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Abstract

We consider products of composition and iterated differentiation operators from the space of fractional
Cauchy transforms to weighted Bloch-type spaces and little weighted Bloch-type spaces. Upper and
lower bounds for norm of these operators are computed and compactness is completely characterized.
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1 Introduction and Preliminaries

Let D be the open unit disk in the complex plane C, 9D its boundary, dA(z) the normal-
ized area measure on D (i.e. A(D) = 1) and H* the space of all bounded holomorphic
functions on D with the norm || f|loc = sup,¢p |f(2)|. Let H(D) the class of all holomor-
phic functions on D. H (D) is a locally convex linear topological space with respect to the
topology given by uniform convergence on compact subsets of . We denote by 97 the
space of all complex Borel measures on 9D and let 9t* be the subset of 9t consisting of
probability measures. Let a > 0 be a real number. The family F, of fractional Cauchy
transforms is the collection of functions f € H (D) which admits a representation of the
form .
z) = —d zeD 1.1

)= [ T o Gem) (1.1
for some p € M. The principal branch is used in the power function in (1.1) and through-
out the rest of the paper. The space F, is a Banach space with respect to the norm

11, = i Ll = 16 = [ o).
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where ||u|| denotes the total variation of measure p. According to the Lebesgue decom-
position theorem 9 = M, + N, where M, = {p, € M : po << m}, where m is the
normalized Lebesgue measure on the unit circle D, and M; = {ps € M : psLm}. Thus
any u can be written as p = g + pis, where pg € My, ps € My and ||pl] = [|uall + [|1s]]-
Consequently, the space F, may also be written as Fo = (Fo)a + (Fa)s, where (Fo)a
is isometrically isomorphic to 2t/ H{, the closed subspace of 9 of absolutely continuous
measures and (Fy)s is isomorphic to 9, the closed subspace of 9 of singular measures.
If f € (Fa)a, then the singular part is null and the measure p for which the integral
in (1.1) holds reduces to du(e®) = g(eit)dt, where g(e’) € L' and dt is the Lebesgue

measure on JD. For more about the space F,, we refer [1], [2] [3], [1], [8], [9] and [10].
Let
a—z
a =T - ) D7
Na(2) Tz %7 €

that is, the involutive automorphism of DD interchanging points a and 0. Also we need
the following well known identity

(1= lal)(1 = |2*)
|1 —az|?

(1= e () =1 = [na(2)* = (1.2)

The Bloch-type space B, (D) = B, consists of all f € H(D) such that

1flls, = 1£(0)] +b.(f) = |£(0)| +§25V(Z)If'(Z)I < 00,

where v is a positive continuous function on D (weight). A weight v is called typical if it
is radial, i.e. v(z) = v(]z]), z € D and v(|z|) decreasingly converges to 0 as |z| — 1. A
positive continuous function v on the interval [0, 1) is called normal if there are § € [0,1)
and 7 and ¢, 0 < 7 < t such that

v(r)

ﬁ is decreasing on [d,1) and llgi W =0;

vir) . . : : v(r)
- is increasing on [0,1) and }LH% ) =

If we say that a function v : D — [0, 00) is normal we also assume that it is radial. The
little Bloch-type space B, (D) = B, o consists of all f € H(ID) such that

I v() ()] =0.

With the norm || ||, the Bloch-type space B, is a Banach space and the little Bloch-type
space B, is a closed subspace of the Bloch-type space B, .

Let ¢ be a holomorphic self-map of D. For a non-negative integer n, we define a linear
operator D¢ as follows:

Dyf=f"op, feHD)

If n = 0, then we have D} = C,, the composition operator induced by ¢, defined
as Cof = foy, f € H(D). We recall that an operator T from a Banach space
X to a Banach space Y is bounded if there exists a positive constant C' such that
ITflly < C|fllx- A bounded operator T' : X — Y is compact if the image of every
bounded set in X is relatively compact in Y. Equivalently, T': X — Y is compact if
for every bounded sequence {f,,} in X, {Tf,,} has a convergent sequence in Y. In [3],
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Hibschweiler and MacGregor proved that if & > 1, then every holomorphic self-map ¢ of
D induces a bounded composition operator on F, . In fact, Bourdon and Cima [1] proved

that 2423
+
1Coll7imm < T 10(0)]
which was improved to
”CS(JH]:l—)]:l = M
1—(0)]
by Cima and Matheson [3]. Moreover, equality is attained for certain linear fractional

maps.
In contrast with the situation when a > 1, a self-map ¢ of D need not induce a bounded
composition operator on F, when 0 < a < 1. In fact, the condition ¢ € F, is necessary
for C, to be bounded on F,. Hibschweiler and MacGregor [8], constructed a self-map ¢
of D with ¢ ¢ F,(0 < a < 1). For some recent results in this area, see [2],[6],[7], [L1], [13]
and the references therein. In this paper, we characterize boundedness and compactness
of products of composition and iterated differentation from fractional Cauchy transforms
to weighted Bloch-type spaces. Throughout the paper constants are denoted by C, they
are positive and not necessarily the same at each occurrence. The notation A =< B means
that there is a positive constant C such that A/C < B < CA.

2 Boundedness and Compactness of Dy Fo — B,

In this section, we characterize the boundedness and compactness of D from the space
of fractional Cauchy transforms to weighted Bloch-type spaces.
The following lemma can be found in [7], and is used throughout the rest of the paper.

Lemma 1. Let o« > 0 and f € H(D).
(1) If f € Fo and z € D, then |f(2)] < [[fll7./(1 = |z))*.
(2) If f € Fo, then f' € Foqr and ||f'|| 7., < alfll7.-

Theorem 2. Let v be a normal weight, o > 0, n € NU{0} and ¢ a holomorphic self-map
of D. Then Dy : Fo — B, is bounded if and only if

/
M; = sup sup V(i)‘(p ()l < 0o0. (2.1)
ceab zed |1 — (p(z)|ntott

Moreover, if D : Fo — B, is bounded, then

ala@+1)--(a+n)M < |DZlr.-s,
1
S a(a+1)---(a+n— 1){(a+n)M1+(l—|ga(O))"+@}
(2.2)

Proof. First, suppose that (2.1) holds. Let f € F,. Then there is a p € 9 such that

lull = 1 £llx. and e
_ M
ﬂ@—ADu_@P-

) =atat ) ot [

oD (1 _ Zz)n+a+1

Thus, we have

au(C). (2.3)
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Replacing z in (2.3) by ¢(z), using a known inequality and multiplying such obtained
inequality by v(z)|¢'(2)|, we obtain

VDI )] < alat Dot [ LB g

ap |1 — Cp(z)[rtatt

V() (2)
<afot )t m) sup sup I EE |

v(2)|¢'(2)]

=ala+1)---(a+n) sup sup = "
(@t 1)+ (ot m) sup sup oo e I
from which it follows that
v(2)|¢'(2)]
v(2)(D" Y ()] <ala+1)--(a+n) sup su 2 .
DL G < et 1) (oc+n) sup swp o,
Taking the supremum over z € D, we get
SugV(Z)\(DZf)'(Z)I <ala+1)--(a+n)M|fz. (2.5)
zE
By Lemma 1, we have
/"7 /17
(DENO)] = [F7(p(0)] € —— e <a(a+ 1) (a+n—1) ==t
v (1= lp(0)[)+e (1= lp(0)[)+e

(2.6)
Thus from (2.5) and (2.6), we have
1
D flg, <ala+1)---(a+n—1 { a+n)M +} fllz.-
1D fIl (a+1)--( )4 ( )M EEOES 1£1 7.
Hence Dg : Fo — B, is bounded and
1
Dl %, Bugaa—i-l-ua—i—n—l{a—i—nM —1—}. 2.7
|| cpH}- - ( ) ( ) ( ) 1 (17 |§0(O)Dn+a ( )
Next suppose that Dj : F, — B, is bounded. Let
fele) = ——=—m, (0D (28)
(z) = ———, . .
(1-Cop

Then ||fc||]:u =1 and

(Z)n+1

(n+1) = a4+ n)——m——.
@ =alas ) ot g

From this and the boundedness of the operator Dy Fo — B, , we have that ||D$f(||8,, <
HDZH}‘W—%W for every ¢ € 9D and so

ala+1)---(a+n) sup sup v(2)|¢'(2)]

z < [1DgllF. 5, - 2.9
cedb zeb |1 — (p(z)|ntatt I sa” — (2.9)

If D} : Fo — B, is bounded, then from (2.7) and (2.9), inequality in (2.2) follows.
O
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Theorem 3. Let v be a normal weight, o > 0, n € NU {0}, ¢ a holomorphic self-map
of D and dX\(z) = dA(z)/(1 — |z|*)*. Then D} : Fo — B, is bounded if and only if

Ly := sup su V2(2)(1 = |n.(2)[?)?d\(2) < oo. 2.10
1 geéaaéi/‘u- PM+Q+D ()1~ o (=) )2 (2) (2.10)

Moreover, if Dy : Fo — B, is bounded, then asymptotic relation Ly = M? holds.

Proof. First assume that (2.10) holds. Since v is normal, v(a) < v(z) when z € D(a, (1—
la])/2) = {|z — a| < (1 —|a])/2}. Also it is known that |1 —az| < 1 — |a|?, for z €
D(a, (1 — |a|)/2). Using these two facts, (1.2) and the subharmonicity of the function

' ()2

z) = _
9(z) |1 — Cp(z)]2(ntatl)
we obtain
Ly > sup su 201 = ()220
1 geapu» aeg D(a,(1—|al|)/2) |1 — QP )|2(n+a+1) Na
= sup sup/ ' (2)]? VQ(Z)(l - ‘g|212 4A(2)
(€dD a€D J D(a, (1 |(,|)/2) |1 — CSD( )|2(n+a+1) |1 _ az|
2

~ Ceobaeb |1 — C%’( )|2(n+a+1)

Thus by Theorem 1, the operator Dj : F, — B, is bounded.
Next assume that the operator Df; : F, — B, is bounded. By Theorem 1, we have that
(2.1) holds. From this, we have

2 (1- |a|2)2 a2
Ly < Misup | ~————dA(z) = M{C < oo. (2.12)
a€D JD ‘1 - az\
The asymptotic relation L; =< M? follows from (2.11) and (2.12). O

Proceeding as in the proof of Theorem 2, we can easily prove the following lemma.
We omit the proof.

Lemma 4. Let v : D — [0,00) be a normal weight function and d\(z) = dA(z)/(1 —
|2|2)2. Then f € B, if and only if

I:=|£(0) +wju (2)PV2(2)(1 — [na(2)[)2dA(2) < oo,

a€D

Moreover, the following asymptotic relationship holds

IF1E, = 1.

By Lemma 1, the unit ball Bx, of F, is a normal family, a standard argument from
Proposition 3.11 in [5] yields the proof of the next lemma.

Lemma 5. Let v be a normal weight, « > 0, n € NU{0} and ¢ a holomorphic self-map
of D. Then D} : Fo — B, is compact if and only if for any bounded sequence { fm }men
in Fq converging to zero on compact subsets of D, we have that lim,, ||D$fm||gy =0.
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Theorem 6. Let v be a normal weight, o > 0, n € NU {0}, ¢ a holomorphic self-map
of D, d\(z) = dA(2)/(1—1z*)* and D} : Fo — B, is bounded. Then the following
statements are equivalent:

1. Dg : Fo — By is compact.
2. My := Sup/ V2 (2)(1 = [na(2)[)?1¢' (2)]2dA(2) < o0
D

acD
and

v (2)
lim supsup/ 1— [n.(2)]?)?|¢" (2)[2dA(z) = 0. (2.13
Iy [ S (- P QPG =0 (213)

Proof. (1) = (2). Since D, : Fo — B, is bounded, for f(z) = 2"/n! € F,, we get
M = sup [ A @) ()PAAE) < o
acD JD

Let fn(z) = 2™, m € N. It is a norm bounded sequence in F, converging to zero
uniformly on compact subsets of D. Hence by Lemma 2, it follows that || D fy|[5, — 0
as m — o0o. Thus for every € > 0, there is an mg € N such that for m > mg, we have

acD

(TLom =) sup [ 1eGEm 0200 = Pl PN <e (214)

From (2.14), we have that for each r € (0,1)

acD

n 2
2o (Tl =) s [ PO PP PG <o (219
=0 [p(2)|>r
Hence for r € [H?ZO(m - j)fmflnfl ,1), we have

swp [ (1= ()PP ) PAAE) < e (2.16)
p(2)|>r

a€D J|

Let f € Bz, and fi(z) = f(tz), 0 < t < 1. Then supg, || fell7. < |fll7as fo € Fa,
t € (0,1) and f; — f uniformly on compact subsets of D as t — 1. The compactness of
D« Fo — B, implies that lim;; | D3 fi — D{ ||, = 0. Hence for every € > 0, there is
at € (0,1) such that

ach / LD (0(2)) = F D (0(2)Pr2(2)(1 = [na(2)]2)2]¢ (2)PdA(z) <. (2.17)
By inequalities (2.16) and (2.17), we have

S“p/ S (0(2) P2 (2) (1 = 1(2)]%)21¢' (2)PdA(2)
lp(2)[>r

a€D

< 2sup / T ((2)) = FPD (0(2) P2 (2) (1 — [0a(2)2)29 (2)PdA(2)

acD JD

+2sup/ Y @) P2 (2)(1 = [na(2)[)2]¢ (2)PdA(2)
(z)[>r

acD |
< 2e(1+ || fTV)12).
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Hence for every f € Br,_, there is a dg € (0,1), dp = do(f, €), such that for r € (do, 1)

Sup/ M (@22 (2) (1 = [na(2)]?)2]¢ (2)PdA(z) < e.
a€D Jlp(2)[>r
From the compactness of D : F, — B,, we have that for every e > 0 there is a
finite collection of functions fi, fa,..., fx € Br, such that for each f € Br_, thereis a
je€{1,2,...,k} such that

Sup/ £ (0(2) = £V (0P ()1 = Ima(2)P)2I¢ (2)PdA(z) <. (218)
a€D JD

On the other hand, from (2.18) it follows that if § := maxi<;<x J;(f;,¢€), then for r € (4, 1)
and all j € {1,2,...,k} we have

sup / D (0(2) P2 (2) (1 = [0 (2)2)2] () PdA(z) < e. (2.19)
a€D Jp(z)|>r

From (2.18) and (2.19), we have that for € (4,1) and every f € Br,
sup / FPF D (0(2)) P2 (2)(1 — [0a(2)[2)2 )¢ (2) | 2dA(2) < de. (2.20)
a€D Jip(z)|>r

Applying (2.20) to the functions f¢(z) = 1/(1 — (2)%, ¢ € ID, we obtain

V2 (2)
Sup sup = 2(n+a+1)
cedb aebd Jp(z)>r |1 — Co(2)]

<de/(a(a+1)---(a+n))?

(1= [na(2)])?|¢' () *dA(2)

from which (2.13) follows.
(2) = (1). Assume that {f,;}men is a bounded sequence in F,, say by L, converging

to 0 uniformly on compacts of D as m — oo. Then by the Weierstrass theorem, fw(,]f)
also converges to 0 uniformly on compacts of D, for each k € N. We need to show that

DG fmlls, — 0asm — oo. For each m € N, we can find a i, € M with |[pim || = || fin || 7,
such that Ay (C)
/”’"H’L
o (1 —¢2)

Differentiating (2.21) n + 1 times, composing such obtained equation by ¢, applying
Jensen’s inequality, as well as the boundedness of sequence { f,, } men, we obtain

o) < Lata+ 1) o) [l

oD |1 _ Z(,D(’LU)‘Q(TL+Q+1) ’

By the second condition in (2), we have that for every ¢ > 0, there is an r; € (0, 1) such
that for r € (r1,1), we have

(2.22)

sup sup V@) PP (PN <o (223)

(€OD ach /¢<z>|>r 1 = Cp(z) PntetD)

By Lemma 2, we have

1D fimllB, = 1f7 (2(0))* + sup/ D ()P = [na(2) )21 (2) P12 (2)dA(2)
a€b Jjp(z)|<r

+ sup/ LD ()P (1= [na(2)?)21¢ (2) P02 (2)dA(2).
aeb Jip(z)|>r
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Using first condition in (2), (2.23), Fubini’s theorem and the fact that

D (@(0)2 < & and sup [0 (w)]? < e,

lw|<r

for sufficiently large m, say m > myg, we have that
1D fmll, < 1£5 (0(0)?

+ sup |f§?+1)(<ﬂ(z))\28up/ (1= [1a(2)]*)?1¢’ (2)]?v*(2)dA(2)
() I<r aed Jip(2))<r

V2 (2) _ 2210 (2)12dA( 2
v [ sty L G )P el €

< (1404 [ a0
oD
< (14 M3+ L)e.
Since € is an arbitrary, the result follows by Lemma 3. O

Theorem 7. Let v be a normal weight, « > 0, n € NU{0} and ¢ a holomorphic self-map
of D. Then Dy : Fo — By o is bounded if and only if following conditions hold

_ YR
M R T Cea e 220
V2)lg' () 029)

=1 |1 = Cip(z)mratt
for every ¢ € OD.

Proof. First suppose that (2.24) and (2.25) hold. By (2.25), the integrand in (2.4) tends
to zero for every ¢ € ID, as |z| — 1, and is dominated by the function f(z) = M;. Thus
by the Lebesgue convergence theorem, the integral in (2.4) tends to zero as |z| — 1,
implying

lim 1/(2)|(Dgf)'(z)\ =0.

|z|—1
Hence, for every f € F, we have that DZf € B, o, from which the boundedness of
Dy Fo — B, o follows. Conversely, suppose that Dg . Fo — B, o is bounded. Then
D fc € By o for every function f, ¢ € OD, defined in (2.8), that is

@I _
o L= Cp(z)frret

for every ¢ € dD. Since Dy Fo — B, o is bounded, then Dy Fo — B, is bounded too.
Thus by Theorem 1, (2.24) follows, as claimed. O

Theorem 8. Let v be a normal weight, « > 0, n € NU{0} and ¢ a holomorphic self-map
of D. Then Dy : Fo — By o is compact if and only if

v(2)|¢'(2)]
lzl=1cea |1 = Cp(z)|nratt

= 0. (2.26)
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Proof. By a know result (see, e.g. Lemma 1 in [12], a closed set E in B, ¢ is compact if
and only if it is bounded and satisfies

lim supv(z)|f'(z)] = 0.
|z|—=1feE

Thus the set {Df : f € Fa, || fll7, <1} has compact closure in B, ¢ if and only if

lim sup{p(2)|(DLF) ()] f € Fo I fl7. <1} = 0. (2.27)

2=

Let f € Bx,, then there is a u € 9 such that ||u|| = || f]| =, and

_ du(Q)
f(Z) _/B]D) (1722)0[

Thus we easily get that for each f € Br,

v(2)[(DLf) (2 ala c(a+n su v(2)|¢'(2)|
AIDEN ) < ala 1)+ 0+ )l sup —NEDL

v(2)]¢'(2)]
<ala+1)---(a+n) cséla% = Z‘P(f)|n+a+l )

(2.28)

Using (2.26) in (2.28), we get (2.27). Hence D : F, — B, is compact. Conversely,
suppose that D} : Fo — B, is compact. Taking the test functions in (2.8), we can
easily obtain that (2.26) follows from (2.27). O
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