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Abstract
We consider products of composition and iterated differentiation operators from the space of fractional
Cauchy transforms to weighted Bloch-type spaces and little weighted Bloch-type spaces. Upper and
lower bounds for norm of these operators are computed and compactness is completely characterized.
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1 Introduction and Preliminaries

Let D be the open unit disk in the complex plane C, ∂D its boundary, dA(z) the normal-
ized area measure on D (i.e. A(D) = 1) and H∞ the space of all bounded holomorphic
functions on D with the norm ‖f‖∞ = supz∈D |f(z)|. Let H(D) the class of all holomor-
phic functions on D. H(D) is a locally convex linear topological space with respect to the
topology given by uniform convergence on compact subsets of D. We denote by M the
space of all complex Borel measures on ∂D and let M∗ be the subset of M consisting of
probability measures. Let α > 0 be a real number. The family Fα of fractional Cauchy
transforms is the collection of functions f ∈ H(D) which admits a representation of the
form

f(z) =
∫
∂D

1
(1− ζz)α

dµ(ζ) (z ∈ D) (1.1)

for some µ ∈M. The principal branch is used in the power function in (1.1) and through-
out the rest of the paper. The space Fα is a Banach space with respect to the norm

‖f‖Fα = inf
µ∈M

{
‖µ‖ : f(z) =

∫
∂D

1
(1− ζz)α

dµ(ζ)
}
,
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where ‖µ‖ denotes the total variation of measure µ. According to the Lebesgue decom-
position theorem M = Ma + Ms, where Ma = {µa ∈ M : µa << m}, where m is the
normalized Lebesgue measure on the unit circle ∂D, and Ms = {µs ∈M : µs⊥m}. Thus
any µ can be written as µ = µa + µs, where µa ∈Ma, µs ∈Ms and ‖µ‖ = ‖µa‖+ ‖µs‖.
Consequently, the space Fα may also be written as Fα = (Fα)a + (Fα)s, where (Fα)a
is isometrically isomorphic to M/H1

0 , the closed subspace of M of absolutely continuous
measures and (Fα)s is isomorphic to Ms the closed subspace of M of singular measures.
If f ∈ (Fα)a, then the singular part is null and the measure µ for which the integral
in (1.1) holds reduces to dµ(eit) = g(eit)dt, where g(eit) ∈ L1 and dt is the Lebesgue
measure on ∂D. For more about the space Fα, we refer [1], [2] [3], [4], [8], [9] and [10].
Let

ηa(z) = a− z
1− āz , a, z ∈ D,

that is, the involutive automorphism of D interchanging points a and 0. Also we need
the following well known identity

(1− |z|2)|η′a(z)| = 1− |ηa(z)|2 = (1− |a|2)(1− |z|2)
|1− āz|2 (1.2)

The Bloch-type space Bν(D) = Bν consists of all f ∈ H(D) such that

‖f‖Bν := |f(0)|+ bν(f) = |f(0)|+ sup
z∈D

ν(z)|f ′(z)| <∞,

where ν is a positive continuous function on D (weight). A weight ν is called typical if it
is radial, i.e. ν(z) = ν(|z|), z ∈ D and ν(|z|) decreasingly converges to 0 as |z| → 1. A
positive continuous function ν on the interval [0, 1) is called normal if there are δ ∈ [0, 1)
and τ and t, 0 < τ < t such that

ν(r)
(1− r)τ is decreasing on [δ, 1) and lim

r→1

ν(r)
(1− r)τ = 0;

ν(r)
(1− r)t is increasing on [δ, 1) and lim

r→1

ν(r)
(1− r)t =∞.

If we say that a function ν : D→ [0,∞) is normal we also assume that it is radial. The
little Bloch-type space Bν,0(D) = Bν,0 consists of all f ∈ H(D) such that

lim
|z|→1

ν(z)|f ′(z)| = 0.

With the norm ‖·‖Bν the Bloch-type space Bν is a Banach space and the little Bloch-type
space Bν,0 is a closed subspace of the Bloch-type space Bν .
Let ϕ be a holomorphic self-map of D. For a non-negative integer n, we define a linear
operator Dn

ϕ as follows:
Dn
ϕf = f (n) ◦ ϕ, f ∈ H(D).

If n = 0, then we have Dn
ϕ = Cϕ, the composition operator induced by ϕ, defined

as Cϕf = f ◦ ϕ , f ∈ H (D) . We recall that an operator T from a Banach space
X to a Banach space Y is bounded if there exists a positive constant C such that
‖Tf‖Y ≤ C‖f‖X . A bounded operator T : X → Y is compact if the image of every
bounded set in X is relatively compact in Y . Equivalently, T : X → Y is compact if
for every bounded sequence {fm} in X, {Tfm} has a convergent sequence in Y. In [8],
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Hibschweiler and MacGregor proved that if α ≥ 1, then every holomorphic self-map ϕ of
D induces a bounded composition operator on Fα. In fact, Bourdon and Cima [1] proved
that

‖Cϕ‖F1→F1 ≤
2 + 2

√
2

1− |ϕ(0)|
which was improved to

‖Cϕ‖F1→F1 ≤
1 + 2|ϕ(0)|
1− |ϕ(0)|

by Cima and Matheson [3]. Moreover, equality is attained for certain linear fractional
maps.
In contrast with the situation when α ≥ 1, a self-map ϕ of D need not induce a bounded
composition operator on Fα when 0 < α < 1. In fact, the condition ϕ ∈ Fα is necessary
for Cϕ to be bounded on Fα. Hibschweiler and MacGregor [8], constructed a self-map ϕ
of D with ϕ /∈ Fα(0 < α < 1). For some recent results in this area, see [2],[6],[7], [11], [13]
and the references therein. In this paper, we characterize boundedness and compactness
of products of composition and iterated differentation from fractional Cauchy transforms
to weighted Bloch-type spaces. Throughout the paper constants are denoted by C, they
are positive and not necessarily the same at each occurrence. The notation A � B means
that there is a positive constant C such that A/C ≤ B ≤ CA.

2 Boundedness and Compactness of Dn
ϕ : Fα → Bν

In this section, we characterize the boundedness and compactness of Dn
ϕ from the space

of fractional Cauchy transforms to weighted Bloch-type spaces.
The following lemma can be found in [7], and is used throughout the rest of the paper.

Lemma 1. Let α > 0 and f ∈ H(D).

(1) If f ∈ Fα and z ∈ D, then |f(z)| ≤ ‖f‖Fα/(1− |z|)α.

(2) If f ∈ Fα, then f ′ ∈ Fα+1 and ‖f ′‖Fα+1 ≤ α‖f‖Fα .

Theorem 2. Let ν be a normal weight, α > 0, n ∈ N∪{0} and ϕ a holomorphic self-map
of D. Then Dn

ϕ : Fα → Bν is bounded if and only if

M1 := sup
ζ∈∂D

sup
z∈D

ν(z)|ϕ′(z)|
|1− ζϕ(z)|n+α+1

<∞. (2.1)

Moreover, if Dn
ϕ : Fα → Bν is bounded, then

α(α+ 1) · · · (α+ n)M1 ≤ ‖Dn
ϕ‖Fα→Bν

≤ α(α+ 1) · · · (α+ n− 1)
{

(α+ n)M1 + 1
(1− |ϕ(0)|)n+α

}
.

(2.2)

Proof. First, suppose that (2.1) holds. Let f ∈ Fα. Then there is a µ ∈ M such that
‖µ‖ = ‖f‖Fα and

f(z) =
∫
∂D

dµ(ζ)
(1− ζz)α

.

Thus, we have

f (n+1)(z) = α(α+ 1) · · · (α+ n)
∫
∂D

(ζ)n+1

(1− ζz)n+α+1
dµ(ζ). (2.3)
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Replacing z in (2.3) by ϕ(z), using a known inequality and multiplying such obtained
inequality by ν(z)|ϕ′(z)|, we obtain

ν(z)|ϕ′(z)||f (n+1)(ϕ(z))| ≤ α(α+ 1) · · · (α+ n)
∫
∂D

ν(z)|ϕ′(z)|
|1− ζϕ(z)|n+α+1

d|µ|(ζ) (2.4)

≤ α(α+ 1) · · · (α+ n) sup
ζ∈∂D

sup
z∈D

ν(z)|ϕ′(z)|
|1− ζϕ(z)|n+α+1

∫
∂D
d|µ|(ζ)

= α(α+ 1) · · · (α+ n) sup
ζ∈∂D

sup
z∈D

ν(z)|ϕ′(z)|
|1− ζϕ(z)|n+α+1

‖µ‖

from which it follows that

ν(z)|(Dn
ϕf)′(z)| ≤ α(α+ 1) · · · (α+ n) sup

ζ∈∂D
sup
z∈D

ν(z)|ϕ′(z)|
|1− ζϕ(z)|n+α+1

‖f‖Fα .

Taking the supremum over z ∈ D, we get

sup
z∈D

ν(z)|(Dn
ϕf)′(z)| ≤ α(α+ 1) · · · (α+ n)M1‖f‖Fα . (2.5)

By Lemma 1, we have

|(Dn
ϕf)(0)| = |f (n)(ϕ(0))| ≤

‖fn‖Fn+α

(1− |ϕ(0)|)n+α ≤ α(α+ 1) · · · (α+ n− 1) ‖f‖Fα
(1− |ϕ(0)|)n+α .

(2.6)
Thus from (2.5) and (2.6), we have

‖Dn
ϕf‖Bν ≤ α(α+ 1) · · · (α+ n− 1)

{
(α+ n)M1 + 1

(1− |ϕ(0)|)n+α

}
‖f‖Fα .

Hence Dn
ϕ : Fα → Bν is bounded and

‖Dn
ϕ‖Fα→Bν ≤ α(α+ 1) · · · (α+ n− 1)

{
(α+ n)M1 + 1

(1− |ϕ(0)|)n+α

}
. (2.7)

Next suppose that Dn
ϕ : Fα → Bν is bounded. Let

fζ(z) = 1
(1− ζz)α

, ζ ∈ ∂D. (2.8)

Then ‖fζ‖Fα = 1 and

f
(n+1)
ζ (z) = α(α+ 1) · · · (α+ n) (ζ)n+1

(1− ζz)n+α+1
.

From this and the boundedness of the operator Dn
ϕ : Fα → Bν , we have that ‖Dn

ϕfζ‖Bν ≤
‖Dn

ϕ‖Fα→Bν , for every ζ ∈ ∂D and so

α(α+ 1) · · · (α+ n) sup
ζ∈∂D

sup
z∈D

ν(z)|ϕ′(z)|
|1− ζϕ(z)|n+α+1

≤ ‖Dn
ϕ‖Fα→Bν . (2.9)

If Dn
ϕ : Fα → Bν is bounded, then from (2.7) and (2.9), inequality in (2.2) follows.
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Theorem 3. Let ν be a normal weight, α > 0, n ∈ N ∪ {0}, ϕ a holomorphic self-map
of D and dλ(z) = dA(z)/(1− |z|2)2. Then Dn

ϕ : Fα → Bν is bounded if and only if

L1 := sup
ζ∈∂D

sup
a∈D

∫
D

|ϕ′(z)|2

|1− ζϕ(z)|2(n+α+1)
ν2(z)(1− |ηa(z)|2)2dλ(z) <∞. (2.10)

Moreover, if Dn
ϕ : Fα → Bν is bounded, then asymptotic relation L1 �M2

1 holds.

Proof. First assume that (2.10) holds. Since ν is normal, ν(a) � ν(z) when z ∈ D(a, (1−
|a|)/2) = {|z − a| < (1 − |a|)/2}. Also it is known that |1 − āz| � 1 − |a|2, for z ∈
D(a, (1− |a|)/2). Using these two facts, (1.2) and the subharmonicity of the function

g(z) = |ϕ′(z)|2

|1− ζϕ(z)|2(n+α+1)

we obtain

L1 ≥ sup
ζ∈∂D

sup
a∈D

∫
D(a,(1−|a|)/2)

|ϕ′(z)|2

|1− ζϕ(z)|2(n+α+1)
ν2(z)(1− |ηa(z)|2)2dλ(z)

= sup
ζ∈∂D

sup
a∈D

∫
D(a,(1−|a|)/2)

|ϕ′(z)|2

|1− ζϕ(z)|2(n+α+1)
ν2(z) (1− |a|2)2

|1− az|4 dA(z)

≥ sup
ζ∈∂D

sup
a∈D

ν2(a)|ϕ′(a)|2

|1− ζϕ(a)|2(n+α+1)
= M2

1 . (2.11)

Thus by Theorem 1, the operator Dn
ϕ : Fα → Bν is bounded.

Next assume that the operator Dn
ϕ : Fα → Bν is bounded. By Theorem 1, we have that

(2.1) holds. From this, we have

L1 ≤M2
1 sup
a∈D

∫
D

(1− |a|2)2

|1− āz|4 dA(z) = M2
1C <∞. (2.12)

The asymptotic relation L1 �M2
1 follows from (2.11) and (2.12).

Proceeding as in the proof of Theorem 2, we can easily prove the following lemma.
We omit the proof.

Lemma 4. Let ν : D → [0,∞) be a normal weight function and dλ(z) = dA(z)/(1 −
|z|2)2. Then f ∈ Bν if and only if

I := |f(0)|2 + sup
a∈D

∫
D
|f ′(z)|2ν2(z)(1− |ηa(z)|2)2dλ(z) <∞.

Moreover, the following asymptotic relationship holds

‖f‖2
Bν � I.

By Lemma 1, the unit ball BFα of Fα is a normal family, a standard argument from
Proposition 3.11 in [5] yields the proof of the next lemma.

Lemma 5. Let ν be a normal weight, α > 0, n ∈ N∪{0} and ϕ a holomorphic self-map
of D. Then Dn

ϕ : Fα → Bν is compact if and only if for any bounded sequence {fm}m∈N
in Fα converging to zero on compact subsets of D, we have that limm→∞ ‖Dn

ϕfm‖Bν = 0.
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Theorem 6. Let ν be a normal weight, α > 0, n ∈ N ∪ {0}, ϕ a holomorphic self-map
of D, dλ(z) = dA(z)/(1− |z|2)2 and Dn

ϕ : Fα → Bν is bounded. Then the following
statements are equivalent:

1. Dn
ϕ : Fα → Bν is compact.

2. M3 := sup
a∈D

∫
D
ν2(z)(1− |ηa(z)|2)2|ϕ′(z)|2dλ(z) <∞

and

lim
r→1

sup
ζ∈∂D

sup
a∈D

∫
|ϕ(z)|>r

ν2(z)
|1− ζϕ(z)|2(n+α+1)

(1− |ηa(z)|2)2|ϕ′(z)|2dλ(z) = 0. (2.13)

Proof. (1)⇒ (2). Since Dn
ϕ : Fα → Bν is bounded, for f(z) = zn/n! ∈ Fα, we get

M3 = sup
a∈D

∫
D
ν2(z)(1− |ηa(z)|2)2|ϕ′(z)|2dλ(z) <∞.

Let fm(z) = zm, m ∈ N. It is a norm bounded sequence in Fα converging to zero
uniformly on compact subsets of D. Hence by Lemma 2, it follows that ‖Dn

ϕfm‖Bν → 0
as m→∞. Thus for every ε > 0, there is an m0 ∈ N such that for m ≥ m0, we have( n∏

j=0
(m− j)

)2
sup
a∈D

∫
D
|ϕ(z)|2(m−n−1)ν2(z)(1− |ηa(z)|2)2|ϕ′(z)|2dλ(z) < ε. (2.14)

From (2.14), we have that for each r ∈ (0, 1)

r2(m−n−1)
( n∏
j=0

(m− j)
)2

sup
a∈D

∫
|ϕ(z)|>r

ν2(z)(1− |ηa(z)|2)2|ϕ′(z)|2dλ(z) < ε. (2.15)

Hence for r ∈
[∏n

j=0(m− j)−
1

m−n−1 , 1
)
, we have

sup
a∈D

∫
|ϕ(z)|>r

ν2(z)(1− |ηa(z)|2)2|ϕ′(z)|2dλ(z) < ε. (2.16)

Let f ∈ BFα and ft(z) = f(tz), 0 < t < 1. Then sup0<t<1 ‖ft‖Fα ≤ ‖f‖Fα , ft ∈ Fα,
t ∈ (0, 1) and ft → f uniformly on compact subsets of D as t → 1. The compactness of
Dn
ϕ : Fα → Bν implies that limt→1 ‖Dn

ϕft −Dn
ϕf‖Bν = 0. Hence for every ε > 0, there is

a t ∈ (0, 1) such that

sup
a∈D

∫
D
|f (n+1)
t (ϕ(z))− f (n+1)(ϕ(z))|2ν2(z)(1− |ηa(z)|2)2|ϕ′(z)|2dλ(z) < ε. (2.17)

By inequalities (2.16) and (2.17), we have

sup
a∈D

∫
|ϕ(z)|>r

|f (n+1)(ϕ(z))|2ν2(z)(1− |ηa(z)|2)2|ϕ′(z)|2dλ(z)

≤ 2 sup
a∈D

∫
D
|f (n+1)
t (ϕ(z))− f (n+1)(ϕ(z))|2ν2(z)(1− |ηa(z)|2)2|ϕ′(z)|2dλ(z)

+ 2 sup
a∈D

∫
|ϕ(z)|>r

|f (n+1)
t (ϕ(z))|2ν2(z)(1− |ηa(z)|2)2|ϕ′(z)|2dλ(z)

≤ 2ε(1 + ‖f (n+1)
t ‖2

∞).
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Hence for every f ∈ BFα , there is a δ0 ∈ (0, 1), δ0 = δ0(f, ε), such that for r ∈ (δ0, 1)

sup
a∈D

∫
|ϕ(z)|>r

|f (n)(ϕ(z))|2ν2(z)(1− |ηa(z)|2)2|ϕ′(z)|2dλ(z) < ε.

From the compactness of Dn
ϕ : Fα → Bν , we have that for every ε > 0 there is a

finite collection of functions f1, f2, . . . , fk ∈ BFα such that for each f ∈ BFα , there is a
j ∈ {1, 2, . . . , k} such that

sup
a∈D

∫
D
|f (n+1)(ϕ(z))− f (n+1)

j (ϕ(z))|2ν2(z)(1− |ηa(z)|2)2|ϕ′(z)|2dλ(z) < ε. (2.18)

On the other hand, from (2.18) it follows that if δ := max1≤j≤k δj(fj , ε), then for r ∈ (δ, 1)
and all j ∈ {1, 2, . . . , k} we have

sup
a∈D

∫
|ϕ(z)|>r

|f (n+1)
j (ϕ(z))|2ν2(z)(1− |ηa(z)|2)2|ϕ′(z)|2dλ(z) < ε. (2.19)

From (2.18) and (2.19), we have that for r ∈ (δ, 1) and every f ∈ BFα

sup
a∈D

∫
|ϕ(z)|>r

|f (n+1)(ϕ(z))|2ν2(z)(1− |ηa(z)|2)2|ϕ′(z)|2dλ(z) < 4ε. (2.20)

Applying (2.20) to the functions fζ(z) = 1/(1− ζz)α, ζ ∈ ∂D, we obtain

sup
ζ∈∂D

sup
a∈D

∫
|ϕ(z)|>r

ν2(z)
|1− ζϕ(z)|2(n+α+1)

(1− |ηa(z)|2)2|ϕ′(z)|2dλ(z)

< 4ε/(α(α+ 1) · · · (α+ n))2

from which (2.13) follows.
(2) ⇒ (1). Assume that {fm}m∈N is a bounded sequence in Fα, say by L, converging
to 0 uniformly on compacts of D as m → ∞. Then by the Weierstrass theorem, f (k)

m

also converges to 0 uniformly on compacts of D, for each k ∈ N. We need to show that
‖Dn

ϕfm‖Bν → 0 asm→∞. For eachm ∈ N, we can find a µm ∈M with ‖µm‖ = ‖fm‖Fα
such that

fm(z) =
∫
∂D

dµm(ζ)
(1− ζz)α

. (2.21)

Differentiating (2.21) n + 1 times, composing such obtained equation by ϕ, applying
Jensen’s inequality, as well as the boundedness of sequence {fm}m∈N, we obtain

|f (n+1)
m (ϕ(w))|2 ≤ L(α(α+ 1) · · · (α+ n))2

∫
∂D

d|µm|(ζ)
|1− ζϕ(w)|2(n+α+1)

. (2.22)

By the second condition in (2), we have that for every ε > 0, there is an r1 ∈ (0, 1) such
that for r ∈ (r1, 1), we have

sup
ζ∈∂D

sup
a∈D

∫
|ϕ(z)|>r

ν2(z)
|1− ζϕ(z)|2(n+α+1)

(1− |ηa(z)|2)2|ϕ′(z)|2dλ(z) < ε. (2.23)

By Lemma 2, we have

‖Dn
ϕfm‖2

Bν � |f
n
m(ϕ(0))|2 + sup

a∈D

∫
|ϕ(z)|≤r

|f (n+1)
m (ϕ(z))|2(1− |ηa(z)|2)2|ϕ′(z)|2ν2(z)dλ(z)

+ sup
a∈D

∫
|ϕ(z)|>r

|f (n+1)
m (ϕ(z))|2(1− |ηa(z)|2)2|ϕ′(z)|2ν2(z)dλ(z).
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Using first condition in (2), (2.23), Fubini’s theorem and the fact that

|f (n)
m (ϕ(0))|2 < ε and sup

|w|≤r
|f (n+1)
m (w)|2 < ε,

for sufficiently large m, say m ≥ m0, we have that

‖Dn
ϕfm‖2

Bν ≤ |f
(n)
m (ϕ(0))|2

+ sup
|ϕ(z)|≤r

|f (n+1)
m (ϕ(z))|2 sup

a∈D

∫
|ϕ(z)|≤r

(1− |ηa(z)|2)2|ϕ′(z)|2ν2(z)dλ(z)

+ sup
a∈D

∫
∂D

∫
|ϕ(z)|>r

ν2(z)
|1− ζϕ(w)|2(n+α+1)

(1− |ηa(z)|2)2|ϕ′(z)|2dλ(z)d|µm|(ζ)

≤
(

1 +M3 +
∫
∂D
d|µm|(ζ)

)
ε

≤ (1 +M3 + L)ε.

Since ε is an arbitrary, the result follows by Lemma 3.

Theorem 7. Let ν be a normal weight, α > 0, n ∈ N∪{0} and ϕ a holomorphic self-map
of D. Then Dn

ϕ : Fα → Bν,0 is bounded if and only if following conditions hold

M1 := sup
ζ∈∂D

sup
z∈D

ν(z)|ϕ′(z)|
|1− ζϕ(z)|n+α+1

<∞. (2.24)

lim
|z|→1

ν(z)|ϕ′(z)|
|1− ζϕ(z)|n+α+1

= 0 (2.25)

for every ζ ∈ ∂D.

Proof. First suppose that (2.24) and (2.25) hold. By (2.25), the integrand in (2.4) tends
to zero for every ζ ∈ ∂D, as |z| → 1, and is dominated by the function f(z) = M1. Thus
by the Lebesgue convergence theorem, the integral in (2.4) tends to zero as |z| → 1,
implying

lim
|z|→1

ν(z)|(Dn
ϕf)′(z)| = 0.

Hence, for every f ∈ Fα we have that Dn
ϕf ∈ Bν,0, from which the boundedness of

Dn
ϕ : Fα → Bν,0 follows. Conversely, suppose that Dn

ϕ : Fα → Bν,0 is bounded. Then
Dn
ϕfζ ∈ Bν,0 for every function fζ , ζ ∈ ∂D, defined in (2.8), that is

lim
|z|→1

ν(z)|ϕ′(z)|
|1− ζϕ(z)|n+α+1

= 0

for every ζ ∈ ∂D. Since Dn
ϕ : Fα → Bν,0 is bounded, then Dn

ϕ : Fα → Bν is bounded too.
Thus by Theorem 1, (2.24) follows, as claimed.

Theorem 8. Let ν be a normal weight, α > 0, n ∈ N∪{0} and ϕ a holomorphic self-map
of D. Then Dn

ϕ : Fα → Bν,0 is compact if and only if

lim
|z|→1

sup
ζ∈∂D

ν(z)|ϕ′(z)|
|1− ζϕ(z)|n+α+1

= 0. (2.26)
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Proof. By a know result (see, e.g. Lemma 1 in [12], a closed set E in Bν,0 is compact if
and only if it is bounded and satisfies

lim
|z|→1

sup
f∈E

ν(z)|f ′(z)| = 0.

Thus the set {Dn
ϕf : f ∈ Fα, ‖f‖Fα ≤ 1} has compact closure in Bν,0 if and only if

lim
|z|→1

sup{ν(z)|(Dn
ϕf)′(z)| : f ∈ Fα, ‖f‖Fα ≤ 1} = 0. (2.27)

Let f ∈ BFα , then there is a µ ∈M such that ‖µ‖ = ‖f‖Fα and

f(z) =
∫
∂D

dµ(ζ)
(1− ζz)α

.

Thus we easily get that for each f ∈ BFα

ν(z)|(Dn
ϕf)′(z)| ≤ α(α+ 1) · · · (α+ n)‖µ‖ sup

ζ∈∂D

ν(z)|ϕ′(z)|
|1− ζϕ(z)|n+α+1

≤ α(α+ 1) · · · (α+ n) sup
ζ∈∂D

ν(z)|ϕ′(z)|
|1− ζϕ(z)|n+α+1

. (2.28)

Using (2.26) in (2.28), we get (2.27). Hence Dn
ϕ : Fα → Bν,0 is compact. Conversely,

suppose that Dn
ϕ : Fα → Bν,0 is compact. Taking the test functions in (2.8), we can

easily obtain that (2.26) follows from (2.27).

Acknowledgements. We are thankful to the referee for his/her comments and sugges-
tions.
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