wrote in [36] that “each
ai is the center of some diameter four tree” while above we correctly write “each ai is
a central vertex of some diameter three tree” (meaning by ai that of the two central
vertices that is adjacent to a0). Also the authors mistakenly wrote in [36] the following:
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Figure 8. A diameter six tree (a corrected figure from [36])

“It is readily observed that for a diameter six tree with the above representation there
are at least two neigbours of a0 which are the centers of diameter four trees.” It should
be corrected such that “there are at least two neighbours of a0 which are central vertices
of diameter three trees”.

In summary, in [36] graceful labellings were given for new classes of diameter six trees
in which the diameter three trees adjacent with the center a0 consist of six different
combinations of odd, even, and pendant branches.

Example 4.2. In Figure 9 we see a diameter six tree D6 with its graceful labelling found
by Mishra and Panda in [34]. The size of the graph is 90, the degree of a0 is 11.

Figure 9. D6 of order 91 (taken from [34, Figure 2(b)])
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4.2 Spider graphs
In the early 1980s graceful labellings were found for all spider graphs with three or four
legs [20]. Ten years ago it was proved in [5] that a spider graph for which the lengths of
all legs (paths from the center to a leaf) differ by at most one is graceful. In 2014 in [21]
some other classes of spiders were shown to be graceful, too.

Definition 4.3. A tree with at most one vertex of degree greater than two is called a
spider, and this vertex is called a branch vertex. A path from the branch vertex to a
leaf is called a leg of the spider.

Let us denote by Sn(m1,m2, . . . ,mk) the spider with n legs such that n ≥ k and the
legs have lengths one except for k legs of the lengths m1,m2, . . . ,mk, where mi ≥ 2 for
all i = 1, 2, . . . , k.

1
11

12

13

14
0

10

9

8 5 3 4

7 2 6

Figure 10. A graceful labelling of a spider S8(2, 4, 3)

In 2016 in [37] graceful labellings were found for all spiders with at most four legs of
lengths greater than one.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
3 3 5 2 2 1 1 1 1 1 1 1 1 0
4 5 8 6 7 7 8 9 10 11 12 13 14 14

Figure 11. The representations of the gracefully labelled spider S8(2, 4, 3)
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Example 4.4. In Figure 10 we see a gracefully labelled spider graph S8(2, 4, 3) of order 15
with 8 legs with lengths 2,1,1,1,1,1,4,3. The branch vertex has label 1. Below the graph we
added in Figure 11 also the simple chessboard and the labelling relation of this gracefully
labelled graph. We see that the labelling sequence is (3, 3, 5, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0).

4.3 Symmetrical trees

Figure 12. A symmetrical tree (taken from [45, Figure 3])

A rooted tree is known as a tree with a countable number of vertices, in which a
particular vertex is distinguished from the others and called the root.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
13 13 13 9 12 11 10 9 18 8 8 8 8 4
14 15 16 13 17 17 17 17 27 18 19 20 21 18

15 16 17 18 19 20 21 22 23 24 25 26 27
7 6 5 9 4 4 4 0 3 2 1 0 0
22 22 22 27 23 24 25 22 26 26 26 26 27

Figure 13. The representations of the symmetrical tree

For a given vertex, a number of vertices in the path from the root to this vertex is
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called the level of the vertex. A symmetrical tree is a rooted tree with k levels, where
every level contains vertices of the same degree.

In [38] an algorithm for graceful labelling of symmetrical trees was given. In 2018
Sandy, Rizal, Manurung, and Sugeng [45] gave an alternative construction of graceful
symmetrical trees.

Example 4.5. In Figure 12 we see a symmetrical tree with graceful labelling. Again,
below the graph we added in Figure 13 the simple chessboard and the labelling re-
lation of this gracefully labelled graph. One can see that the labelling sequence is
(13, 13, 13, 9, 12, 11, 10, 9, 18, 8, 8, 8, 8, 4, 7, 6, 5, 9, 4, 4, 4, 0, 3, 2, 1, 0, 0). Here we very well
see that creating the graph chessboard provides an extra value of visualization to the
graceful labelling, and enables us seeing better a certain pattern of the graceful labelling
in the graph chessboard.

4.4 Caterpillars and lobsters
Definition 4.6. ([17, page 72]) A caterpillar is a tree with the property that the
removal of its vertices of degree one leaves a path.

Figure 14. Example of a caterpillar

Figure 15. A graceful labelling of a tree (taken from [58, Figure 9])

By combining known graceful trees one can construct larger graceful trees. This idea
was used by Sethuraman and Murugan [58] in 2016 and they constructed graceful trees
from caterpillars in a specific way. An example of a gracefully labelled tree obtained from
caterpillars by their method is seen in Figure 15. Also in this case the representations by
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the simple chessboard, the labelling relation and the labelling sequence would be possible,
but we do not provide them here due to the enormous size of the graph.

Definition 4.7. ([47, Definition 1.2]) For each vertex v of a graph G, take a new vertex
v′ and join v′ to all vertices of G adjacent to v. The graph thus obtained is called the
splitting graph of G and denoted S′(G).

Sekar in [48] found graceful labellings of S′(Pn) for all n (where Pn is a path) and
S′(Cn) for n ≡ 0, 1 (mod 4) (where Cn is a cycle). A gracefulness of the splitting graph
of a bistar and a star was proved in [57]. Latest result from 2017 is proved in [47] and it
says that the splitting graphs of caterpillars are graceful.

Figure 16. A graceful labelling of a splitting graph (taken from [47, Figure 3])

Example 4.8. In Figure 16 we see an illustration of a splitting graph constructed to a
caterpillar by the above definition and its graceful labelling according to [47].

Figure 17. The chessboard of the splitting graph

And in Figures 17 and 18 we added its representations by the simple chessboard
and the labelling relation, respectively. The labelling sequence of this gracefully labelled
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splitting graph (‘split’ according to the labelling table below) is

(27, 25, 24, 22, 22, 20, 20, 18, 18, 16, 16, 15, 16, 16, 16,
15, 16, 15, 16, 16, 15, 14, 13, 12, 11, 9, 9, 7, 7, 5, 5, 3, 3,
1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
27 25 24 22 22 20 20 18 18 16 16 15 16 16 16
28 27 27 26 27 26 27 26 27 26 27 27 29 30 31

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
15 16 15 16 16 15 14 13 12 11 9 9 7 7 5
31 33 33 35 36 36 36 36 36 36 35 36 35 36 35

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
5 3 3 1 1 0 1 1 1 1 0 1 0 1 0
36 35 36 35 36 36 38 39 40 41 41 43 43 45 45

Figure 18. The chessboard of the splitting graph

Definition 4.9. ([10]) A lobster is a tree with the property that the removal of the
vertices of degree 1 leaves a caterpillar.

12

13

11 10 9 5

21

3

17

7 6 2 1

25

8 4

15 14 18 16

0

24 23 22 20 19

Figure 19. A graceful labelling of a lobster (taken from [11, Figure 18])

Bermond in [7] conjectured that all lobsters are graceful. Then Ghosh in [11] gave
some methods how to join graceful graphs and graphs with the α-labeling. He defined
three special classes of gracefully labelled lobsters. In 2015 Krop in [27] showed graceful-
ness of each lobster that has a perfect matching that covers all but one vertex. Some new
constructions of graceful classes of caterpillars and lobsters were given in 2018 in [56] by
Suparta and Ariawan.

Example 4.10. In Figure 19 we see an example of a gracefully labelled lobster. We
added its representations by the simple chessboard and the labelling relation that are
seen in Figure 20. The labelling sequence representing this gracefully labelled graph is
(12, 11, 10, 9, 12, 8, 8, 5, 12, 7, 6, 4, 12, 4, 2, 1, 8, 3, 0, 0, 4, 0, 0, 0, 0).
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1 2 3 4 5 6 7 8 9 10 11 12
12 11 10 9 12 8 8 5 12 7 6 4
13 13 13 13 17 14 15 13 21 17 17 16

13 14 15 16 17 18 19 20 21 22 23 24 25
12 4 2 1 8 3 0 0 4 0 0 0 0
25 18 17 17 25 21 19 20 25 22 23 24 25

Figure 20. The representations of the gracefully labelled lobster

5 Recent results on graceful cyclic graphs

5.1 Linear cyclic snakes

0
4 8 12

16

32 28 24 20

29 25 21 17

31 27 23 19

30 26 22 18

Figure 21. The graceful labelling of (2, 4)C4 (taken from [3, Figure 3] and corrected)

Recalling briefly a history of linear cyclic snakes, we start with Barrientos who in [6]
gave graceful labelings of cyclic snakes. Rosa in [44] glued together triangles in a special
way and called it a triangular snake.

In 2015 Badr proved gracefulness of linear cyclic snakes (1, k)C4, (2, k)C4, (1, k)C8
and (2, k)C8 and showed that every linear cyclic snake of type (m, k)Cn for m ≡ 0
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(mod 4) and m ≡ 3 (mod 4) is graceful [3].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
16 16 16 16 12 12 12 12 12 12 12 12 8 8 8 8
17 18 19 20 17 18 19 20 21 22 23 24 21 22 23 24

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
8 8 8 8 4 4 4 4 4 4 4 4 0 0 0 0
25 26 27 28 25 26 27 28 29 30 31 32 29 30 31 32

Figure 22. The representations of the gracefully labelled linear cyclic snake

We notice that the way Badr in [3] defined his “linear cyclic snakes” is rather badly
written and hardly understandable. That is why we do not present his definition and try
to explain the notation (m, k)Cn in our own words via the example below.

Example 5.1. In Figure 21 we see a linear cyclic snake (2, 4)C4 obtained by joining 4
copies of C4 graphs in such a way that each of them contains inside an another copy of
C4.

This graph is gracefully labelled. We added its representations by the simple chess-
board and the labelling relation which can be seen in Figure 22. The labelling sequence
representing this gracefully labelled graph is

(16, 16, 16, 16, 12, 12, 12, 12, 12, 12, 12, 12, 8, 8, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0).

This is an excellent example where one can see that creating the graph chessboard pro-
vides the mentioned extra value of visualization to the graceful labelling, and allows to
see, very clearly in this case in the graph chessboard, the pattern of the graceful labelling.

5.2 Cycle related graphs
Let Cn be a cycle of length n.
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Definition 5.2. ( [59, Definition 1.1] ) A chord of the cycle is an edge connecting two
non-neighbouring vertices of the cycle.

Figure 23. Graceful labelling of C+
16,4 (taken from [59, Figure 4])

Recalling briefly a history of cycle related graphs, we start with Rosa, who in [43]
showed that a cycle Cn is graceful if and only if n ≡ 0 or 3 (mod 4). Later the authors
of [8] proved gracefulness of a cycle with a chord. The authors of [25] proved that each
cycle with P3−chord is graceful and conjectured that, more generally, each cycle with
Pk−chord is graceful. (We recall that a cycle with a Pk-chord is a cycle with the path
Pk joining two nonconsecutive vertices of the cycle.)

The mentioned conjecture was proved in [39] for all k ≥ 4. In [49] the authors defined
a graph obtained from a cycle Cn (n ≥ 6) so that disjoint paths Pk (where k ≥ 3 is
fixed) are added between each pair of non-adjacent vertices of Cn and they call it a cycle
with parallel Pk chords. They verified that each cycle Cn (where n ≥ 6) with parallel Pk

chords is graceful in cases k = 3, 4, 6, 8 and 10.

Definition 5.3. ( [59, Definition 1.2] ) A graph acquired from the cycle Cn by adding
the cycle Ck between every non-adjacent vertices is called a cycle with Ck − chord and
denoted Cn,k.

Definition 5.4. ( [59, Definition 1.3] ) A graph acquired from the cycle Cn by adding the
cycle Ck between every pair of non-neighbouring vertices (v2, vn), (v3, vn−1), . . . , (va, vb)
where a = bn

2 c, b = bn
2 c+ 2 if n is even, and a = bn

2 c, b = bn
2 c+ 3 if n is odd, is called a

parallel cycle with Ck − chord and denoted C+
n,k.

Latest result in this direction was proved in 2017 by Venkatesh and Sivagurunathan
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in [59]. It says that graphs Cn,4 and C+
n,4 for each n ≡ 0 (mod 4) and Cn,6 for each odd

n ≥ 5 are graceful.

Example 5.5. In Figure 23 we see a gracefully labelled parallel cycle C16 with C4−chord.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
19 18 19 18 19 18 18 19 16 15 16 15 12 13 13
20 20 22 22 24 24 25 27 25 25 27 27 25 27 28

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
12 13 12 12 13 10 9 10 9 6 7 7 6 7 6
28 30 30 31 33 31 31 33 33 31 33 34 34 36 36

31 32 33 34 35 36 37 38 39 40 41 42 43 44
6 7 4 3 4 3 0 1 1 0 1 0 1 0
37 39 37 37 39 39 37 39 40 40 42 42 44 44

Figure 24. The representations of the gracefully labelled of C+
16,4

We added its representations by the simple chessboard and the labelling relation that
are seen in Figure 24. The labelling sequence representing this gracefully labelled graph
is

(19, 18, 19, 18, 19, 18, 18, 19, 16, 15, 16, 15, 12, 13, 13, 12, 13, 12, 12,
13, 10, 9, 10, 9, 6, 7, 7, 6, 7, 6, 6, 7, 4, 3, 4, 3, 0, 1, 1, 0, 1, 0, 1, 0).

5.3 Corona product of aster flower graph
Definition 5.6. ([24, Definition 1]) An aster flower graph (A(m,n)) is a graph which
is generated from a cycle graph Cm (m ≥ 3) by connecting path graphs Pn+1 (n ≥ 1) at
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two adjacent vertices. A corona product (A(m,n)� K̄r) of aster flower graph is a graph
which is generated from an aster graph (A(m,n) (m ≥ 3, n ≥ 1) by adding r leaf vertices
on each vertex.

In [14] the gracefulness was proved for corona product of two graphs. Later in [9] it
was proved that any cycle with a leaf connected at each vertex is graceful. In 2018 in [24]
Khairunnisa and Sugeng found graceful labelling for each corona product (A(3,1) � K̄r)
of aster flower graph (for r ≥ 1).

Figure 25. A corona product (A(3,1) � K̄3) (taken from [24, Figure 4])

Example 5.7. In Figure 25 we see a gracefuly labelled corona product (A(3,1) � K̄3)
of aster flower graph. We added its representations by the simple chessboard and the
labelling relation which can be seen in Figure 26. The labelling sequence representing
this gracefully labelled graph is

(26, 25, 23, 23, 21, 15, 20, 0, 16, 17, 12, 9, 13, 0, 10, 11, 6, 5, 7, 1, 0, 4, 2, 0, 0, 0, 0).

1 2 3 4 5 6 7 8 9 10 11 12 13 14
26 25 23 23 21 15 20 0 16 17 12 9 13 0
27 27 26 27 26 21 27 8 25 27 23 21 26 14

15 16 17 18 19 20 21 22 23 24 25 26 27
10 11 6 5 7 1 0 4 2 0 0 0 0
25 27 23 23 26 21 21 26 25 24 25 26 27

Figure 26. The representations of the gracefully labelled (A(3,1) � K̄3)
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5.4 Unicyclic graphs
Definition 5.8. ([15, page 41]) A graph is unicyclic if it contains just one cycle and is
connected.

In Figure 27 we see an example of unicyclic graph.

Figure 27. An example of unicyclic graph

Recalling briefly a history of embedding graphs into graceful graphs (see [53, page
11]), we start with Acharya who in [1] proved that each connected graph can be embedded
in a graceful graph. Later, the authors of [50] generalized this result and showed that
any set of graphs can be “packed” into a graceful graph.

In 2015 Bagga, Fotso, Max, and Arumugam in [4] explored the gracefulness of graphs
with only one cycle with some pendant caterpillars at two neighbouring vertices of cycle
and pendant edges at some other vertices of the cycle. A cycle with a pendant caterpillar
is obtained by identifying a vertex of the cycle with a leaf of caterpillar.

In 2016 Sethuraman in [51] showed that every tree can be embedded in a graceful
tree. This inspired Sethuraman and Murugan who proved in 2019 in [53] that any acyclic
graph can be embedded in a unicyclic graceful graph. The authors found an algorithm
that from any acyclic graph constructs a graceful unicyclic graph.

Also in 2019 Sethuraman and Murugan [52] presented a construction of graceful
labeling of a graph G from a graceful tree T in case the number of vertices of G is equal
to number of vertices of T . The constructed graph is unicyclic.

6 Recent results on graceful subdivisions of graphs

6.1 Complete bipartite graphs
Definition 6.1. ([46]) If in a graph G an edge uv is replaced by the path P : uwv, where
w is the new vertex, then the edge uv is called subdivided. A subdivision of a graph
G is the graph obtained by subdividing each edge of the graph G and it is denoted by
S(G).

In 2016 Sankar and Sethuraman in [46] proved that each subdivision of the complete
bipartite graph K2,n is graceful for every n ≥ 1.

Example 6.2. In Figure 28 we see the subdivisiom graph S(K2,4) and its graceful
labeling. Its representations by the simple chessboard and the labelling relation can be
seen in Figure 29. The labelling sequence representing this gracefully labelled graph
is (8, 8, 8, 8, 7, 5, 3, 1, 7, 5, 3, 1, 0, 0, 0, 0). This is an another excellent example where one
can see that creating the graph chessboard allows to see very clearly the pattern of the
graceful labelling.
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0

16 15 14 13

1357

12 11 10 9

8

Figure 28. A graceful labeling of S(K2,4)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
8 8 8 8 7 5 3 1 7 5 3 1 0 0 0 0
9 10 11 12 12 11 10 9 16 15 14 13 13 14 15 16

Figure 29. The representations of the gracefully labelled S(K2,4)

6.2 Wheels

Definition 6.3. ([54]) A wheel is a graph obtained by connecting a single vertex K1 to
all vertices of a cycle Cn. A wheel Wn is the graph Cn +K1 for n ≥ 3 .

Some authors use the symbol Wn to denote the wheel with n vertices.

In [18] it was proved that all wheels for n ≥ 3 are graceful. In [28] graceful labellings
of directed wheels were presented. In 2015 in [54] Sethuraman and Sankar proved that
the subdivision S(Wn) of the wheel Wn is graceful for even numbers n ≥ 4.



60 Katarína Kotul’ová, Miroslav Haviar

0
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2322

21

20 19

13

5

7 9

11

4

10

16

17

15

13

Figure 30. Gracefully labeled wheel S(W6)

Example 6.4. In Figure 30 we see a gracefully labelled subdivison S(W6) of order 19
and size 24.

Figure 31. The chessboard of the gracefully labelled S(W6)

We added its representations by the simple chessboard in Figure 31 and the labelling
table which can be seen in Figure 32. The labelling sequence representing this gracefully
labelled graph is (3, 11, 1, 11, 5, 9, 3, 9, 7, 7, 5, 1, 11, 9, 7, 5, 3, 1, 0, 0, 0, 0, 0, 0).
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1 2 3 4 5 6 7 8 9 10 11 12
3 11 1 11 5 9 3 9 7 7 5 1
4 13 4 15 10 15 10 17 16 17 16 13

13 14 15 16 17 18 19 20 21 22 23 24
11 9 7 5 3 1 0 0 0 0 0 0
24 23 22 21 20 19 19 20 21 22 23 24

Figure 32. The labelling table of the gracefully labelled S(W6)

6.3 Shell and bow graphs

0

15

341

14 16

510 13 7

17 18

911

Figure 33. The graph S(C(6, 3))

Definition 6.5. ([46]) A shell graph is a cycle Cn(v0, v1, v2, . . . , vn1) with (n−3) chords
connecting vertex v0, we denote it C(n;n− 3). The vertex v0 is called apex of the shell
graph.

Figure 34. The chessboard of the gracefully labelled S(C(6, 3))
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
3 9 1 7 5 7 3 5 9 7 5 3 1 0 0 0 0 0
4 11 4 11 10 13 10 13 18 17 16 15 14 14 15 16 17 18

Figure 35. The labelling table of the gracefully labelled S(C(6, 3))

Example 6.6. In Figure 33 we see a gracefully labelled subdivision of the shell graph
C(6, 3). The graph S(C(6, 3)) is of size 18. Its representations by the simple chessboard
can be seen in Figure 34 and the labelling table can be seen in Figure 35. The labelling
sequence representing this gracefully labelled graph is

(3, 9, 1, 7, 5, 7, 3, 5, 9, 7, 5, 3, 1, 0, 0, 0, 0, 0).

Figure 36. A uniform bow graph (taken from [22, Figure 2])

Definition 6.7. ([22]) A bow graph is a graph consisting of two shells of any orders.
If each shell has the same order, we call it a uniform bow graph. A special case of a
bow graph is a shell butterfly graph. This is a bow graph with two special edges from
the apex.

In 2015 Jesintha and Hilda in [22] proved gracefulness of all uniform bow graphs. In
Figure 36 we see a gracefully labelled uniform bow graph of size 34.

Figure 37. The chessboard of the gracefully labelled uniform bow graph
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
22 28 22 26 23 26 20 24 18 24 18 0 16 0 16 0 14
23 30 25 30 28 32 27 32 27 34 29 12 29 14 31 16 31

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
0 14 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0
18 33 20 33 22 23 24 25 26 27 28 29 30 31 32 33 34

Figure 38. The labelling sequences of the gracefully labelled uniform bow graph

Its representations by the simple chessboard and the labelling relation can be seen
in Figures 37 and 38. The labelling sequence representing this gracefully labelled graph
is

(22, 28, 22, 26, 23, 26, 20, 24, 18, 24, 18, 0, 16, 0, 16,
0, 14, 0, 14, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).
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