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Abstract
In this article we study the growth of meromorphic solutions of high order linear differential equations
with meromorphic coefficients of [p, q]-order. We extend some previous results due to Cao-Xu-Chen,
Kinnunen, Liu-Tu-Shi, Li-Cao and others.
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1 Introduction and main results

Consider for k ≥ 2 the linear differential equations

f (k) +Ak−1 (z) f (k−1) + · · ·+A1 (z) f ′ +A0 (z) f = 0, (1.1)

f (k) +Ak−1 (z) f (k−1) + · · ·+A1 (z) f ′ +A0 (z) f = F (z) , (1.2)

where A0 (z) , · · · , Ak−1 (z) , F (z) are meromorphic functions. In [11, 12] Juneja, Kapoor
and Bajpai have investigated some properties of entire functions of [p, q]-order and ob-
tained some results about their growth. In [16], in order to maintain accordance with
general definitions of the entire function f of iterated p-order [13, 14], Liu-Tu-Shi gave
a minor modification of the original definition of the [p, q]-order given in [11, 12] . With
this new concept of [p, q]-order, Liu, Tu and Shi [16] have considered equations (1.1),
(1.2) with entire coefficients and obtained different results concerning the growth of their
solutions. In this paper, we continue to consider this subject and investigate the complex
linear differential equations (1.1) and (1.2) when the coefficients A0, A1, · · · , Ak−1, F are
meromorphic functions of [p, q]−order.

In this paper, it is assumed that the reader is familiar with the fundamental results
and the standard notations of the Nevanlinna value distribution theory of meromorphic
functions [9, 14, 20]. For all r ∈ R, we define exp1 r := er and expp+1 r := exp

(
expp r

)
,

p ∈ N. We also define for all r sufficiently large log1 r := log r and logp+1 r := log
(
logp r

)
,

p ∈ N. Moreover, we denote by exp0 r := r, log0 r := r, log−1 r := exp1 r and exp−1 r :=
log1 r.
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Definition 1. ([13]) Let p ≥ 1 be an integer. The iterated p−order of a meromorphic
function f (z) is defined by

ρp (f) = lim sup
r−→+∞

logp T (r, f)
log r ,

where T (r, f) is the Nevanlinna characteristic function of f.

Now, we shall introduce the definition of meromorphic functions of [p, q]-order, where
p, q are positive integers satisfying p ≥ q ≥ 1 or 2 ≤ q = p + 1. In order to keep
accordance with Definition 1, we will give a minor modification to the original definition
of [p, q]-order (e.g. see, [11, 12]).

Definition 2. ([15]) Let p ≥ q ≥ 1 or 2 ≤ q = p+1 be integers. If f (z) is a transcendental
meromorphic function, then the [p, q]-order of f (z) is defined by

ρ[p,q] (f) = lim sup
r−→+∞

logp T (r, f)
logq r

.

It is easy to see that 0 ≤ ρ[p,q] (f) ≤ ∞. If f (z) is a rational, then ρ[p,q] (f) = 0 for any
p ≥ q ≥ 1. By Definition 2, we have that ρ[1,1] (f) = ρ1 (f) = ρ (f) , ρ[2,1] (f) = ρ2 (f)
and ρ[p+1,1] (f) = ρp+1 (f) .

Definition 3. ([15]) A transcendental meromorphic function f (z) is said to have index-
pair [p, q] if 0 < ρ[p,q] (f) <∞ and ρ[p−1,q−1] (f) is not a nonzero finite number.

Definition 4. ([15]) Let p ≥ q ≥ 1 or 2 ≤ q = p+ 1 be integers. The [p, q] convergence
exponent of the sequence of zeros of a meromorphic function f (z) is defined by

λ[p,q] (f) = lim sup
r→+∞

logpN
(
r, 1
f

)
logq r

,

where N
(
r, 1
f

)
is the integrated counting function of zeros of f (z) in {z : |z| ≤ r}. Sim-

ilarly, the [p, q] convergence exponent of the sequence of distinct zeros of f (z) is defined
by

λ[p,q] (f) = lim sup
r→+∞

logpN
(
r, 1
f

)
logq r

,

whereN
(
r, 1
f

)
is the integrated counting function of distinct zeros of f (z) in {z : |z| ≤ r}.

Remark 5. ([15]) If f (z) is a meromorphic function satisfying 0 < ρ[p,q] (f) <∞, then
(i) ρ[p−n,q] =∞ (n < p), ρ[p,q−n] = 0 (n < q), ρ[p+n,q+n] = 1 (n < p) for n = 1, 2, 3, · · ·
(ii) If [p1, q1] is any pair of integers satisfying q1 = p1 + q−p and p1 < p, then ρ[p1,q1] = 0
if 0 < ρ[p,q] < 1 and ρ[p1,q1] =∞ if 1 < ρ[p,q] <∞.
(iii) ρ[p1,q1] =∞ for q1 − p1 > q − p and ρ[p1,q1] = 0 for q1 − p1 < q − p.

Remark 6. ([15]) Suppose that f1 is a meromorphic function of [p, q]-order ρ1 and f2 is
a meromorphic function of [p1, q1]-order ρ2, let p ≤ p1. We can easily deduce the result
about their comparative growth:
(i) If p1 − p > q1 − q, then the growth of f1 is slower than the growth of f2.
(ii) If p1 − p < q1 − q, then f1 grows faster than f2.
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(iii) If p1−p = q1−q > 0, then the growth of f1 is slower than the growth of f2 if ρ2 ≥ 1,
and the growth of f1 is faster than the growth of f2 if ρ2 < 1.
(iv) Especially, when p1 = p and q1 = q then f1 and f2 are of the same index-pair [p, q].
If ρ1 > ρ2, then f1 grows faster than f2; and if ρ1 < ρ2, then f1 grows slower than f2. If
ρ1 = ρ2, Definition 2 does not show any precise estimate about the relative growth of
f1 and f2.

We recall the following definitions. The linear measure of a set E ⊂ (0,+∞) is defined
as m (E) =

∫ +∞
0 χE (t) dt and the logarithmic measure of a set F ⊂ (1,+∞) is defined

by lm (F ) =
∫ +∞

1
χF (t)
t dt, where χH (t) is the characteristic function of a set H. The

upper density of a set E ⊂ (0,+∞) is defined by

densE = lim sup
r−→+∞

m (E ∩ [0, r])
r

.

The upper logarithmic density of a set F ⊂ (1,+∞) is defined by

log dens (F ) = lim sup
r−→+∞

lm (F ∩ [1, r])
log r .

Proposition 7. For all H ⊂ [1,+∞) the following statements hold :
(i) If lm (H) =∞, then m (H) =∞;
(ii) If densH > 0, then m (H) =∞;
(iii) If log densH > 0, then lm (H) =∞.

Proof. (i) Since we have χH (t)
t ≤ χH (t) for all t ∈ H ⊂ [1,+∞) , then

m (H) ≥ lm (H) .

So, if lm (H) = ∞, then m (H) = ∞. We can easily prove the results (ii) and (iii)
by applying the definition of the limit and the properties m (H ∩ [0, r]) ≤ m (H) and
lm (H ∩ [1, r]) ≤ lm (H) .

Definition 8. ([9, 20]) For a ∈ C = C ∪ {∞}, the deficiency of a with respect to a
meromorphic function f is defined as

δ (a, f) = lim inf
r→+∞

m
(
r, 1
f−a

)
T (r, f) = 1− lim sup

r→+∞

N
(
r, 1
f−a

)
T (r, f) .

Extensive work in recent years has been concerned with the growth of solutions of
[p, q]-order of complex linear differential equations in the complex plane and in the unit
disc. Many results have been obtained [2, 3, 4, 10, 15, 16, 17, 18, 19]. Examples of such
results are the following two theorems:

Theorem 9. ([16]) Let H be a set of complex numbers satisfying dens{|z| : z ∈ H} > 0,
and let A0 (z) , · · · , Ak−1 (z) be entire functions satisfying max{ρ[p,q] (Aj) : j = 0, 1, · · · , k−
1} ≤ α. Suppose that there exists a positive constant β satisfying β < α such that for
any given ε (0 < ε < α− β), we have

|A0 (z)| ≥ expp+1
{

(α− ε) logq r
}

and
|Aj (z)| ≤ expp+1

{
β logq r

}
(j = 1, · · · , k − 1)

for z ∈ H. Then, every solution f 6≡ 0 of equation (1.1) satisfies ρ[p+1,q] (f) = α.
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Theorem 10. ([15]) Let H ⊂ (1,∞) be a set satisfying log dens{|z| : |z| ∈ H} > 0, and
let A0 (z) , · · · , Ak−1 (z) , F 6≡ 0 be meromorphic functions satisfying max{ρ[p,q] (Aj) :
j = 1, 2, · · · , k − 1} < α, where α is a constant. Suppose that there exists a constant β
satisfying β < α such that for any given ε (0 < ε < α− β), we have

|A0 (z)| ≥ expp+1
{

(α− ε) logq r
}

and
|Aj (z)| ≤ expp+1

{
β logq r

}
(j = 1, · · · , k − 1)

as |z| ∈ H. Then the following statements hold:
(i) If ρ[p+1,q] (F ) ≥ α, then all meromorphic solutions f whose poles are of uniformly
bounded multiplicities of equation (1.2) satisfy ρ[p+1,q] (f) = ρ[p+1,q] (F ).
(ii) If ρ[p+1,q] (F ) < α, then all meromorphic solutions f whose poles are of uniformly
bounded multiplicities of equation (1.2) satisfy λ[p+1,q] (f) = λ[p+1,q] (f) = ρ[p+1,q] (f) =
α with at most one exceptional solution f0 satisfying ρ[p+1,q] (f0) < α.

The main purpose of this paper is to consider the growth of meromorphic solutions
of equations (1.1) and (1.2) with meromorphic coefficients of finite [p, q]-order in the
complex plane. We obtain the following results which generalize and improve Theorem
9 and Theorem 10.

Theorem 11. Let H be a set of complex numbers satisfying log dens{|z| : z ∈ H} > 0,
and let A0 (z) , · · · , Ak−1 (z) be meromorphic functions satisfying max{ρ[p,q] (Aj) : j =
0, 1, · · · , k − 1} ≤ ρ (0 < ρ <∞) . Suppose that there exist two real numbers satisfying
0 ≤ β < α such that, we have

|A0 (z)| ≥ expp
{
α
[
logq−1 r

]ρ} (1.3)

and
|Aj (z)| ≤ expp

{
β
[
logq−1 r

]ρ} (j = 1, · · · , k − 1) (1.4)

as |z| → +∞ for z ∈ H. Then the following statements hold:
(i) If p ≥ q ≥ 1 or 3 ≤ q = p + 1, then every meromorphic solution f 6≡ 0 whose
poles are of uniformly bounded multiplicities or δ (∞, f) > 0 of equation (1.1) satisfies
ρ[p+1,q] (f) = ρ.
(ii) If p = 1, q = 2, then every meromorphic solution f 6≡ 0 of equation (1.1) satisfies
ρ[2,2] (f) ≥ ρ.

Theorem 12. Let H be a set of complex numbers satisfying log dens{|z| : z ∈ H} > 0,
and let A0 (z) , · · · , Ak−1 (z) be meromorphic functions satisfying max{ρ[p,q] (Aj) : j =
0, 1, · · · , k − 1} ≤ ρ (0 < ρ <∞) . Suppose that there exist two positive constants α, β
such that, we have

m (r,A0) ≥ expp−1
{
α
[
logq−1 r

]ρ} (1.5)

and
m (r,Aj) ≤ expp−1

{
β
[
logq−1 r

]ρ} (j = 1, · · · , k − 1) (1.6)

as |z| → +∞ for z ∈ H. Then the following statements hold:
(i) If p ≥ q ≥ 2 and 0 ≤ β < α, then every meromorphic solution f 6≡ 0 whose poles are of
uniformly bounded multiplicities or δ (∞, f) > 0 of equation (1.1) satisfies ρ[p+1,q] (f) =
ρ.
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(ii) If 3 ≤ q = p+1, 0 ≤ β < α and ρ > 1, then every meromorphic solution f 6≡ 0 whose
poles are of uniformly bounded multiplicities or δ (∞, f) > 0 of equation (1.1) satisfies
ρ[p+1,p+1] (f) = ρ.
(iii) If p = 1, q = 2, 0 ≤ (k − 1)β < α and ρ > 1, then every meromorphic solution
f 6≡ 0 of equation (1.1) satisfies ρ[2,2] (f) ≥ ρ.

Corollary 13. Let F (z) 6≡ 0, Aj(z) (j = 0, 1, · · · , k − 1) be meromorphic functions.
Suppose that H, Aj(z) (j = 0, 1, · · · , k− 1) satisfy the hypotheses in Theorem 11. Then
we have the following statements:
(i) Let p ≥ q ≥ 1. If ρ[p+1,q] (F ) ≤ ρ, then every meromorphic solution f 6≡ 0 whose
poles are of uniformly bounded multiplicities or δ (∞, f) > 0 of equation (1.2) satisfies
λ[p+1,q] (f) = λ[p+1,q] (f) = ρ[p+1,q] (f) = ρ with at most one exceptional solution f0
satisfying ρ[p+1,q] (f0) < ρ; if ρ[p+1,q] (F ) > ρ, then every meromorphic solution f 6≡ 0
whose poles are of uniformly bounded multiplicities or δ (∞, f) > 0 of equation (1.2)
satisfies ρ[p+1,q] (f) = ρ[p+1,q] (F ).
(ii) Let 3 ≤ q = p+ 1 and ρ > 1. If ρ[p+1,p+1] (F ) ≤ ρ, then every meromorphic solution
f 6≡ 0 whose poles are of uniformly bounded multiplicities or δ (∞, f) > 0 of equation (1.2)
satisfies λ[p+1,p+1] (f) = λ[p+1,p+1] (f) = ρ[p+1,p+1] (f) = ρ, with at most one exceptional
solution f0 satisfying ρ[p+1,p+1] (f0) < ρ; if ρ[p+1,p+1] (F ) > ρ, then every meromorphic
solution f 6≡ 0 whose poles are of uniformly bounded multiplicities or δ (∞, f) > 0 of
equation (1.2) satisfies ρ[p+1,p+1] (f) = ρ[p+1,p+1] (F ).

Corollary 14. Let F (z) 6≡ 0, Aj(z) (j = 0, 1, · · · , k − 1) be meromorphic functions.
Suppose that H, Aj(z) (j = 0, 1, · · · , k − 1) satisfy the hypotheses in Theorem 12. Then
we have the following statements:
(i) Let p ≥ q ≥ 2, 0 ≤ β < α. If ρ[p+1,q] (F ) ≤ ρ, then every meromorphic solution f 6≡ 0
whose poles are of uniformly bounded multiplicities or δ (∞, f) > 0 of equation (1.2)
satisfies λ[p+1,q] (f) = λ[p+1,q] (f) = ρ[p+1,q] (f) = ρ with at most one exceptional solution
f0 satisfying ρ[p+1,q] (f0) < ρ; if ρ[p+1,q] (F ) > ρ, then every meromorphic solution f 6≡ 0
whose poles are of uniformly bounded multiplicities or δ (∞, f) > 0 of equation (1.2)
satisfies ρ[p+1,q] (f) = ρ[p+1,q] (F ).
(ii) Let 3 ≤ q = p+ 1, 0 ≤ β < α and ρ > 1. If ρ[p+1,p+1] (F ) ≤ ρ , then every meromor-
phic solution f 6≡ 0 whose poles are of uniformly bounded multiplicities or δ (∞, f) > 0
of equation (1.2) satisfies λ[p+1,p+1] (f) = λ[p+1,p+1] (f) = ρ[p+1,p+1] (f) = ρ with at most
one exceptional solution f0 satisfying ρ[p+1,p+1] (f0) < ρ; if ρ[p+1,p+1] (F ) > ρ, then ev-
ery meromorphic solution f 6≡ 0 whose poles are of uniformly bounded multiplicities or
δ (∞, f) > 0 of equation (1.2) satisfies ρ[p+1,p+1] (f) = ρ[p+1,p+1] (F ).

Recently, the author [2, 3, 4], J. Tu and Z. X. Xuan [17] and J. Tu and H. X.
Huang [18] have investigated the growth of solutions of differential equations (1.1) and
(1.2) with analytic coefficients of [p, q]-order in the unit disc. So, it is also interesting to
consider the growth of meromorphic solutions of differential equations with coefficients
of [p, q]-order in the unit disc?

2 Some preliminary lemmas

Our proofs depend mainly upon the following lemmas.

Lemma 15. ([1]) Let g : (0,∞)→ R, h : (0,∞)→ R be monotone increasing functions
such that g (r) ≤ h (r) outside of an exceptional set E1 of finite linear measure. Then,
for any λ > 1, there exists r1 > 0 such that g (r) ≤ h (λr) for all r > r1.



42 Benharrat Belaïdi

Lemma 16. ([8]) Let ϕ : [0,+∞) → R and ψ : [0,+∞) → R be monotone non-
decreasing functions such that ϕ (r) ≤ ψ (r) for all r /∈ E2 ∪ [0, 1], where E2 ⊂ (1,+∞)
is a set of finite logarithmic measure. Let γ > 1 be a given constant. Then there exists
an r2 = r2 (γ) > 0 such that ϕ (r) ≤ ψ (γr) for all r > r2.

Lemma 17. ([9]) Let f be a meromorphic function and let k ∈ N. Then

m

(
r,
f (k)

f

)
= S (r, f) ,

where S (r, f) = O (log T (r, f) + log r) , possibly outside of an exceptional set E3 ⊂
(0,+∞) with finite linear measure, and if f is of finite order of growth, then

m

(
r,
f (k)

f

)
= O (log r) .

Lemma 18. ([7]) Let f(z) be a transcendental meromorphic function, and let α > 1 be
a given constant. Then there exist a set E4 ⊂ (1,∞) with finite logarithmic measure and
a constant B > 0 that depends only on α and i, j (0 ≤ i < j ≤ k), such that for all z
satisfying |z| = r /∈ [0, 1] ∪ E4, we have∣∣∣∣f (j)(z)

f (i)(z)

∣∣∣∣ ≤ B{T (αr, f)
r

(logα r) log T (αr, f)
}j−i

.

Lemma 19. ([5]) Let f be a meromorphic solution of (1.1), assuming that not all coeffi-

cients Aj are constants. Given a real constant γ > 1, and denoting T (r) =
k−1∑
j=0

T (r,Aj) ,

we have
logm (r, f) < T (r) {(log r) log T (r)}γ , if s = 0,
logm (r, f) < r2s+γ−1T (r) {log T (r)}γ , if s > 0

outside of an exceptional set Es with
∫
Es

ts−1dt < +∞.

Remark 20. We note that in the above lemma, s = 1 corresponds to Euclidean measure
and s = 0 to logarithmic measure.

Lemma 21. Let A0 (z) , · · · , Ak−1 (z) be nonconstant meromorphic functions of [p, q]−order.
Assume the existence of the meromorphic solutions of (1.1). Then the following state-
ments hold:
(i) If p ≥ q ≥ 1, then every meromorphic solution f 6≡ 0 whose poles are of uni-
formly bounded multiplicities or δ (∞, f) > 0 of equation (1.1) satisfies ρ[p+1,q] (f) ≤
max{ρ[p,q] (Aj) : j = 0, 1, · · · , k − 1}.
(ii) If 3 ≤ q = p + 1, then every meromorphic solution f 6≡ 0 whose poles are of uni-
formly bounded multiplicities or δ (∞, f) > 0 of equation (1.1) satisfies ρ[p+1,p+1] (f) ≤
max{ρ[p,p+1] (Aj) (j = 0, 1, · · · , k − 1)}.

Proof. We prove only (ii) . For the proof of (i) see [15, 19]. From (1.1), we know that the
poles of f (z) can only occur at the poles of A0 (z) , · · · , Ak−1 (z). Since the multiplicities
of poles of f are uniformly bounded, we have

N (r, f) ≤M1N (r, f) ≤M1

k−1∑
j=0

N (r,Aj)
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≤M max {N (r,Aj) : j = 0, 1, · · · , k − 1} , (2.1)

where M1 and M are some suitable positive constants. This gives

T (r, f) = m (r, f) +O (max {N (r,Aj) : j = 0, 1, · · · , k − 1}) . (2.2)

Set δ (∞, f) := η > 0, for sufficiently large r, we have

m (r, f) ≥ η

2T (r, f) . (2.3)

From Lemma 19 and (2.2) or (2.3), we obtain

log T (r, f) ≤ logm (r, f) +O (log T (r)) ≤ O (T (r) {(log r) log T (r)}γ) (2.4)

or
log T (r, f) ≤ log

(
2
η
m (r, f)

)
≤ O (T (r) {(log r) log T (r)}γ) (2.5)

outside of an exceptional set E0 with finite logarithmic measure. From (2.4) or (2.5), we
get for p ≥ 2

logp+1 T (r, f) ≤ max
{

logp T (r) , logp+1 r
}

(2.6)

outside of an exceptional set E0 with finite logarithmic measure. If at least one of the
coefficients A0 (z) , · · · , Ak−1 (z) of (1.1) is transcendental, then by using Lemma 16 and
(2.6), we obtain

ρ[p+1,p+1] (f) ≤ max
{
ρ[p,p+1] (Aj) (j = 0, 1, · · · , k − 1) , 1

}
= max

{
ρ[p,p+1] (Aj) (j = 0, 1, · · · , k − 1)

}
.

If all the coefficients A0 (z) , · · · , Ak−1 (z) of (1.1) are rational functions, then by using
Lemma 16 and (2.6), we obtain

ρ[p+1,p+1] (f) ≤ max
{
ρ[p,p+1] (Aj) (j = 0, 1, · · · , k − 1) , 1

}
= 1

= max
{
ρ[p,p+1] (Aj) (j = 0, 1, · · · , k − 1)

}
.

Lemma 22. ([15]) Let 1 ≤ q ≤ p or 2 ≤ q = p + 1 and let f be a meromorphic
function with 0 ≤ ρ[p,q] (f) = ρ ≤ ∞. Then there exists a set E5 ⊂ [1,+∞) with infinite
logarithmic measure such that

lim
r→+∞

r∈E5

logp T (r, f)
logq r

= ρ.

Lemma 23. Let 1 ≤ q ≤ p or 2 ≤ q = p+ 1 and let f1 and f2 be meromorphic functions
of [p, q]−order satisfying ρ[p,q] (f1) > ρ[p,q] (f2) . Then there exists a set E6 ⊂ (1,+∞)
having infinite logarithmic measure such that for all r ∈ E6, we have

lim
r→∞

T (r, f2)
T (r, f1) = 0.
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Proof. Set ρ1 = ρ[p,q] (f1) , ρ2 = ρ[p,q] (f2) . By using Lemma 22, there exists a set
E6 with infinite logarithmic measure such that for any given 0 < ε < ρ1−ρ2

2 and all
sufficiently large r ∈ E6

T (r, f1) > expp
{

(ρ1 − ε) logq r
}

and for all sufficiently large r, we have

T (r, f2) < expp
{

(ρ2 + ε) logq r
}
.

From this we can get
T (r, f2)
T (r, f1) <

expp
{

(ρ2 + ε) logq r
}

expp
{

(ρ1 − ε) logq r
}

= exp
{

expp−1
{

(ρ2 + ε) logq r
}
− expp−1

{
(ρ1 − ε) logq r

}}
, r ∈ E6.

Since 0 < ε < ρ1−ρ2
2 , then we have

lim
r→∞

T (r, f2)
T (r, f1) = 0, r ∈ E6.

Lemma 24. Let Aj (j = 0, · · · , k − 1) , F 6≡ 0 be meromorphic functions. Then the
following statements hold:
(i) If p ≥ q ≥ 1, then every meromorphic solution f of equation (1.2) such that max{ρ[p,q] (Aj)
(j = 0, 1, · · · , k − 1) , ρ[p,q] (F )} < ρ[p,q] (f) satisfies λ[p,q] (f) = λ[p,q] (f) = ρ[p,q] (f).
(ii) If 2 ≤ q = p + 1, then every meromorphic solution f of equation (1.2) such that
max{ρ[p,p+1] (Aj) (j = 0, 1, · · · , k−1), ρ[p,p+1] (F ) , 1} < ρ[p,p+1] (f) satisfies λ[p,p+1] (f) =
λ[p,p+1] (f) = ρ[p,p+1] (f).

Proof. We prove only (ii) . For the proof of (i) see [15]. By (1.2), if f has a zero at z0
of order α (> k) and if A0, A1, · · · , Ak−1 are all analytic at z0, then F must have a zero
at z0 of order α− k. Hence,

n

(
r,

1
f

)
≤ k n

(
r,

1
f

)
+ n

(
r,

1
F

)
+

k∑
j=1

n (r,Ak−j)

and

N

(
r,

1
f

)
≤ k N

(
r,

1
f

)
+N

(
r,

1
F

)
+

k∑
j=1

N (r,Ak−j) . (2.7)

Now (1.2) can be rewritten as

1
f

= 1
F

(
f (k)

f
+Ak−1

f (k−1)

f
+ · · ·+A1

f ′

f
+A0

)
. (2.8)

By Lemma 17 and (2.8), we have

m

(
r,

1
f

)
≤

k∑
j=1

m

(
r,
f (j)

f

)
+

k∑
j=1

m (r,Ak−j) +m

(
r,

1
F

)
+O (1)
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=
k∑
j=1

m (r,Ak−j) +m

(
r,

1
F

)
+O (log T (r, f) + log r) (2.9)

holds for all r outside a set E3 ⊂ (0,+∞) with a finite linear measure m (E3) = δ < +∞.
By (2.7) and (2.9), we get

T (r, f) = T

(
r,

1
f

)
+O (1)

≤ kN
(
r,

1
f

)
+

k∑
j=1

T (r,Ak−j)+T (r, F )+O (log T (r, f) + log r) (|z| = r /∈ E3) . (2.10)

Since max{ρ[p,p+1] (Aj) (j = 0, 1, · · · , k− 1), ρ[p,p+1] (F )} < ρ[p,p+1] (f) , then by Lemma
23, there exists a set E6 ⊂ [1,+∞) with infinite logarithmic measure such that

max
{
T (r,Aj)
T (r, f) (j = 0, · · · , k − 1) , T (r, F )

T (r, f)

}
→ 0, r → +∞, r ∈ E6. (2.11)

Thus, by (2.10) and (2.11), we have for all r ∈ E6\E3

(1− o (1))T (r, f) ≤ k N
(
r,

1
f

)
+O (log T (r, f) + log r) .

Then, we obtain ρ[p,p+1] (f) ≤ λ[p,p+1] (f) ≤ λ[p,p+1] (f). Therefore, by

λ[p,p+1] (f) ≤ λ[p,p+1] (f) ≤ ρ[p,p+1] (f)

we have λ[p,p+1] (f) = λ[p,p+1] (f) = ρ[p,p+1] (f) .

Lemma 25. Let f be a meromorphic function of [p, q]−order. Then the following state-
ments hold:
(i) If p ≥ q ≥ 1, then ρ[p,q] (f) = ρ[p,q] (f ′).
(ii) If 3 ≤ q = p + 1, then ρ[p,p+1] (f ′) ≤ max

{
ρ[p,p+1] (f) , 1

}
and ρ[p,p+1] (f) ≤

max
{
ρ[p,p+1] (f ′) , 1

}
.

(iii) If p = 1, q = 2, then ρ[1,2] (f ′) ≤ max
{
ρ[1,2] (f) , 1

}
and ρ[1,2] (f) ≤ 1 + ρ[1,2] (f ′).

Proof. (i)− (ii) By Lemma 17, we have

T (r, f ′) = m (r, f ′) +N (r, f ′) ≤ m (r, f) +m

(
r,
f ′

f

)
+ 2N (r, f)

≤ 2T (r, f) +m

(
r,
f ′

f

)
≤ 2T (r, f) +O (log T (r, f) + log r) (2.12)

holds outside of an exceptional set E3 ⊂ (0,+∞) with finite linear measure. By (2.12)
and Lemma 15, it is easy to see ρ[p,q] (f ′) ≤ ρ[p,q] (f) (p ≥ q ≥ 1) and ρ[p,p+1] (f ′) ≤
max

{
ρ[p,p+1] (f) , 1

}
if 3 ≤ q = p+ 1. On the other hand, [6], ( [20], p. 35), we have for

r → +∞
T (r, f) < O (T (2r, f ′) + log r) . (2.13)

Hence, by using (2.13) we obtain ρ[p,q] (f ′) = ρ[p,q] (f) if p ≥ q ≥ 1 and ρ[p,p+1] (f) ≤
max

{
ρ[p,p+1] (f ′) , 1

}
if 3 ≤ q = p+ 1. We can easily obtain the conclusion (iii) by using

(2.12) and (2.13).
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3 Proof of Theorem 11

Proof. (i) Suppose that f 6≡ 0 is a meromorphic solution whose poles are of uniformly
bounded multiplicities or δ (∞, f) > 0 of equation (1.1). From the conditions of Theorem
11, there is a set H of complex numbers satisfying log dens{|z| : z ∈ H} > 0 such that
for z ∈ H, we have (1.3) and (1.4) as |z| → +∞. Set H1 = {r = |z| : z ∈ H}, since
log dens{|z| : z ∈ H} > 0, then H1 is a set with

∫
H1

dr
r = ∞. By Lemma 18, we know

that there exists a set E4 ⊂ (1,+∞) with finite logarithmic measure and a constant
B > 0, such that for all z satisfying |z| = r /∈ [0, 1] ∪ E4, we get∣∣∣∣f (j)(z)

f(z)

∣∣∣∣ ≤ B [T (2r, f)]j+1 (j = 1, · · · , k) . (3.1)

By (1.1), we can write

|A0 (z)| ≤
∣∣∣∣f (k)

f

∣∣∣∣+ |Ak−1 (z)|
∣∣∣∣f (k−1)

f

∣∣∣∣+ · · ·+ |A0 (z)|
∣∣∣∣f ′f
∣∣∣∣ . (3.2)

It follows by (1.3), (1.4), (3.1) and (3.2) that

expp
{
α
[
logq−1 r

]ρ} ≤ |A0 (z)| ≤ kB expp
{
β
[
logq−1 r

]ρ} [T (2r, f)]k+1 (3.3)

holds for all z satisfying |z| = r ∈ H1\([0, 1] ∪ E4) as |z| → +∞. If p ≥ q ≥ 1 or
3 ≤ q = p + 1, then by (3.3) and Lemma 16, we obtain ρ ≤ ρ[p+1,q] (f) . On the other
hand, by Lemma 21 (i)− (ii), we have

ρ[p+1,q] (f) ≤ max
{
ρ[p,q] (Aj) : j = 0, 1, · · · , k − 1

}
≤ ρ,

if p ≥ q ≥ 1 or 3 ≤ q = p + 1. Hence every meromorphic solution whose poles are of
uniformly bounded multiplicities or δ (∞, f) > 0 of equation (1.1) satisfies ρ[p+1,q] (f) = ρ
if p ≥ q ≥ 1 or 3 ≤ q = p+ 1.
(ii) If p = 1, q = 2, then from (3.3), we have

exp {α [log r]ρ} ≤ |A0 (z)| ≤ kB exp {β [log r]ρ} [T (2r, f)]k+1 (3.4)

holds for all z satisfying |z| = r ∈ H1\([0, 1] ∪ E4) as |z| → +∞. By (3.4) and Lemma
16, every meromorphic solution f 6≡ 0 of equation (1.1) satisfies ρ[2,2] (f) ≥ ρ.

4 Proof of Theorem 12

Proof. (i) Suppose that f 6≡ 0 is a meromorphic solution whose poles are of uniformly
bounded multiplicities or δ (∞, f) > 0 of equation (1.1). By (1.1), we can write

A0 (z) = −
(
f (k)

f
+Ak−1 (z) f

(k−1)

f
+ · · ·+A1 (z) f

′

f

)
. (4.1)

From the conditions of Theorem 12, there is a set H of complex numbers satisfying
log dens {|z| : z ∈ H} > 0 such that for z ∈ H, we have (1.5) and(1.6) as |z| → +∞.
Set H1 = {r = |z| : z ∈ H} , since log dens{|z| : z ∈ H} > 0, then H1 is a set of r with∫
H1

dr
r =∞. It follows by (1.5), (1.6), (4.1) and Lemma 17 that

expp−1
{
α
[
logq−1 r

]ρ} ≤ m (r,A0)
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≤
k−1∑
j=1

m (r,Aj) +
k∑
j=1

m

(
r,
f (j)

f

)
+O (1)

≤ (k − 1) expp−1
{
β
[
logq−1 r

]ρ}+O (log T (r, f) + log r) (4.2)

holds for all z satisfying |z| = r ∈ H1\E3 as |z| → +∞, where E3 ⊂ (0,+∞) is a
set with a finite linear measure. If p ≥ q ≥ 2 and 0 ≤ β < α, then by (4.2) and
Lemma 15, we obtain ρ ≤ ρ[p+1,q] (f) . On the other hand, by Lemma 21 (i), we
have ρ[p+1,q] (f) ≤ max

{
ρ[p,q] (Aj) : j = 0, 1, · · · , k − 1

}
≤ ρ. Hence every meromorphic

solution whose poles are of uniformly bounded multiplicities or δ (∞, f) > 0 of equation
(1.1) satisfies ρ[p+1,q] (f) = ρ.
(ii) If 3 ≤ q = p + 1, 0 ≤ β < α and ρ > 1, by the similar proof in case (i) and Lemma
21 (ii), we can obtain the conclusion.
(iii) If p = 1, q = 2, 0 ≤ (k − 1)β < α and ρ > 1, then from (4.2), we have

α [log r]ρ ≤ m (r,A0) ≤ (k − 1)β [log r]ρ +O (log T (r, f) + log r) (4.3)

holds for all z satisfying |z| = r ∈ H1\E3 as |z| → +∞. By (4.3) and Lemma 16, every
meromorphic solution f 6≡ 0 of equation (1.1) satisfies ρ[2,2] (f) ≥ ρ.

5 Proof of Corollary 13

Proof. (i) Suppose that f 6≡ 0 is a meromorphic solution whose poles are of uniformly
bounded multiplicities or δ (∞, f) > 0 of equation (1.1).
(a) Suppose that 1 ≤ q ≤ p and ρ[p+1,q] (F ) ≤ ρ. We assume that f is a solution of (1.2)
and {f1, f2, · · · , fk} is a solution base of the corresponding homogeneous equation (1.1)
of (1.2). By Theorem 11, we know that ρ[p+1,q] (fj) = ρ (j = 1, 2, · · · , k) . Then f can
be expressed in the form

f (z) = B1 (z) f1 (z) +B2 (z) f2 (z) + · · ·+Bk (z) fk (z) , (5.1)

where B1 (z) , · · · , Bk (z) are suitable meromorphic functions determined by

B′1 (z) f1 (z) +B′2 (z) f2 (z) + · · ·+B′k (z) fk (z) = 0,
B′1 (z) f ′1 (z) +B′2 (z) f ′2 (z) + · · ·+B′k (z) f ′k (z) = 0,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
B′1 (z) f (k−1)

1 (z) +B′2 (z) f (k−1)
2 (z) + · · ·+B′k (z) f (k−1)

k (z) = F (z) .

(5.2)

Since the Wronskian W (f1, f2, · · · , fk) is a differential polynomial in f1, f2, · · · , fk
with constant coefficients, it is easy by using Theorem 11 to deduce that

ρ[p+1,q] (W ) ≤ max
{
ρ[p+1,q] (fj) : j = 1, 2, · · · , k

}
= ρ. (5.3)

From (5.2), we get

B′j = F.Gj (f1, f2, · · · , fk) . (W (f1, f2, · · · , fk))−1 (j = 1, 2, · · · , k) , (5.4)

where Gj (f1, f2, · · · , fk) are differential polynomials in f1, f2, · · · , fk with constant co-
efficients. Thus

ρ[p+1,q] (Gj) ≤ max
{
ρ[p+1,q] (fj) : j = 1, 2, · · · , k

}
= ρ (j = 1, 2, · · · , k) . (5.5)
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Since ρ[p+1,q] (F ) ≤ ρ, then by using Lemma 25 (i), (5.3) and (5.5), we have from (5.4)
for j = 1, 2, · · · , k

ρ[p+1,q] (Bj) = ρ[p+1,q]
(
B′j
)
≤ max

{
ρ[p+1,q] (F ) , ρ

}
= ρ. (5.6)

Then, by (5.6), we get from (5.1)

ρ[p+1,q] (f) ≤ max
{
ρ[p+1,q] (fj) , ρ[p+1,q] (Bj) : j = 1, 2, · · · , k

}
= ρ. (5.7)

Now, we assert that every meromorphic solution f whose poles are of uniformly bounded
multiplicities or δ (∞, f)> 0 of (1.2) satisfies ρ[p+1,q] (f) = ρ with at most one exceptional
solution f0 satisfying ρ[p+1,q] (f0) < ρ. In fact, if f∗ is another meromorphic solution
with ρ[p+1,q] (f∗) < ρ of equation (1.2), then ρ[p+1,q] (f0 − f∗) < ρ. But f0 − f∗ is a
meromorphic solution of the corresponding homogeneous equation (1.1) of (1.2). This
contradicts Theorem 11. Then ρ[p+1,q] (f) = ρ holds for all meromorphic solutions of
(1.2) with at most one exceptional solution f0 satisfying ρ[p+1,q] (f0) < ρ. By Lemma 24
(i), we know that every meromorphic solution f whose poles are of uniformly bounded
multiplicities or δ (∞, f) > 0 with ρ[p+1,q] (f) = ρ satisfies λ[p+1,q] (f) = λ[p+1,q] (f) =
ρ[p+1,q] (f) = ρ.
(b) If ρ < ρ[p+1,q] (F ), then by using Lemma 25 (i), (5.3) and (5.5), we have from (5.4)
for j = 1, 2, · · · , k

ρ[p+1,q] (Bj) = ρ[p+1,q]
(
B′j
)

≤ max
{
ρ[p+1,q] (F ) , ρ[p+1,q] (fj) : j = 1, 2, · · · , k

}
= ρ[p+1,q] (F ) . (5.8)

Then from (5.8) and (5.1), we get

ρ[p+1,q] (f) ≤ max
{
ρ[p+1,q] (fj) , ρ[p+1,q] (Bj) : j = 1, 2, · · · , k

}
≤ ρ[p+1,q] (F ) . (5.9)

On the other hand, if ρ < ρ[p+1,q] (F ), it follows from equation (1.2) that a simple
consideration of [p, q]−order implies ρ[p+1,q] (f) ≥ ρ[p+1,q] (F ). By this inequality and
(5.9) we obtain ρ[p+1,q] (f) = ρ[p+1,q] (F ) .
(ii) For 3 ≤ q = p+ 1, ρ > 1, by the similar proof in case (i), we can also obtain that the
conclusions of case (ii) hold.

6 Proof of Corollary 14

Proof. By using the same reasoning of Corollary 13 we can obtain Corollary 14.
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